1
|
Shin J, Saha B, Chung H, Jang Y. Architecting Multicompartmentalized, Giant Vesicles with Recombinant Fusion Proteins. Biomacromolecules 2024; 25:6127-6134. [PMID: 39105695 DOI: 10.1021/acs.biomac.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We present a straightforward strategy for constructing giant, multicompartmentalized vesicles using recombinant fusion proteins. Our method leverages the self-assembly of globule-zipper-elastin-like polypeptide fusion protein complexes in aqueous conditions, eliminating the need for organic solvents and chemical conjugation. By employing the thin-film rehydration method, we have successfully encapsulated a diverse range of bioactive macromolecules and engineered organelle-like compartments─ranging from soluble proteins and coacervate droplets to vesicles─within these protein-assembled giant vesicles. This approach also facilitates the integration of water-soluble block copolymers, enhancing the structural stability and functional versatility of the vesicles. Our results suggest that these multicompartment giant protein vesicles not only mimic the complex architecture of living cells but also support biochemically distinct reactions regulated by functionally folded proteins, providing a robust model for studying cellular processes and designing microreactor systems. This work highlights the transformative potential of self-assembling recombinant fusion proteins in artificial cell design.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Biswajit Saha
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, Florida 32310, United States
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, Florida 32310, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Fu Z, Treacy JW, Hosier BM, Houk KN, Maynard HD. Controlling rates and reversibilities of elimination reactions of hydroxybenzylammoniums by tuning dearomatization energies. Chem Sci 2024; 15:10448-10454. [PMID: 38994402 PMCID: PMC11234877 DOI: 10.1039/d4sc02985b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024] Open
Abstract
Hydroxybenzylammonium compounds can undergo a reversible 1,4- or 1,6-elimination to afford quinone methide intermediates after release of the amine. These molecules are useful for the reversible conjugation of payloads to amines. We hypothesized that aromaticity could be used to alter the rate of reversibility as a distinct thermodynamic driving force. We describe the use of density functional theory (DFT) calculations to determine the effect of aromaticity on the rate of release of the amine from hydroxybenzylammonium compounds. Namely, the aromatic scaffold affects the dearomatization reaction to reduce the kinetic barrier and prevent the reversibility of the amine elimination. We consequently synthesized a small library of polycyclic hydroxybenzylammoniums, which resulted in a range of release half-lives from 18 minutes to 350 hours. The novel mechanistic insight provided herein significantly expands the range of release rates amenable to hydroxybenzylammonium-containing compounds. This work provides another way to affect the rate of payload release in hydroxybenzylammoniums.
Collapse
Affiliation(s)
- Zihuan Fu
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Brock M Hosier
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| |
Collapse
|
3
|
Nong K, Zhao YL, Yi S, Zhang X, Wei S, Yao ZJ. 3-Acyl-4-Pyranone as a Lysine Residue-Selective Bioconjugation Reagent for Peptide and Protein Modification. Bioconjug Chem 2024; 35:286-299. [PMID: 38451202 DOI: 10.1021/acs.bioconjchem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.
Collapse
Affiliation(s)
- Keyi Nong
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yi-Lu Zhao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shandong Yi
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuchun Zhang
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyuan Wei
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
McBride RJ, Geneste E, Xie A, Ryan AJ, Miller JF, Blanazs A, Rösch C, Armes SP. Low-Viscosity Route to High-Molecular-Weight Water-Soluble Polymers: Exploiting the Salt Sensitivity of Poly( N-acryloylmorpholine). Macromolecules 2024; 57:2432-2445. [PMID: 38495382 PMCID: PMC10938879 DOI: 10.1021/acs.macromol.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
We report a new one-pot low-viscosity synthetic route to high molecular weight non-ionic water-soluble polymers based on polymerization-induced self-assembly (PISA). The RAFT aqueous dispersion polymerization of N-acryloylmorpholine (NAM) is conducted at 30 °C using a suitable redox initiator and a poly(2-hydroxyethyl acrylamide) (PHEAC) precursor in the presence of 0.60 M ammonium sulfate. This relatively low level of added electrolyte is sufficient to salt out the PNAM block, while steric stabilization is conferred by the relatively short salt-tolerant PHEAC block. A mean degree of polymerization (DP) of up to 6000 was targeted for the PNAM block, and high NAM conversions (>96%) were obtained in all cases. On dilution with deionized water, the as-synthesized sterically stabilized particles undergo dissociation to afford molecularly dissolved chains, as judged by dynamic light scattering and 1H NMR spectroscopy studies. DMF GPC analysis confirmed a high chain extension efficiency for the PHEAC precursor, but relatively broad molecular weight distributions were observed for the PHEAC-PNAM diblock copolymer chains (Mw/Mn > 1.9). This has been observed for many other PISA formulations when targeting high core-forming block DPs and is tentatively attributed to chain transfer to polymer, which is well known for polyacrylamide-based polymers. In fact, relatively high dispersities are actually desirable if such copolymers are to be used as viscosity modifiers because solution viscosity correlates closely with Mw. Static light scattering studies were also conducted, with a Zimm plot indicating an absolute Mw of approximately 2.5 × 106 g mol-1 when targeting a PNAM DP of 6000. Finally, it is emphasized that targeting such high DPs leads to a sulfur content for this latter formulation of just 23 ppm, which minimizes the cost, color, and malodor associated with the organosulfur RAFT agent.
Collapse
Affiliation(s)
- Rory J. McBride
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - Elisa Geneste
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - Andi Xie
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - Anthony J. Ryan
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| | - John F. Miller
- Enlighten
Scientific LLC, Hillsborough, North Carolina 27278, United States
| | - Adam Blanazs
- BASF
SE, Carl-Bosch-Strasse
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Christine Rösch
- BASF
SE, Carl-Bosch-Strasse
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Steven P. Armes
- Chemistry
Department, University of Sheffield, Brook Hill, Sheffield S3 7HF, South
Yorkshire, U.K.
| |
Collapse
|
5
|
Davis E, Caparco AA, Steinmetz NF, Pokorski JK. Poly(Oxanorbornene)-Protein Conjugates Prepared by Grafting-to ROMP as Alternatives for PEG. Macromol Biosci 2024; 24:e2300255. [PMID: 37688508 DOI: 10.1002/mabi.202300255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/14/2023] [Indexed: 09/11/2023]
Abstract
PEGylation is the gold standard in protein-polymer conjugation, improving circulation half-life of biologics while mitigating the immune response to a foreign substance. However, preexisting anti-PEG antibodies in healthy humans are becoming increasingly prevalent and elicitation of anti-PEG antibodies when patients are administered with PEGylated therapeutics challenges their safety profile. In the current study, two distinct amine-reactive poly(oxanorbornene) (PONB) imide-based water-soluble block co-polymers are synthesized using ring-opening metathesis polymerization (ROMP). The synthesized block-copolymers include PEG-based PONB-PEG and sulfobetaine-based PONB-Zwit. The polymers are then covalently conjugated to amine residues of lysozyme (Lyz) and urate oxidase (UO) using a grafting-to bioconjugation technique. Both Lyz-PONB and UO-PONB conjugates retained significant bioactivities after bioconjugation. Immune recognition studies of UO-PONB conjugates indicated a comparable lowering of protein immunogenicity when compared to PEGylated UO. PEG-specific immune recognition is negligible for UO-PONB-Zwit conjugates, as expected. These polymers provide a new alternative for PEG-based systems that retain high levels of activity for the biologic while showing improved immune recognition profiles.
Collapse
Affiliation(s)
- Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adam A Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Tripathy RK, Anakha J, Pande AH. Towards development of biobetter: L-asparaginase a case study. Biochim Biophys Acta Gen Subj 2024; 1868:130499. [PMID: 37914146 DOI: 10.1016/j.bbagen.2023.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
7
|
Jahan S, Doyle C, Ghimire A, Combita D, Rainey JK, Wagner BD, Ahmed M. Elucidating the Role of Optical Activity of Polymers in Protein-Polymer Interactions. Polymers (Basel) 2023; 16:65. [PMID: 38201730 PMCID: PMC10781056 DOI: 10.3390/polym16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins are biomolecules with potential applications in agriculture, food sciences, pharmaceutics, biotechnology, and drug delivery. Interactions of hydrophilic and biocompatible polymers with proteins may impart proteolytic stability, improving the therapeutic effects of biomolecules and also acting as excipients for the prolonged storage of proteins under harsh conditions. The interactions of hydrophilic and stealth polymers such as poly(ethylene glycol), poly(trehalose), and zwitterionic polymers with various proteins are well studied. This study evaluates the molecular interactions of hydrophilic and optically active poly(vitamin B5 analogous methacrylamide) (poly(B5AMA)) with model proteins by fluorescence spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and circular dichroism (CD) spectroscopy analysis. The optically active hydrophilic polymers prepared using chiral monomers of R-(+)- and S-(-)-B5AMA by the photo-iniferter reversible addition fragmentation chain transfer (RAFT) polymerization showed concentration-dependent weak interactions of the polymers with bovine serum albumin and lysozyme proteins. Poly(B5AMA) also exhibited a concentration-dependent protein stabilizing effect at elevated temperatures, and no effect of the stereoisomers of polymers on protein thermal stability was observed. NMR analysis, however, showed poly(B5AMA) stereoisomer-dependent changes in the secondary structure of proteins.
Collapse
Affiliation(s)
- Samin Jahan
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Catherine Doyle
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
| | - Diego Combita
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.); (J.K.R.)
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Brian D. Wagner
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (S.J.); (C.D.); (D.C.); (B.D.W.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
8
|
Heredero M, Beloqui A. Enzyme-Polymer Conjugates for Tuning, Enhancing, and Expanding Biocatalytic Activity. Chembiochem 2023; 24:e202200611. [PMID: 36507915 DOI: 10.1002/cbic.202200611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Combining polymers with functional proteins is an approach that has brought several successful stories in the field of biomedicine with PEGylated therapeutic proteins. The latest advances in polymer chemistry have facilitated the expansion of protein-polymer hybrids to other research areas such as biocatalysis. Polymers can impart stability and novel functionalities to the enzyme of interest, thereby improving the catalytic performance of a given reaction. In this review, we have revisited the main methodologies currently used for the synthesis of enzyme-polymer hybrids, unveiling the interplay between the configuration and the composition of the assembled structure and the eventual traits of the hybrid. Finally, the latest advances, such as the assembly of polymer-based chemoenzymatic nanoreactors and the use of deep learning methodologies to achieve the most suitable polymer compositions for catalysis, are discussed.
Collapse
Affiliation(s)
- Marcos Heredero
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ana Beloqui
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
9
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
10
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
11
|
Solomun JI, Martin L, Mapfumo P, Moek E, Amro E, Becker F, Tuempel S, Hoeppener S, Rudolph KL, Traeger A. pH-sensitive packaging of cationic particles by an anionic block copolymer shell. J Nanobiotechnology 2022; 20:336. [PMID: 35842657 PMCID: PMC9287721 DOI: 10.1186/s12951-022-01528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/28/2022] [Indexed: 03/26/2024] Open
Abstract
Cationic non-viral vectors show great potential to introduce genetic material into cells, due to their ability to transport large amounts of genetic material and their high synthetic versatility. However, designing materials that are effective without showing toxic effects or undergoing non-specific interactions when applied systemically remains a challenge. The introduction of shielding polymers such as polyethylene glycol (PEG) can enhance biocompatibility and circulation time, however, often impairs transfection efficiency. Herein, a multicomponent polymer system is introduced, based on cationic and hydrophobic particles (P(nBMA46-co-MMA47-co-DMAEMA90), (PBMD)) with high delivery performance and a pH-responsive block copolymer (poly((N-acryloylmorpholine)-b-(2-(carboxy)ethyl acrylamide)) (P(NAM72-b-CEAm74), PNC)) as shielding system, with PNAM as alternative to PEG. The pH-sensitive polymer design promotes biocompatibility and excellent stability at extracellular conditions (pH 7.4) and also allows endosomal escape and thus high transfection efficiency under acidic conditions. PNC shielded particles are below 200 nm in diameter and showed stable pDNA complexation. Further, interaction with human erythrocytes at extracellular conditions (pH 7.4) was prevented, while acidic conditions (pH 6) enabled membrane leakage. The particles demonstrate transfection in adherent (HEK293T) as well as difficult-to-transfect suspension cells (K-562), with comparable or superior efficiency compared to commercial linear poly(ethylenimine) (LPEI). Besides, the toxicity of PNC-shielded particles was significantly minimized, in particular in K-562 cells and erythrocytes. In addition, a pilot in vivo experiment on bone marrow blood cells of mice that were injected with PNC-shielded particles, revealed slightly enhanced cell transfection in comparison to naked pDNA. This study demonstrates the applicability of cationic hydrophobic polymers for transfection of adherent and suspension cells in culture as well as in vivo by co-formulation with pH-responsive shielding polymers, without substantially compromising transfection performance.
Collapse
Affiliation(s)
- Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Elisabeth Moek
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Elias Amro
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Friedrich Becker
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Stefan Tuempel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
12
|
Moncalvo F, Lacroce E, Franzoni G, Altomare A, Fasoli E, Aldini G, Sacchetti A, Cellesi F. Selective Protein Conjugation of Poly(glycerol monomethacrylate) and Poly(polyethylene glycol methacrylate) with Tunable Topology via Reductive Amination with Multifunctional ATRP Initiators for Activity Preservation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Moncalvo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giulia Franzoni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
13
|
Protein-friendly atom transfer radical polymerisation of glycerol(monomethacrylate) in buffer solution for the synthesis of a new class of polymer bioconjugates. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Rose DA, Treacy JW, Yang ZJ, Ko JH, Houk KN, Maynard HD. Self-Immolative Hydroxybenzylamine Linkers for Traceless Protein Modification. J Am Chem Soc 2022; 144:6050-6058. [PMID: 35321547 DOI: 10.1021/jacs.2c01136] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traceless self-immolative linkers are widely used for the reversible modification of proteins and peptides. This article describes a new class of traceless linkers based on ortho- or para-hydroxybenzylamines. The introduction of electron-donating substituents on the aromatic core stabilizes the quinone methide intermediate, thus providing a platform for payload release that can be modulated. To determine the extent to which the electronics affect the rate of release, we prepared a small library of hydroxybenzylamine linkers with varied electronics in the aromatic core, resulting in half-lives ranging from 20 to 144 h. Optimization of the linker design was carried out with mechanistic insights from density functional theory (DFT) and the in silico design of an intramolecular trapping agent through the use of DFT and intramolecular distortion energy calculations. This resulted in the development of a faster self-immolative linker with a half-life of 4.6 h. To demonstrate their effectiveness as traceless linkers for bioconjugation, reversible protein-polyethylene glycol conjugates with a model protein lysozyme were prepared, which had reduced protein activity but recovered ≥94% activity upon traceless release of the polymer. This new class of linkers with tunable release rates expands the traceless linkers toolbox for a variety of bioconjugation applications.
Collapse
Affiliation(s)
- Douglas A Rose
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Zhongyue J Yang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
15
|
Shin J, Cole BD, Shan T, Jang Y. Heterogeneous Synthetic Vesicles toward Artificial Cells: Engineering Structure and Composition of Membranes for Multimodal Functionalities. Biomacromolecules 2022; 23:1505-1518. [PMID: 35266692 DOI: 10.1021/acs.biomac.1c01504] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The desire to develop artificial cells to imitate living cells in synthetic vesicle platforms has continuously increased over the past few decades. In particular, heterogeneous synthetic vesicles made from two or more building blocks have attracted attention for artificial cell applications based on their multifunctional modules with asymmetric structures. In addition to the traditional liposomes or polymersomes, polypeptides and proteins have recently been highlighted as potential building blocks to construct artificial cells owing to their specific biological functionalities. Incorporating one or more functionally folded, globular protein into synthetic vesicles enables more cell-like functions mediated by proteins. This Review highlights the recent research about synthetic vesicles toward artificial cell models, from traditional synthetic vesicles to protein-assembled vesicles with asymmetric structures. We aim to provide fundamental and practical insights into applying knowledge on molecular self-assembly to the bottom-up construction of artificial cell platforms with heterogeneous building blocks.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Blair D Cole
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ting Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Neofytos DD, Papagiannopoulos A, Chrysina ED, Pispas S. Formation and physicochemical properties of glycogen phosphorylase in complex with a cationic polyelectrolyte. Int J Biol Macromol 2022; 206:371-380. [PMID: 35240213 DOI: 10.1016/j.ijbiomac.2022.02.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022]
Abstract
The accumulation of rabbit muscle glycogen phosphorylase b (RMGPb) in electrostatic complexes with the cationic polyelectrolyte poly 2-(dimethylamino) ethyl methacrylate in its quenched form (QPDMAEMA) was studied in two buffer solutions. In the N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) buffer, large complexes of RMGPb-QPDMAEMA were formed which adopted smaller sizes as QPDMAEMA concentration increased. However, in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer, the hydrodynamic radius of the formed complexes gradually increased as the polymer concentration increased. Zeta potential measurements (ζp) showed that RMGPb significantly changed the ζp of the QPDMAEMA aggregates. Fluorescence studies showed that the interaction between RMGPb and QPDMAEAMA was enhanced as polymer concentration increased. Specifically, 8-anilinonaphthalene-1-sulfonic acid (ANS) fluorescence indicated that in the BES buffer the aggregates became denser as more QPDMAEMA was added, while in the HEPES buffer the density of the formed structures decreased. RMGPb's secondary structure was examined by Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) and Circular Dichroism (CD) showing that QPDMAEMA interaction with RMGPb does not induce any changes to the secondary structure of the enzyme. These observations suggest that cationic polyelectrolytes may be utilized for the formulation of RMGPb in multifunctional nanostructures and be further exploited in innovative biotechnology applications and bioinspired materials development.
Collapse
Affiliation(s)
- Dionysios D Neofytos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
17
|
Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as Protein-Polymer Conjugate Multimodal Therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:676025. [PMID: 35047929 PMCID: PMC8757875 DOI: 10.3389/fmedt.2021.676025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
18
|
Torres-Obreque KM, Meneguetti GP, Muso-Cachumba JJ, Feitosa VA, Santos JHPM, Ventura SPM, Rangel-Yagui CO. Building better biobetters: From fundamentals to industrial application. Drug Discov Today 2021; 27:65-81. [PMID: 34461236 DOI: 10.1016/j.drudis.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Biological drugs or biopharmaceuticals off patent open a large market for biosimilars and biobetters, follow-on biologics. Biobetters, in particular, are new drugs designed from existing ones with improved properties such as higher selectivity, stability, half-life and/or lower toxicity/immunogenicity. Glycosylation is one of the most used strategies to improve biological drugs, nonetheless bioconjugation is an additional alternative and refers to the covalent attachment of polymers to biological drugs. Extensive research on novel polymers is underway, nonetheless PEGylation is still the best alternative with the longest clinical track record. Innovative trends based on genetic engineering techniques such as fusion proteins and PASylation are also promising. In this review, all these alternatives wereexplored as well as current market trends, legislation and future perspectives.
Collapse
Affiliation(s)
- Karin M Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna P Meneguetti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Bionanomanufacturing Center, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Jorge J Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Valker A Feitosa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Bionanomanufacturing Center, Institute for Technological Research (IPT), São Paulo, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Lundahl MLE, Fogli S, Colavita PE, Scanlan EM. Aggregation of protein therapeutics enhances their immunogenicity: causes and mitigation strategies. RSC Chem Biol 2021; 2:1004-1020. [PMID: 34458822 PMCID: PMC8341748 DOI: 10.1039/d1cb00067e] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Protein aggregation in biotherapeutics has been identified to increase immunogenicity, leading to immune-mediated adverse effects, such as severe allergic responses including anaphylaxis. The induction of anti-drug antibodies (ADAs) moreover enhances drug clearance rates, and can directly block therapeutic function. In this review, identified immune activation mechanisms triggered by protein aggregates are discussed, as well as physicochemical properties of aggregates, such as size and shape, which contribute to immunogenicity. Furthermore, factors which contribute to protein stability and aggregation are considered. Lastly, with these factors in mind, we encourage an innovative and multidisciplinary approach with regard to further research in the field, with the overall aim to avoid immunogenic aggregation in future drug development.
Collapse
Affiliation(s)
- Mimmi L E Lundahl
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| | - Silvia Fogli
- Glycome Biopharma, Unit 4, Joyce House, Barrack Square, Ballincollig Co Cork P31 HW35 Ireland
| | - Paula E Colavita
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
20
|
Yu C, Zhao M, Pan Z, Bo Y, Zhao W, He X, Zhang J. Butyrylcholinesterase nanodepots with enhanced prophylactic and therapeutic performance for acute organophosphorus poisoning management. J Mater Chem B 2021; 9:1877-1887. [PMID: 33533366 DOI: 10.1039/d0tb02478c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute organophosphorus pesticide poisoning (AOPP) is a worldwide health concern that has threatened human lives for decades, which attacks acetylcholinesterase (AChE) and causes nervous system disorders. Classical treatment options are associated with short in vivo half-life and side effects. As a potential alternative, delivery of mammalian-derived butyrylcholinesterase (BChE) offers a cost-effective way to block organophosphorus attack on acetylcholinesterase, a key enzyme in the neurotransmitter cycle. Yet the use of exotic BChE as a prophylactic or therapeutic agent is compromised by short plasma residence, immune response and unfavorable biodistribution. To overcome these obstacles, BChE nanodepots (nBChE) composed of a BChE core/polymorpholine shell structure were prepared via in situ polymerization, which showed enhanced stability, prolonged plasma circulation, attenuated antigenicity and reduced accumulation in non-targeted tissues. In vivo administration of nBChE pre- or post-organophosphorus exposure in a BALB/C mouse model resulted in potent prophylactic and therapeutic efficiency. To our knowledge, this is the first systematic delivery of non-human BChE to tackle AOPP. In addition, this work also opens up a new avenue for real applications in both research and clinical settings to cope with acute intoxication-related diseases.
Collapse
Affiliation(s)
- Congwei Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Ming Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Zuchen Pan
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yiyang Bo
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
21
|
Yin G, Wei J, Shao Y, Wu WH, Xu L, Zhang WB. Native conjugation between proteins and [60]fullerene derivatives using SpyTag as a reactive handle. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
|
23
|
Beloqui A, Mane SR, Langer M, Glassner M, Bauer DM, Fruk L, Barner‐Kowollik C, Delaittre G. Hetero‐Diels‐Alder‐Cycloaddition mit RAFT‐Polymeren als Biokonjugationsplattform. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Beloqui
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Department of Applied Chemistry (UPV/EHU) Avda. Manuel de Lardizabal 3 E-20018 Donostia – San Sebastian Spanien
- IKERBASQUE Basque Foundation for Science Maria Diaz de Haro 3 E-48013 Bilbao Spanien
| | - Shivshankar R. Mane
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Marcel Langer
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Mathias Glassner
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
| | - Dennis M. Bauer
- Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Straße 1a 76131 Karlsruhe Deutschland
| | - Ljiljana Fruk
- Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Straße 1a 76131 Karlsruhe Deutschland
- Department of Chemical Engineering and Biotechnology University of Cambridge West Cambridge Site, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Macromolecular Architectures Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Deutschland
- Organic Functional Molecules Organic Chemistry University of Wuppertal Gaußstrasse 20 42119 Wuppertal Deutschland
| |
Collapse
|
24
|
Beloqui A, Mane SR, Langer M, Glassner M, Bauer DM, Fruk L, Barner‐Kowollik C, Delaittre G. Hetero-Diels-Alder Cycloaddition with RAFT Polymers as Bioconjugation Platform. Angew Chem Int Ed Engl 2020; 59:19951-19955. [PMID: 32729643 PMCID: PMC7693046 DOI: 10.1002/anie.202005747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/16/2022]
Abstract
We introduce the bioconjugation of polymers synthesized by RAFT polymerization, bearing no specific functional end group, by means of hetero-Diels-Alder cycloaddition through their inherent terminal thiocarbonylthio moiety with a diene-modified model protein. Quantitative conjugation occurs over the course of a few hours, at ambient temperature and neutral pH, and in the absence of any catalyst. Our technology platform affords thermoresponsive bioconjugates, whose aggregation is solely controlled by the polymer chains.
Collapse
Affiliation(s)
- Ana Beloqui
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Department of Applied Chemistry (UPV/EHU)Avda. Manuel de Lardizabal 3E-20018Donostia – San SebastianSpain
- IKERBASQUEBasque Foundation for ScienceMaria Diaz de Haro 3E-48013BilbaoSpain
| | - Shivshankar R. Mane
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Marcel Langer
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Mathias Glassner
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Dennis M. Bauer
- Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)Wolfgang-Gaede-Straße 1a76131KarlsruheGermany
| | - Ljiljana Fruk
- Center for Functional Nanostructures (CFN)Karlsruhe Institute of Technology (KIT)Wolfgang-Gaede-Straße 1a76131KarlsruheGermany
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeWest Cambridge Site, Philippa Fawcett DriveCambridgeCB3 0ASUK
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Guillaume Delaittre
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
- Organic Functional MoleculesOrganic ChemistryUniversity of WuppertalGaußstrasse 2042119WuppertalGermany
| |
Collapse
|
25
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
26
|
Abstract
Bioactive core–shell nanoparticles (CSNPs) offer the unique ability for protein/enzyme functionality in non-native environments. For many decades, researchers have sought to develop synthetic materials which mimic the efficiency and catalytic power of bioactive macromolecules such as enzymes and proteins. This research studies a self-assembly method in which functionalized, polymer-core/protein-shell nanoparticles are prepared in mild conditions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were utilized to analyze the size and distribution of the CSNPs. The methods outlined in this research demonstrate a mild, green chemistry synthesis route for CSNPs which are highly tunable and allow for enzyme/protein functionality in non-native conditions.
Collapse
|
27
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
28
|
Zhang Y, Gambardella A, Üçüncü M, Geng J, Clavadetscher J, Bradley M, Lilienkampf A. Multifunctional, histidine-tagged polymers: antibody conjugation and signal amplification. Chem Commun (Camb) 2020; 56:13856-13859. [DOI: 10.1039/d0cc04591h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer scaffold, with multiple reactive centres, was synthesised by RAFT polymerisation and conjugated to the antibody herceptin. A hexahistidine RAFT agent enabled simple purification of polymer–protein conjugates.
Collapse
Affiliation(s)
- Yichuan Zhang
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Shenzhen Institutes of Advanced Technology
| | | | - Muhammed Üçüncü
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Department of Analytical Chemistry, Faculty of Pharmacy
| | - Jin Geng
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Shenzhen Institutes of Advanced Technology
| | | | - Mark Bradley
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|
29
|
Schmidt AC, Turgut H, Le D, Beloqui A, Delaittre G. Making the best of it: nitroxide-mediated polymerization of methacrylates via the copolymerization approach with functional styrenics. Polym Chem 2020. [DOI: 10.1039/c9py01458f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The addition of 5 mol% of functional styrenics imparts control to the SG1-mediated polymerization of methacrylates and provides access to nanostructured functional methacrylic materials.
Collapse
Affiliation(s)
- Aaron C. Schmidt
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Hatice Turgut
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Dao Le
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Ana Beloqui
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|
30
|
Site-Specific characterization of peptide-polymer conjugates in various stoichiometries by MALDI-Tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Alvaradejo GG, Nguyen HVT, Harvey P, Gallagher NM, Le D, Ottaviani MF, Jasanoff A, Delaittre G, Johnson JA. Polyoxazoline-Based Bottlebrush and Brush-Arm Star Polymers via ROMP: Syntheses and Applications as Organic Radical Contrast Agents. ACS Macro Lett 2019; 8:473-478. [PMID: 31289694 PMCID: PMC6615754 DOI: 10.1021/acsmacrolett.9b00016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis of functional poly(2-alkyl-2-oxazoline) (PAOx) copolymers with complex nanoarchitectures using a graft-through ring-opening metathesis polymerization (ROMP) approach is described. First, well-defined norbornene-terminated poly(2-ethyl-2-oxazoline) (PEtOx) macromonomers (MM) were prepared by cationic ringopening polymerization. ROMP of these MMs produced bottlebrush copolymers with PEtOx side chains. In addition, PEtOx-based branched MMs bearing a terminal alkyne group were prepared and conjugated to an azide-containing bis-spirocyclohexyl nitroxide via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). ROMP of this branched MM, followed by in situ cross-linking, provided PEtOx-based brush-arm star polymers (BASPs) with nitroxide radicals localized at the core-shell interface. These PEtOx-based nitroxide-containing BASPs displayed relaxivity values on par with state-of-the-art polyethylene glycol (PEG)-based nitroxide materials, making them promising as organic radical contrast agents for metal-free magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Gabriela Gil Alvaradejo
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz, 76134 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter Harvey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nolan M. Gallagher
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dao Le
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz, 76134 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | | | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz, 76134 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Reichenwallner J, Thomas A, Steinbach T, Eisermann J, Schmelzer CEH, Wurm F, Hinderberger D. Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation. Biomacromolecules 2019; 20:1118-1131. [DOI: 10.1021/acs.biomac.9b00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jörg Reichenwallner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Anja Thomas
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Steinbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jana Eisermann
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Christian E. H. Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Frederik Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|