1
|
Jorgensen MD, Chmielewski J. Recent advances in coiled-coil peptide materials and their biomedical applications. Chem Commun (Camb) 2022; 58:11625-11636. [PMID: 36172799 DOI: 10.1039/d2cc04434j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive research has gone into deciphering the sequence requirements for peptides to fold into coiled-coils of varying oligomeric states. More recently, additional signals have been introduced within coiled-coils to promote higher order assembly into biomaterials with a rich distribution of morphologies. Herein we describe these strategies for association of coiled-coil building blocks and biomedical applications. With many of the systems described herein having proven use in protein storage, cargo binding and delivery, three dimensional cell culturing and vaccine development, the future potential of coiled-coil materials to have significant biomedical impact is highly promising.
Collapse
Affiliation(s)
- Michael D Jorgensen
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, USA.
| | - Jean Chmielewski
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
3
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
4
|
Jung BT, Lim M, Jung K, Li M, Dong H, Dube N, Xu T. Designing sub-20 nm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. J Control Release 2021; 329:538-551. [PMID: 32971202 DOI: 10.1016/j.jconrel.2020.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Biological constraints in diseased tissues have motivated the need for small nanocarriers (10-30 nm) to achieve sufficient vascular extravasation and pervasive tumor penetration. This particle size limit is only an order of magnitude larger than small molecules, such that cargo loading is better described by co-assembly processes rather than simple encapsulation. Understanding the structural, kinetic, and energetic contributions of carrier-cargo co-assembly is thus critical to achieve molecular-level control towards predictable in vivo behavior. These interconnected set of properties were systematically examined using sub-20 nm self-assembled nanocarriers known as three-helix micelles (3HM). Both hydrophobicity and the "geometric packing parameter" dictate small molecule compatibility with 3HM's alkyl tail core. Planar obelisk-like apomorphine and doxorubicin (DOX) molecules intercalated well within the 3HM core and near the core-shell interface, forming an integral component to the co-assembly, as corroborated by small-angle X-ray and neutron-scattering structural studies. DOX promoted crystalline alkyl tail ordering, which significantly increased (+63%) the activation energy of 3HM subunit exchange. Subsequently, 3HM-DOX displayed slow-release kinetics (t1/2 = 40 h) at physiological temperatures, with ~50× greater cargo preference for the micelle core as described by two drug partitioning coefficients (micellar core/shell Kp1 ~ 24, and shell/bulk solvent Kp2 ~ 2). The geometric and energetic insights between nanocarrier and their small molecule cargos developed here will aid in broader efforts to deconvolute the interconnected properties of carrier-drug co-assemblies. Adding this knowledge to pharmacological and immunological explorations will expand our understanding of nanomedicine behavior throughout all the physical and in vivo processes they are intended to encounter.
Collapse
Affiliation(s)
- Benson T Jung
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Marc Lim
- UCB-UCSF Graduate Program in Bioengineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Katherine Jung
- Department of Chemistry, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Michael Li
- Department of Chemistry, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - He Dong
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Nikhil Dube
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States; Department of Chemistry, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States; Material Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.
| |
Collapse
|
5
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
6
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
8
|
Ma D, Keten S. Stable micelles based on a mixture of coiled-coils: the role of different oligomeric states. NANOSCALE 2018; 10:7589-7596. [PMID: 29637959 DOI: 10.1039/c7nr09695j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Homomeric micelles with tunable size, shape and stability have been extensively studied for biomedical applications such as drug carriers. However, designing the local valency and self-assembled morphology of nanophase-separated multicomponent micelles with varied ligand binding possibilities remains challenging. Here, we present micelles self-assembled from amphiphilic peptide-PEG-lipid hybrid conjugates, where the peptides can be either a 3-helix or 4-helix coiled-coil. We demonstrate that the micelle size and sphericity can be controlled based on the coiled-coil oligomeric state. Using theory and coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent simulation, we studied the distribution of 3-helix and 4-helix conjugates within the mixed micelles and observed self-organization into nanodomains within the mixed micelle. We discovered that the phase separation behavior is dictated by the geometry mismatch in the alkyl chain length from different coiled-coil oligomeric states. Our analyses of the self-assembly tendency and drug delivery potency of mixed micelles with controlled multivalency provide important insights into the assembly and formation of nanophase-separated micelles.
Collapse
Affiliation(s)
- Dan Ma
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|