1
|
Wang Z, Kang H, Lin N, Hao X, Liu R. Bio‐based polyamide 56 fibers by one‐step melt‐spinning: Process, structure and properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhe Wang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- College of Chemistry University of Chinese Academy of Sciences Beijing China
| | - Hongliang Kang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
| | - Na Lin
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- College of Chemistry University of Chinese Academy of Sciences Beijing China
| | - Xinmin Hao
- Systems Engineering Institute Academy of Military Sciences Beijing China
| | - Ruigang Liu
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing China
- College of Chemistry University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
2
|
Preparation of an Antioxidant Assembly Based on a Copolymacrolactone Structure and Erythritol following an Eco-Friendly Strategy. Antioxidants (Basel) 2022; 11:antiox11122471. [PMID: 36552679 PMCID: PMC9774145 DOI: 10.3390/antiox11122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in suspension in water by opening the cycle of ethylene brassylate macrolactone, followed by condensation with squaric acid. The compound synthesised in suspension was characterised by comparison with the polymer obtained by polymerisation in solution. The investigations revealed that, with the exception of the molecular masses, the compounds generated by the two synthetic procedures present similar properties, including good thermal stability, with a Tpeak of 456 °C, and the capacity for network formation. In addition, the investigation by dynamic light scattering techniques evidenced a mean diameter for PEBSA particles of around 596 nm and a zeta potential of -25 mV, which attests to their stability. The bio-based copolymacrolactone was used as a matrix for erythritol encapsulation. The new PEBSA-Eryt compound presented an increased sorption/desorption process, compared with the PEBSA matrix, and a crystalline morphology confirmed by X-ray diffraction analysis. The bioactive compound was also characterised in terms of its biocompatibility and antioxidant behaviour.
Collapse
|
3
|
Salaeh S, Nobnop S, Thongnuanchan B, Das A, Wießner S. Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
|
5
|
Chiriac AP, Rusu AG, Nita LE, Macsim AM, Tudorachi N, Rosca I, Stoica I, Tampu D, Aflori M, Doroftei F. Synthesis of Poly(Ethylene Brassylate-Co-squaric Acid) as Potential Essential Oil Carrier. Pharmaceutics 2021; 13:477. [PMID: 33916007 PMCID: PMC8067060 DOI: 10.3390/pharmaceutics13040477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Bio-based compounds are a leading direction in the context of the increased demand for these materials due to the numerous advantages associated with their use over conventional materials, which hardly degrade in the environment. At the same time, the use of essential oils and their components is generated mainly by finding alternative solutions to antibiotics and synthetic preservatives due to their bioactive characteristics, but also to their synergistic capacity during the manifestation of different biological properties. The present study is devoted to poly(ethylene brassylate-co-squaric acid) (PEBSA), synthesis and its use for thymol encapsulation and antibacterial system formation. The synthesized copolymer, performed through ethylene brassylate macrolactone ring-opening and copolymerization with squaric acid, was physicochemical characterized. Its amphiphilic character allowed the entrapment of thymol (Ty), a natural monoterpenoid phenol found in oil of thyme, a compound with strong antiseptic properties. The copolymer chemical structure was confirmed by spectroscopic analyses. Thermal analysis evidenced a good thermal stability for the copolymer. Additionally, the antimicrobial activity of PEBSA_Ty complex was investigated against eight different reference strains namely: bacterial strains-Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterococcus faecalis ATCC 29212, Klebsiella pneumonie ATCC 10031 and Salmonella typhimurium ATCC 14028, yeast strains represented by Candida albicans ATCC10231 and Candida glabrata ATCC 2001, and the fungal strain Aspergillus brasiliensis ATCC9642.
Collapse
Affiliation(s)
- Aurica P Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Gabriela Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Loredana Elena Nita
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ana-Maria Macsim
- Department of Polycondensation and Thermostable Polymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Nita Tudorachi
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Stoica
- Department of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Daniel Tampu
- Department of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Magdalena Aflori
- Department of Physics of Polymers and Polymeric Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Department of Physics of Polymers and Polymeric Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Ragno D, Brandolese A, Di Carmine G, Buoso S, Belletti G, Leonardi C, Bortolini O, Bertoldo M, Massi A. Exploring Oxidative NHC-Catalysis as Organocatalytic Polymerization Strategy towards Polyamide Oligomers. Chemistry 2021; 27:1839-1848. [PMID: 32986909 DOI: 10.1002/chem.202004296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 01/06/2023]
Abstract
The polycondensation of diamines and dialdehydes promoted by an N-heterocyclic carbene (NHC) catalyst in the presence of a quinone oxidant and hexafluoro-2-propanol (HFIP) is herein presented for the synthesis of oligomeric polyamides (PAs), which are obtained with a number-average molecular weight (Mn ) in the range of 1.7-3.6 kg mol-1 as determined by NMR analysis. In particular, the utilization of furanic dialdehyde monomers (2,5-diformylfuran, DFF; 5,5'-[oxybis(methylene)]bis[2-furaldehyde], OBFA) to access known and previously unreported biobased PAs is illustrated. The synthesis of higher molecular weight PAs (poly(decamethylene terephthalamide, PA10T, Mn = 62.8 kg mol-1 ; poly(decamethylene 2,5-furandicarboxylamide, PA10F, Mn = 6.5 kg mol-1 ) by a two-step polycondensation approach is also described. The thermal properties (TGA and DSC analyses) of the synthesized PAs are reported.
Collapse
Affiliation(s)
- Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Graziano Di Carmine
- School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK
| | - Sara Buoso
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti, 101-40129, Bologna, Italy
| | - Giada Belletti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Costanza Leonardi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Monica Bertoldo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| |
Collapse
|
7
|
Pronoitis C, Hakkarainen M, Odelius K. Long-chain polyamide covalent adaptable networks based on renewable ethylene brassylate and disulfide exchange. Polym Chem 2021. [DOI: 10.1039/d1py00811k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-chain polyamide covalent adaptable networks with high strength and short relaxation times were prepared based on a renewable ethylene brassylate and disulfide exchange.
Collapse
Affiliation(s)
- Charalampos Pronoitis
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
9
|
Lipase-Catalyzed Synthesis of Renewable Plant Oil-Based Polyamides. Polymers (Basel) 2019; 11:polym11111730. [PMID: 31652736 PMCID: PMC6918247 DOI: 10.3390/polym11111730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Enzyme catalyzed synthesis of renewable polyamides was investigated using Candida antarctica lipase B. A fatty acid-derived AB-type functional monomer, having one amine and one methyl ester functionality, was homopolymerized at 80 and 140 °C. Additionally, the organobase 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was used as a catalyst. The results from the two catalysts were comparable. However, the amount of lipase added was 1.2 × 103 times lower, showing that the lipase was a more efficient catalyst for this system as compared to TBD. Moreover, the AB-type monomer was copolymerized with 1,12-diaminododecane to synthesize oligoamides of two different lengths.
Collapse
|
10
|
Pronoitis C, Hua G, Hakkarainen M, Odelius K. Biobased Polyamide Thermosets: From a Facile One-Step Synthesis to Strong and Flexible Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charalampos Pronoitis
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Geng Hua
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
11
|
Wilson JA, Ates Z, Pflughaupt RL, Dove AP, Heise A. Polymers from macrolactones: From pheromones to functional materials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|