1
|
Huard DJE, Johnson AM, Fan Z, Kenney LG, Xu M, Drori R, Gumbart JC, Dai S, Lieberman RL, Glass JB. Molecular basis for inhibition of methane clathrate growth by a deep subsurface bacterial protein. PNAS NEXUS 2023; 2:pgad268. [PMID: 37644917 PMCID: PMC10462418 DOI: 10.1093/pnasnexus/pgad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.
Collapse
Affiliation(s)
- Dustin J E Huard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Abigail M Johnson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Zixing Fan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Lydia G Kenney
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Manlin Xu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Ave Room 548, New York, NY 10016, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| | - Sheng Dai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Glass JB. What is the role of microbes in gas hydrate formation and stability? Environ Microbiol 2023; 25:45-48. [PMID: 36251262 DOI: 10.1111/1462-2920.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Soussana TN, Weissman H, Rybtchinski B, Drori R. Adsorption-Inhibition of Clathrate Hydrates by Self-Assembled Nanostructures. Chemphyschem 2021; 22:2182-2189. [PMID: 34407283 DOI: 10.1002/cphc.202100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Indexed: 11/11/2022]
Abstract
The mechanism by which safranine O (SFO), an ice growth inhibitor, halts the growth of single crystal tetrahydrofuran (THF) clathrate hydrates was explored using microfluidics coupled with cold stages and fluorescence microscopy. THF hydrates grown in SFO solutions exhibited morphology changes and were shaped as truncated octahedrons or hexagons. Fluorescence microscopy and microfluidics demonstrated that SFO binds to the surface of THF hydrates on specific crystal planes. Cryo-TEM experiments of aqueous solutions containing millimolar concentrations of SFO exhibited the formation of bilayered lamellae with an average thickness of 4.2±0.2 nm covering several μm2 . Altogether, these results indicate that SFO forms supramolecular lamellae in solution, which might bind to the surface of the hydrate and inhibit further growth. As an ice and hydrate inhibitor, SFO may bind to the surface of these crystals via ordered water molecules near its amine and methyl groups, similar to some antifreeze proteins.
Collapse
Affiliation(s)
- Tamar Nicole Soussana
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Haim Weissman
- Department of Organic Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, Rehovot, 7610001, Israel
| | - Boris Rybtchinski
- Department of Organic Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, Rehovot, 7610001, Israel
| | - Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| |
Collapse
|
4
|
Glass JB, Ranjan P, Kretz CB, Nunn BL, Johnson AM, Xu M, McManus J, Stewart FJ. Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments. Environ Microbiol 2021; 23:4646-4660. [PMID: 34190392 DOI: 10.1111/1462-2920.15656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2-69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate-methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+ /H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+ -stimulated pyrophosphatase and capsule proteins.
Collapse
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Piyush Ranjan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Abigail M Johnson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Manlin Xu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James McManus
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
5
|
Johnson AM, Zhao Y, Kim J, Dai S, Glass JB. Methane Hydrate Crystallization on Sessile Water Droplets. J Vis Exp 2021. [PMID: 34125108 DOI: 10.3791/62686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This paper describes a method to form methane hydrate shells on water droplets. In addition, it provides blueprints for a pressure cell rated to 10 MPa working pressure, containing a stage for sessile droplets, a sapphire window for visualization, and temperature and pressure transducers. A pressure pump connected to a methane gas cylinder is used to pressurize the cell to 5 MPa. The cooling system is a 10 gallon (37.85 L) tank containing a 50% ethanol solution cooled via ethylene glycol through copper coils. This setup enables the observation of the temperature change associated with hydrate formation and dissociation during cooling and depressurization, respectively, as well as visualization and photography of the morphologic changes of the droplet. With this method, rapid hydrate shell formation was observed at ~-6 °C to -9 °C. During depressurization, a 0.2 °C to 0.5 °C temperature drop was observed at the pressure/temperature (P/T) stability curve due to exothermic hydrate dissociation, confirmed by visual observation of melting at the start of the temperature drop. The "memory effect" was observed after repressurizing to 5 MPa from 2 MPa. This experimental design allows the monitoring of pressure, temperature, and morphology of the droplet over time, making this a suitable method for testing various additives and substrates on hydrate morphology.
Collapse
Affiliation(s)
| | - Yumeng Zhao
- Civil and Environmental Engineering, Georgia Institute of Technology
| | - Jongchan Kim
- Civil and Environmental Engineering, Georgia Institute of Technology
| | - Sheng Dai
- Civil and Environmental Engineering, Georgia Institute of Technology;
| | - Jennifer B Glass
- Earth and Atmospheric Sciences, Georgia Institute of Technology;
| |
Collapse
|