1
|
Rizwan A, Rehman U, Gupta G, Alsayari A, Wahab S, Kesharwani P. Polyglutamic acid in cancer nanomedicine: Advances in multifunctional delivery platforms. Int J Pharm 2025; 676:125623. [PMID: 40254191 DOI: 10.1016/j.ijpharm.2025.125623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Polyglutamic acid (PGA)-coated nanoparticles have emerged as a significant advancement in cancer nanomedicine due to their biocompatibility, biodegradability, and versatility. PGA enhances the stability and bioavailability of therapeutic agents, enabling controlled and sustained drug release with reduced systemic toxicity. Stimuli-responsive modifications to PGA allow for precise drug delivery tailored to the tumor microenvironment, improving specificity and therapeutic outcomes. PGA's potential extends to gene delivery, where it facilitates safe and efficient transfection, addressing critical challenges such as multidrug resistance. Additionally, PGA-coated nanoparticles play a pivotal role in theranostic, integrating diagnostic and therapeutic capabilities within a single platform for real-time monitoring and treatment optimization. These nanoparticles have demonstrated enhanced efficacy in chemotherapy, immunotherapy, and combination regimens, tackling persistent issues like poor tumor penetration and non-specific drug distribution. Advancements in stimuli-responsive designs, ligand functionalization, and payload customization highlight the adaptability of PGA-based platforms for precision oncology. However, challenges such as scalability, stability under physiological conditions, and regulatory compliance remain key obstacles to clinical translation. This review explores the design, development, and applications of PGA-coated nanoparticles, emphasizing their potential to transform cancer treatment through safer, more effective, and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Asfi Rizwan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; Health and Medical Research Centre, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
2
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Huang H, Zhao Y, Yang H, Li J, Ying Y, Li J, Wang S. Light-driven MOF-based micromotors with self-floating characteristics for water sterilization. NANOSCALE 2023; 15:14165-14174. [PMID: 37593810 DOI: 10.1039/d3nr02299d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Three-dimensional motion (especially in the Z-axis direction) of metal-organic frameworks (MOFs)-based micromotors (MOFtors) is essential but still in its infancy. Herein, we propose a simple strategy for designing light-driven MOFtors that move in the Z-axis direction and efficiently kill Staphylococcus aureus (S. aureus). The as-prepared polypyrrole nanoparticles (PPy NPs) with excellent photothermal properties are combined with ZIF-8 through a simple in situ encapsulation method, resulting in multi-wavelength photothermally-responsive MOFtors (PPy/ZIF-8). Under the irradiation of near-infrared (NIR)/ultraviolet (UV)/blue light, the MOFtors all exhibited negative phototaxis and high-speed motion behaviour with the highest speed of 2215 ± 338 μm s-1. In addition, it is proved that these MOFtors can slowly self-float up in an aqueous environment. The light irradiation will accelerate the upward movement of the MOFtors, and the time required for the MOFtors to move to the top is negatively correlated with the light intensity. Finally, efficient antibacterial performances (up to 98.89% against S. aureus) are achieved with these light-driven MOFtors owing to the boosted Zn2+ release by vigorous stirring motion and physical entrapment by the upward motion under light irradiation.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yu Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Haowei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jie Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Li H, Lin L, Yan R, Chen Z, Wen X, Zeng X, Tao C. Multi-functional Fe3O4@HMPDA@G5-Au core-releasable satellite nano drug carriers for multimodal treatment of tumor cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Chen CY, Yang HW, Hsieh PH, Hsieh CH, Wu MH. Development of a photothermal bead-based nucleic acid amplification test (pbbNAAT) technique for a high-performance loop-mediated isothermal amplification (LAMP)–based point-of-care test (POCT). Biosens Bioelectron 2022; 215:114574. [DOI: 10.1016/j.bios.2022.114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
|
8
|
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1791. [PMID: 35338603 PMCID: PMC9540470 DOI: 10.1002/wnan.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Lin J, Yin M, Liu X, Meng F, Luo L. Nanomaterials Based on Functional Polymers for Sensitizing Cancer Radiotherapy. Macromol Rapid Commun 2022; 43:e2200194. [PMID: 35578790 DOI: 10.1002/marc.202200194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Despite being the mainstay treatment for many types of cancer in clinic, radiotherapy is undertaking great challenges in overcoming a series of limitations. Radiosensitizers are promising agents capable of depositing irradiation energy and generating free radicals to enhance the radiosensitivity of tumor cells. Combining radiosensitizers with functional polymer-based nanomaterials holds great potential to improve biodistribution, circulation time, and stability in vivo. The derived polymeric nano-radiosensitizers can significantly improve the efficiency of tumor targeting and radiotherapy, and reduce the side effect to healthy tissues. In this review, we provide an overview of functional polymer-based nanomaterials for radiosensitization in recent years. Particular emphases are given to the action mechanisms, drug loading methods, targeting efficiencies, the impact on therapeutic effects and biocompatibility of various radiosensitizing polymers, which are classified as polymeric micelles, dendrimers, polymeric nanospheres, nanoscale coordination polymers, polymersomes, and nanogels. The challenges and outlooks of polymeric nano-radiosensitizers are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinfeng Lin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
10
|
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2022; 33:87-96. [PMID: 34967608 DOI: 10.1021/acs.bioconjchem.1c00587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in the field of nanotechnology bring an alternative approach to personalized medicine in cancer treatment. Nanogels (NGs) are among the nanosized superconstructs composed of amphiphilic or hydrophilic polymer networks. The design of different types of biodegradable polymer-based NGs in various biomedical applications has received extensive attention, due to their unique physicochemical properties such as highly porous structure, stimuli-responsiveness, and mimicking of some biological properties. In this review, we concisely surveyed the synthesis of dendrimer-based NGs synthesized via different methods including covalent conjugation, inverse nanoprecipitation, physical cross-linking, or self-assembly for various cancer nanomedicine applications, particularly for drug delivery, gene delivery, photothermal therapy, and combination therapy, as well as for biological imaging-guided chemotherapy. Additionally, we provide herein future perspective toward the new design of dendrimer-based NGs for different cancer nanomedicine uses.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
11
|
Mekuria SL, Ouyang Z, Song C, Rodrigues J, Shen M, Shi X. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem 2021. [DOI: https://doi.org/10.1021/acs.bioconjchem.1c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
12
|
Xiao Y, Gateau J, Silva AKA, Shi X, Gazeau F, Mangeney C, Luo Y. Hybrid nano‐ and microgels doped with photoacoustic contrast agents for cancer theranostics. VIEW 2021. [DOI: 10.1002/viw.20200176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yu Xiao
- LCBPT CNRS UMR 8601 Université de Paris Paris France
| | - Jérôme Gateau
- CNRS INSERM Laboratoire d'Imagerie Biomédicale, LIB Sorbonne Université Paris France
| | | | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai P. R. China
| | | | | | - Yun Luo
- LCBPT CNRS UMR 8601 Université de Paris Paris France
| |
Collapse
|
13
|
Beiderman M, Ashkenazy A, Segal E, Motiei M, Salomon A, Sadan T, Fixler D, Popovtzer R. Optimization of Gold Nanorod Features for the Enhanced Performance of Plasmonic Nanocavity Arrays. ACS OMEGA 2021; 6:29071-29077. [PMID: 34746596 PMCID: PMC8567385 DOI: 10.1021/acsomega.1c04301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nanoplasmonic biosensors incorporating noble metal nanocavity arrays are widely used for the detection of various biomarkers. Gold nanorods (GNRs) have unique properties that can enhance spectroscopic detection capabilities of such nanocavity-based biosensors. However, the contribution of the physical properties of multiple GNRs to resonance enhancement of gold nanocavity arrays requires further characterization and elucidation. In this work, we study how GNR aspect ratio (AR) and surface area (SA) modify the plasmonic resonance spectrum of a gold triangular nanocavity array by both simulations and experiments. The finite integration technique (FIT) simulated the extinction spectrum of the gold nanocavity array with 300 nm periodicity onto which the GNRs of different ARs and SAs are placed. Simulations showed that matching of the GNRs longitudinal peak, which is affected by AR, to the nanocavity array's spectrum minima can optimize signal suppression and shifting. Moreover, increasing SA of the matched GNRs increased the spectral variations of the array. Experiments confirmed that GNRs conjugated to a gold triangular nanocavity array of 300 nm periodicity caused spectrum suppression and redshift. Our findings demonstrate that tailoring of the GNR AR and SA parameters to nanoplasmonic arrays has the potential to greatly improve spectral variations for enhanced plasmonic biosensing.
Collapse
Affiliation(s)
- Marianna Beiderman
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ariel Ashkenazy
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Elad Segal
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Adi Salomon
- Department
of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Rachela Popovtzer
- Faculty
of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
14
|
Shamalov K, Meir R, Motiei M, Popovtzer R, Cohen CJ. Noninvasive Tracking of Natural Killer Cells Using Gold Nanoparticles. ACS OMEGA 2021; 6:28507-28514. [PMID: 34746546 PMCID: PMC8567284 DOI: 10.1021/acsomega.1c02143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 05/27/2023]
Abstract
Natural killer (NK)-cell-based immunotherapy is emerging as an attractive approach for cancer treatment. However, to facilitate and expedite clinical implementation, important questions must be answered regarding the in vivo functionality and trafficking patterns of the transferred cells. We have recently developed a noninvasive cell-tracking technique, based on gold nanoparticles (GNPs) as cell-labeling and contrast agents for whole-body computed tomography (CT) imaging. Herein, we report the implementation of this technique for longitudinal and quantitative tracking of NK cell kinetics, the migration and biodistribution in tumor-bearing mice. NK cells were successfully labeled with GNPs, without impairing their biological function, as assessed both in vitro, by cytokine release and cytotoxicity assays, and in vivo, using a xenograft model of human tumors. Using CT, we longitudinally tracked the migration of intravenously injected NK cells and observed an accumulation of effector cell clusters at the tumor site, up to 72 h. Fluorescence imaging of the cells over time correlated with ex vivo quantitative analysis of gold content in the tumor, validating the accuracy and reliability of our technique. Our cell-tracking approach thus offers a valuable tool for preclinical studies, as well as for clinical applications, to elucidate the fate of NK cells and promote the implementation of NK-cell-based immunotherapy.
Collapse
Affiliation(s)
- Katerina Shamalov
- Laboratory
of Tumor Immunology and Immunotherapy, Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Rinat Meir
- Faculty
of Engineering & the Institute of Nanotechnology and Advanced
Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Menachem Motiei
- Faculty
of Engineering & the Institute of Nanotechnology and Advanced
Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Rachela Popovtzer
- Faculty
of Engineering & the Institute of Nanotechnology and Advanced
Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Cyrille J. Cohen
- Laboratory
of Tumor Immunology and Immunotherapy, Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
15
|
Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, Qian L, Min Y. Advances of Nanomedicine in Radiotherapy. Pharmaceutics 2021; 13:pharmaceutics13111757. [PMID: 34834172 PMCID: PMC8622383 DOI: 10.3390/pharmaceutics13111757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Bo Chen
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
| | - Haocheng Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yun Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
- Correspondence:
| | - Yuanzeng Min
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Bioinspired micro/nanomotor with visible light energy-dependent forward, reverse, reciprocating, and spinning schooling motion. Proc Natl Acad Sci U S A 2021; 118:2104481118. [PMID: 34654746 DOI: 10.1073/pnas.2104481118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/23/2022] Open
Abstract
In nature, microorganisms could sense the intensity of the incident visible light and exhibit bidirectional (positive or negative) phototaxis. However, it is still challenging to achieve the similar biomimetic phototaxis for the artificial micro/nanomotor (MNM) counterparts with the size from a few nanometers to a few micrometers. In this work, we report a fuel-free carbon nitride (C3N4)/polypyrrole nanoparticle (PPyNP)-based smart MNM operating in water, whose behavior resembles that of the phototactic microorganism. The MNM moves toward the visible light source under low illumination and away from it under high irradiation, which relies on the competitive interplay between the light-induced self-diffusiophoresis and self-thermophoresis mechanisms concurrently integrated into the MNM. Interestingly, the competition between these two mechanisms leads to a collective bidirectional phototaxis of an ensemble of MNMs under uniform illuminations and a spinning schooling behavior under a nonuniform light, both of which can be finely controllable by visible light energy. Our results provide important insights into the design of the artificial counterpart of the phototactic microorganism with sophisticated motion behaviors for diverse applications.
Collapse
|
17
|
Li X, Ouyang Z, Li H, Hu C, Saha P, Xing L, Shi X, Pich A. Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioact Mater 2021; 6:3244-3253. [PMID: 33778202 PMCID: PMC7970313 DOI: 10.1016/j.bioactmat.2021.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine has revolutionized disease theranostics by the accurate diagnosis and efficient therapy. Here, the PAMAM dendrimer decorated PVCL-GMA nanogels (NGs) were developed for favorable biodistribution in vivo and enhanced antitumor efficacy of ovarian carcinoma. By an ingenious design, the NGs with a unique structure that GMA-rich domains were localized on the surface were synthesized via precipitation polymerization. After G2 dendrimer decoration, the overall charge is changed from neutral to positive, and the NGs-G2 display the whole charge nature of positively charged corona and neutral core. Importantly, the unique architecture and charge conversion of NGs-G2 have a profound impact on the biodistribution and drug delivery in vivo. As a consequence of this alteration, the NGs-G2 as nanocarriers emerge the highly sought biodistribution of reduced liver accumulation, enhanced tumor uptake, and promoted drug release, resulting in the significantly augmented antitumor efficacy with low side effects. Remarkably, this finding is contrary to some reported work that the nanocarriers with positive charge have preferential liver uptake. Moreover, the NGs-G2 also displayed thermal/pH dual-responsive behaviors, excellent biocompatibility, improved cellular uptake, and stimuli-responsive drug release. Encouragingly, this work demonstrates a novel insight into the strategy for optimizing design, improving biodistribution and enhancing theranostic efficacy of nanocarriers.
Collapse
Affiliation(s)
- Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Zhijun Ouyang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Helin Li
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Chaolei Hu
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Pabitra Saha
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
| | - Lingxi Xing
- Department of Gynecology and Obstetrics, XinHua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, NL-6167 RD, Geleen, the Netherlands
| |
Collapse
|
18
|
Hu P, Hou X, Yu X, Wei X, Li Y, Yang D, Jiang X. Folic Acid-Conjugated Gold Nanostars for Computed Tomography Imaging and Photothermal/Radiation Combined Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4862-4871. [PMID: 35007035 DOI: 10.1021/acsabm.1c00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fabrication of multifunctional nanoprobes, which integrate tumor targeting, imaging, and effective treatment, has been widely explored in nanomedicine. In the present study, we fabricated tumor-targeting polymer folic acid-terminated polyethylene glycol thiol-modified gold nanostars (GNS-FA), which could realize X-ray computed tomography (CT) imaging and PTT/RT synergistic therapy. The synthesized GNS-FA exhibited good biocompatibility. GNS-FA could be used as a CT imaging contrast agent due to the strong X-ray attenuation of Au. GNS-FA exhibited good near-infrared (NIR) light absorption and excellent photothermal conversion performance, making them promising photothermal transduction agents (PTAs). Furthermore, GNS-FA could be used as an RT sensitizer to enhance the radio-mediated cell death due to the high atomic number (high Z) of gold. Hence, GNS-FA were used as the CT imaging agent, PTA, and radiosensitizer in this work. The in vitro antitumor experiments showed that the PTT/RT combined treatment had enhanced anticancer efficacy compared with the monotherapy (PTT or RT). Our results indicated that the bioconjugated GNS could offer an excellent nanoplatform for CT imaging-guided PTT/RT combined cancer therapy in the future.
Collapse
Affiliation(s)
- Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xu Hou
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xiaojun Yu
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xuguo Wei
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xiaohong Jiang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| |
Collapse
|
19
|
Xiao T, Hu W, Fan Y, Shen M, Shi X. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics 2021; 11:7057-7071. [PMID: 34093871 PMCID: PMC8171075 DOI: 10.7150/thno.60427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Rationale: Development of nanosystems that can be integrated with macrophages (MAs), an emerging carrier system, for effective tumor therapy remains to be challenging. We report here the development of MAs specifically loaded with hyaluronic acid (HA) nanogels (NGs) encapsulated with a photothermal agent of polypyrrole (PPy) and anticancer drug doxorubicin (DOX) (HA/DOX@PPy NGs) for tumor homing and combination photothermo-chemotherapy. Methods: Cystamine dihydrochloride-crosslinked HA NGs were first prepared through a double emulsification method, then loaded with PPy via an in-situ oxidization polymerization and physically encapsulated with DOX. The created HA/DOX@PPy NGs were well characterized and subjected to be endocytosed by MAs (MAs-NGs). The MAs-mediated tumor-homing property, phenotype changes and photothermal performance of MAs-NGs were investigated in vitro, and a subcutaneous tumor model was also established to confirm their targeting capability and enhanced antitumor therapy effect in vivo. Results: The generated hybrid NGs possess a size around 77 nm and good colloidal stability, and can be specifically endocytosed by MAs without appreciably affecting their normal biofunctionalities. In particular, NG-loaded MAs display excellent in-vitro cancer cell and in-vivo tumor homing property. Systemic administration of the MAs-NGs leads to the significant inhibition of a subcutaneous tumor model through combination photothermo-chemotherapy under laser irradiation. Conclusions: The developed hybrid HA-based NG nanosystem incorporated with PPy and DOX fully integrates the coordination and heating property of PPy to regulate the optimized DOX release in the tumor region with the assistance of MA-mediated tumor homing, providing a promising cell therapy strategy for enhanced antitumor therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
20
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhang C, Shi X. Hybrid nanogels with unique designs for improved tumor theranostics. Nanomedicine (Lond) 2020; 15:1455-1458. [PMID: 32515265 DOI: 10.2217/nnm-2020-0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, International Joint Laboratory for Advanced Fiber & Low-dimension Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, International Joint Laboratory for Advanced Fiber & Low-dimension Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
22
|
He X, Peng C, Qiang S, Xiong LH, Zhao Z, Wang Z, Kwok RT, Lam JW, Ma N, Tang BZ. Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials 2020; 238:119834. [DOI: 10.1016/j.biomaterials.2020.119834] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
|
23
|
Zhang C, Sun W, Wang Y, Xu F, Qu J, Xia J, Shen M, Shi X. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9107-9117. [PMID: 32003962 DOI: 10.1021/acsami.9b23413] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The second near-infrared (NIR-II, 1000-1700 nm) light-based diagnosis and therapy have received extensive attention for neoplastic disease treatments because of the fact that light in the NIR-II window possesses less photon scattering along with deeper tissue penetration than that in the NIR-I (700-950 nm) window. Herein, we present a Gd- and copper sulfide (CuS)-integrated nanogel (NG) platform for magnetic resonance (MR)/photoacoustic (PA) imaging-guided tumor-targeted photothermal therapy (PTT). In our approach, we prepared cross-linked polyethylenimine (PEI) NGs via an inverse emulsion method, modified the PEI NGs with Gd chelates, targeting ligand folic acid (FA) through a polyethylene glycol (PEG) spacer and 1,3-propanesultone, and finally loaded CuS nanoparticles (NPs) within the functional NGs. The as-synthesized Gd/CuS@PEI-FA-PS NGs with a mean size of 85 nm exhibit a good water dispersibility and protein resistance property, admirable r1 relaxivity (11.66 mM-1 s-1), excellent NIR-II absorption feature, high photothermal conversion efficiency (26.7%), and FA-mediated targeting specificity to cancer cells overexpressing FA receptor (FAR). With these properties along with the good cytocompatibility, the developed Gd/CuS@PEI-FA-PS NGs enable MR/PA dual-mode imaging-guided targeted PTT of FAR-overexpressing tumors under the irradiation of an NIR-II (1064 nm) laser. The designed Gd/CuS@PEI-FA-PS NGs may be used as a promising theranostic agent for MR/PA dual-mode imaging-guided PTT of other FAR-expressing tumors.
Collapse
Affiliation(s)
- Changchang Zhang
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wenjie Sun
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Yue Wang
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Fang Xu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Jiao Qu
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Jindong Xia
- Department of Radiology , Shanghai Songjiang District Central Hospital , Shanghai 201600 , People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- CQM-Centro de Quimica da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
24
|
Wang XH, Chen XQ, Peng HS, Wei XF, Wang XJ, Cheng K, Liu YA, Yang W. Facile synthesis of polypyrrole-rhodamine B nanoparticles for self-monitored photothermal therapy of cancer cells. J Mater Chem B 2020; 8:1033-1039. [PMID: 31939981 DOI: 10.1039/c9tb02274k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy following microscopic temperature detection can avoid overheating effects or insufficient heating, and thus improve therapeutic efficacy. In this study, biocompatible dual-functional nanoparticles (NPs) are constructed from polypyrrole (PPy) and rhodamine B (RB) by a one-step modified polymerization method. The polypyrrole serves as a photothemal agent, and rhodamine B acts as a temperature-sensing probe. The polypyrrole-rhodamine B (PPy-RB) NPs possess a high photothermal effect on irradiation by 808 nm laser, and a competent temperature sensitivity for the real-time temperature monitoring based on the emission intensity response of rhodamine B. After acting on HepG2 cells, the PPy-RB NPs can effectively induce cancer cell death, and the microscopic temperature is monitored by fluorescence feedback from rhodamine B during PTT by laser confocal microscopy. Hence, the proposed approach can supply a facile and promising way for the fabrication of effective theranostic nanoplatforms assisted by self-monitoring of cancer therapeutic processes.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Xue-Qiao Chen
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Hong-Shang Peng
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Xiao-Fei Wei
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Xiao-Juan Wang
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Kun Cheng
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Yuan-An Liu
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| | - Wei Yang
- Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian District, Beijing, 100876, China.
| |
Collapse
|
25
|
Daneshvar F, Salehi F, Karimi M, Vais RD, Mosleh-Shirazi MA, Sattarahmady N. Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111737. [PMID: 31862636 DOI: 10.1016/j.jphotobiol.2019.111737] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
Metal nanostructures are promising agents sensitizing by laser light and X-ray in photothermal therapy (PTT) and radiotherapy (RT) of cancer that improve treatment strategies of cancer. Nanoscale platinum materials are favorable in nanomedicine applications. In this study, platinum nanoparticles (PtNPs) were synthesized and applied for cancer therapy upon 808-nm laser light and X-ray radiation, or their combination. Two power densities of laser (1.0 and 1.5 W cm-2) and three X-ray doses (2, 4 and 6 Gy) were selected for irradiation of B16/F10 cell line at 24 and 72 h-post treatment. The synthesized PtNPs had a spherical shape with a diameter of 12.2 ± 0.7 nm, and were cytocompatible up to 250 μg mL-1. A photothermal conversion activity in a concentration-dependent manner at 72 h-post treatment was observed. Also, PtNPs represented cytotoxicity upon X-ray radiation doses of 2, 4, and 6 Gy after 24 h, while, 72-h time passing led to deeper outcomes. Dual radiation of laser light and X-ray into PtNPs considerably improved the treatment via reactive oxygen species (ROS) production. PtNPs can act as a novel dual absorber of laser light and X-ray, a common sensitizer, for treatment of cancer. The results of this study can be considered after further clinical investigations for treatment of tumor models.
Collapse
Affiliation(s)
- F Daneshvar
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Salehi
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Karimi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Mosleh-Shirazi
- Radiotherapy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Salehi F, Daneshvar F, Karimi M, Dehdari Vais R, Mosleh-Shirazi MA, Sattarahmady N. Enhanced melanoma cell-killing by combined phototherapy/radiotherapy using a mesoporous platinum nanostructure. Photodiagnosis Photodyn Ther 2019; 28:300-307. [PMID: 31606514 DOI: 10.1016/j.pdpdt.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/01/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Metal nanomaterials have a significant potential as photosensitizer and radiosensitizer. The purpose of this study was to evaluate the cytotoxicity of a platinum mesoporous nanostructure (Pt MN) toward a melanoma cancer cell line upon combined laser radiation (808 nm, 1 and 1.5 W cm-2) and X-ray irradiation (6 MV, 2, 4, and 6 Gy). METHODS Pt MN was synthesized by a simple procedure and characterized by field emission scanning and transmission electron microscopy. A mouse malignant melanoma cell line C540 (B16/F10) was treated with Pt MN, laser light and/or X-ray. RESULTS Pt MN had a mesoporous structure with a sponge-resemble shape comprised of ensembles of very small adhered particles of <11 nm and about 5-nm pores. While Pt MN represented a low toxicity toward and considerable uptake into the cell line in a concentration range of 10-100 μg mL-1, laser light radiation alone was also not toxic, and X-ray irradiation alone induced a limited toxicity, Pt MN was toxic against the cells in a dose dependent manner upon laser light radiation, X-ray irradiation, or their combined exposure. The killing efficacy of Pt MN upon X-ray irradiation was more obvious at 72 h post-treatment. The combined exposure (laser radiation followed by X-ray irradiation) led to a deep cell killing and a very low melanoma cell viability (∼1%). Significant melanoma cancer cell killing of Pt MN was due to reactive oxygen species (ROS) production upon combined exposure of laser and X-ray, while cell killing upon laser light radiation was due to heat generation. CONCLUSION Pt MN was introduced as a supreme laser/X-ray sensitizer for treatment of cancer with a high ability to produce ROS and a potent impact on decreasing cell viability.
Collapse
Affiliation(s)
- F Salehi
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Daneshvar
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Karimi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Mosleh-Shirazi
- Physics Unit, Department of Radio-Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Theune LE, Buchmann J, Wedepohl S, Molina M, Laufer J, Calderón M. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. J Control Release 2019; 311-312:147-161. [DOI: 10.1016/j.jconrel.2019.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
28
|
Xu L, Wang J, Lu SY, Wang X, Cao Y, Wang M, Liu F, Kang Y, Liu H. Construction of a Polypyrrole-Based Multifunctional Nanocomposite for Dual-Modal Imaging and Enhanced Synergistic Phototherapy against Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9246-9254. [PMID: 31251628 DOI: 10.1021/acs.langmuir.9b01387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Design and construction of multifunctional theranostic nanoplatforms are still desired for cancer-effective treatment. Herein, a kind of polypyrrole (PPy)-based multifunctional nanocomposite was designed and successfully constructed for dual-model imaging and enhanced synergistic phototherapy against cancer cells. Through graphene oxide (GO) sheet coating, PPy nanoparticles (NPs) were effectively combined with polyethylene glycol chains, Au NPs, and IR820 molecules. The obtained PGPAI NPs showed promising ability for photoacoustic/computed tomography imaging. Under near-infrared light irradiation, the PPy core and IR820 molecule effectively generated heat and reactive oxygen species (ROS), respectively. Furthermore, the loaded Au NPs owning catalase-like activity produced oxygen by decomposing H2O2 (up-regulated in tumor region), enhancing the oxygen-dependent photodynamic therapy efficacy. The formed PGPAI NPs were also proved to own desirable photothermal conversion efficiency, photothermal stability, colloidal stability, cytocompatibility, and cellular internalization behaviors. Furthermore, cell assay demonstrated that PGPAI NPs displayed enhanced synergistic phototherapy efficacy against cancer cells. These developed multifunctional nanoplatforms are promising for effective cancer theranostic applications.
Collapse
Affiliation(s)
| | | | | | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing , 400010 , China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing , 400010 , China
| | | | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
| | | | | |
Collapse
|
29
|
Fan Y, Zhang J, Shi M, Li D, Lu C, Cao X, Peng C, Mignani S, Majoral JP, Shi X. Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. NANO LETTERS 2019; 19:1216-1226. [PMID: 30698017 DOI: 10.1021/acs.nanolett.8b04757] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of a powerful nanoplatform to realize the simultaneous therapy and diagnosis of cancer using a similar element for theranostics remains a critical challenge. Herein, we report such a theranostic nanoplatform based on pyridine (Pyr)-functionalized generation 5 (G5) poly(amidoamine) dendrimers complexed with copper(II) (Cu(II)) for radiotherapy-enhanced T1-weighted magnetic resonance (MR) imaging and the synergistic radio-chemotherapy of both tumors and tumor metastasis. In this study, amine-terminated G5 dendrimers were covalently linked with 2-pyridinecarboxylic acid, acetylated to neutralize their remaining terminal amines, and complexed with Cu(II) through both the internal tertiary amines and the surface Pyr groups to form the G5.NHAc-Pyr/Cu(II) complexes. We show that the complexes are able to inhibit the proliferation of different cancer cell lines with half-maximal inhibitory concentrations ranging from 4 to 10 μM and induce significant cancer cell apoptosis. Due to the presence of Cu(II), the G5.NHAc-Pyr/Cu(II) complexes display an r1 relaxivity of 0.7024 mM-1 s-1, enabling effective in vivo MR imaging of tumor xenografts and lung metastatic nodules. Further, under radiotherapy (RT) conditions, the tumor MR imaging sensitivity can be significantly enhanced, and the G5.NHAc-Pyr/Cu(II) complexes enable the enhanced chemotherapy of both a xenografted tumor model and a blood-vessel metastasis model. With the demonstrated theranostic potential of the dendrimer-Cu(II) nanocomplexes without additional agents or elements for RT-enhanced MR imaging and chemotherapy of tumor and tumor metastasis, this novel Cu(II)-based nanohybrids may hold great promise for the theranostics of different cancer types and metastases.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Jiulong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center , Fudan University , Shanghai 201508 , People's Republic of China
| | - Menghan Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | | | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Chen Peng
- Department of Radiology, Shanghai Public Health Clinical Center , Fudan University , Shanghai 201508 , People's Republic of China
| | - Serge Mignani
- CQM - Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS , 205 route de Narbonne , 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT , 31077 Toulouse Cedex 4, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
- CQM - Centro de Química da Madeira, MMRG , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
30
|
Shi M, Zhang J, Li J, Fan Y, Wang J, Sun W, Yang H, Peng C, Shen M, Shi X. Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal cancer theranostics. J Mater Chem B 2019; 7:368-372. [DOI: 10.1039/c8tb03021a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polydopamine-coated mesoporous silica nanoparticles loaded with ultrasmall Fe3O4 nanoparticles can be prepared for multimodal imaging and combination therapy of tumors.
Collapse
|
31
|
Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. Dendrimer-Stabilized Gold Nanoflowers Embedded with Ultrasmall Iron Oxide Nanoparticles for Multimode Imaging-Guided Combination Therapy of Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801612. [PMID: 30581720 PMCID: PMC6299682 DOI: 10.1002/advs.201801612] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/16/2018] [Indexed: 05/20/2023]
Abstract
Development of multifunctional theranostic nanoplatforms with improved diagnostic sensitivity and therapeutic efficiency of tumors still remains a great challenge. A unique multifunctional theranostic nanoplatform based on generation 5 (G5) poly(amidoamine) dendrimer-stabilized gold nanoflowers (NFs) embedded with ultrasmall iron oxide (USIO) nanoparticles (NPs) for multimode T 1-weighted magnetic resonance (MR)/computed tomography (CT)/photoacoustic (PA) imaging-guided combination photothermal therapy (PTT) and radiotherapy (RT) of tumors is reported here. G5 dendrimer-stabilized Au NPs and citric acid-stabilized USIO NPs are separately prepared, the two particles under a certain Fe/Au molar ratio are mixed to form complexes, the complexes are exposed to Au growth solution to form NFs via a seed-mediated manner, and the remaining dendrimer terminal amines are acetylated. The formed dendrimer-stabilized Fe3O4/Au NFs (for short, Fe3O4/Au DSNFs) have a mean diameter of 99.8 nm, display good colloidal stability and cytocompatibility, and exhibit a near-infrared absorption feature. The unique structure and composition of the Fe3O4/Au DSNFs endows them with a high r 1 relaxivity (3.22 mM-1 s-1) and photothermal conversion efficiency (82.7%), affording their uses as a theranostic nanoplatform for multimode MR/CT/PA imaging and combination PTT/RT of tumors with improved therapeutic efficacy, which is important for translational nanomedicine applications.
Collapse
Affiliation(s)
- Shiyi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Xin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Jiulong Zhang
- Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Chen Peng
- Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
32
|
Li W, Wang X, Wang J, Guo Y, Lu SY, Li CM, Kang Y, Wang ZG, Ran HT, Cao Y, Liu H. Enhanced Photoacoustic and Photothermal Effect of Functionalized Polypyrrole Nanoparticles for Near-Infrared Theranostic Treatment of Tumor. Biomacromolecules 2018; 20:401-411. [DOI: 10.1021/acs.biomac.8b01453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenchao Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Jingjing Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuan Guo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Shi-Yu Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chang Ming Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| | - Zhi-Gang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hai-Tao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China
| |
Collapse
|
33
|
Wang J, Guo Y, Hu J, Li W, Kang Y, Cao Y, Liu H. Development of Multifunctional Polydopamine Nanoparticles As a Theranostic Nanoplatform against Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9516-9524. [PMID: 30039972 DOI: 10.1021/acs.langmuir.8b01769] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although demanding, the development of multifunctional theranostic nanoplatforms is attracting considerable worldwide interest. Herein, a theranostic nanoplatform with multifunctions based on polydopamine (PDA) nanoparticles (NPs) was developed, owning dual-imaging and dual-therapy functions for cancer theranostic applications. PDA NPs were generated using a facile polymerization method under alkaline conditions, followed by poly(ethylene glycol) (PEG) modification. Then, the obtained NPs were loaded with IR820 and Fe3+ ions to produce the final PEGylated PDA/IR820/Fe3+ (PPIF) NPs. The PPIF NPs thus generated displayed increasingly brighter photoacoustic and magnetic resonance signals with increasing NP concentration and were demonstrated to be cytocompatible and effectively taken up and internalized into HeLa cells. Under near-infrared light irradiation, PPIF NPs can produce heat and reactive oxygen species for photothermal/photodynamic combined cancer therapy. In this study, the versatility of PDA NPs was demonstrated to be promising as a multifunctional nanoplatform for potential cancer theranostic applications.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Yuan Guo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing 400010 , China
| | - Jie Hu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Wenchao Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing 400010 , China
| | - Hui Liu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University) , Shanghai 200433 , China
| |
Collapse
|
34
|
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , 215123 , P. R. China
| | - Harm-Anton Klok
- Laboratoire des Polymères, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD , Station 12 , CH-1015 Lausanne , Switzerland
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , 215123 , P. R. China
| |
Collapse
|