1
|
Wang W, Gong J, Zhao J, Zhang H, Wen W, Zhao Z, Li YJ, Wang J, Huang CZ, Gao PF. Integration of Wallach's Rule into Intermolecular Charge Transfer: A Visual Strategy for Chiral Purification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403249. [PMID: 39013078 PMCID: PMC11425254 DOI: 10.1002/advs.202403249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Exploring the molecular packing and interaction between chiral molecules, no matter single enantiomer or racemates, is important for recognition and resolution of chiral drugs. However, sensitive and non-destructive analysis methods are lacking. Herein, an intermolecular-charge transfer (ICT) based spectroscopy is reported to reveal the differences in interaction between the achiral acceptor 1,2,4,5-tetracyanobenzene (TCNB) and the chiral donors, including S, R, and racemic naproxen (S/R/rac-NAP). In this process, S-NAP+TCNB and R-NAP+TCNB display a narrower band gap attributed to the newly formed ICT state. In contrast, the mixed rac-NAP and TCNB exhibit almost no significant change due to the strong affinity between the stereoisomers according to the Wallach's rule. Thus, S/R-NAP can be easily distinguished from rac-NAP based on significantly different optical behavior. The single crystal analysis, infrared spectroscopy, fluorescence spectroscopy, and theoretical calculation of naproxen confirm the importance of carboxyl for this differentiation in molecular packing and interaction. In addition, the esterification derivatization of naproxen achieves the manipulation of the intermolecular interaction model of racemates from the absolute Wallach's rule to a coexisting form of Wallach's rule and ICT. Further, visualized chiral purification of naproxen by the simple cocrystallization method is achieved through the collaboration of ICT and Wallach's rule.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Jianye Gong
- College of Chemistry and Chemical EngineeringInner Mongolia Key Laboratory of Fine Organic SynthesisInner Mongolia UniversityHohhot010021China
| | - Jiaqiang Zhao
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Hao Zhang
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Wei Wen
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Yan Jie Li
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Jianguo Wang
- College of Chemistry and Chemical EngineeringInner Mongolia Key Laboratory of Fine Organic SynthesisInner Mongolia UniversityHohhot010021China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Peng Fei Gao
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| |
Collapse
|
2
|
Wen Y, Zhao S, Yang Z, Feng Z, Yang Z, Zhang ST, Liu H, Yang B. Transforming Thermally Activated Delayed Fluorescence to Room-Temperature Phosphorescence through Modulation of the Donor in Charge-Transfer Cocrystals. J Phys Chem Lett 2024:2690-2696. [PMID: 38427379 DOI: 10.1021/acs.jpclett.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A cocrystallization strategy is used through incorporation of 1,2,4,5-tetracyanobenzene (TCNB) as an acceptor with halogen-substituent thioxanthone (TX) derivatives as donors. The resulting cocrystals TT-R (R = H, F, Cl, Br, or I) transform the thermally activated delayed fluorescence emission in the TT-H, TT-F, and TT-Cl cocrystals to room-temperature phosphorescence in the TT-Br and TT-I cocrystals. Definite crystal packing structures demonstrate a 1:1 alternative donor-acceptor stacking in the TT-H cocrystal, a 2:1 alternative donor-acceptor stacking in the TT-F and TT-Cl cocrystals, and a separate stacking of donor and acceptor in the TT-Br and TT-I cocrystals. A transformation law can be revealed that with an increase in atomic number from H, F, Cl, Br, to I, the cocrystals show the structural transformation of the number of aggregated TX-R molecules from monomers to dimers and finally to multimers. This work will facilitate an understanding of the effect of halogen substituents on the crystal packing structure and luminescence properties in the cocrystals.
Collapse
Affiliation(s)
- Yating Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhongzhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhe Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Preparation, crystal structure, luminescence and Hirshfeld surface of hydroxynaphthene-based compounds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
|
5
|
Gorai T, Lovitt JI, Umadevi D, McManus G, Gunnlaugsson T. Hierarchical supramolecular co-assembly formation employing multi-component light-harvesting charge transfer interactions giving rise to long-wavelength emitting luminescent microspheres. Chem Sci 2022; 13:7805-7813. [PMID: 35865882 PMCID: PMC9258320 DOI: 10.1039/d2sc02097a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Charge transfer (CT) interaction induced formation of a hierarchical supramolecular assembly has attracted attention due to its wide diversity of structural and functional characteristics. In the present work, we report the generation of green luminescent microspheres from the charge transfer interaction induced co-assembly of a bis-naphthyl dipicolinic amide (DPA) derivative with tetracyanobenzene (TCNB) for the first time. The properties of these self-assemblies were studied both in solution and the solid-state using spectroscopic and a variety of microscopy techniques. The X-ray crystal structure analysis showed a mixed stack arrangement of DPA and TCNB. The molecular orbital and energy level calculations confirm the charge transfer complex formation between DPA and TCNB. Furthermore, energy transfer was observed from the green luminescent CT complex to a red-emitting dye, pyronin Y, in the microsphere matrix, leading to the formation of a light-harvesting tri-component self-assembly.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad (IITPKD) Palakkad-678557 Kerala India
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
6
|
Charge transfer and hydrogen bonding motifs in organic cocrystals derived from aromatic diamines and TCNB. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Gao J, Guo J, Chen Y, Deng S, Lu Q, Ren Y, Wang X, Fan H, Teng F, He X, Jiang H, Hu P. The competitive role of C–H⋯X (X = F, O) and π–π interactions in contributing to the degree of charge transfer in organic cocrystals: a case study of heteroatom-free donors with p-fluoranil (FA). CrystEngComm 2022. [DOI: 10.1039/d2ce00925k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four binary organic charge transfer cocrystals were grown by the slow cooling method. The competitive role of C–H⋯X (X = F, O) and π–π interactions in contributing to the degree of charge transfer in the cocrystals was investigated.
Collapse
Affiliation(s)
- Jiaoyang Gao
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Jinjia Guo
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Yi Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Shunlan Deng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Qidong Lu
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Yuxin Ren
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Xiaoming Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Haibo Fan
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Feng Teng
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Xuexia He
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
8
|
Wang SS, Li K, Ma X, Xue P. Acceptor-regulated luminescence in carbazole-based charge transfer complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00656h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dicarbazole derivative and two acceptors could formed 1D mixed stacking columns in their charge transfer co-crystals. Moreover, the LUMO energy levels of the acceptors determine the fluorescence colors of the co-crystals.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Kechang Li
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xiaohui Ma
- Department of Translational Medicine
- The First Hospital of Jilin University
- Changchun
- P. R. China
- Department of Oncology
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| |
Collapse
|
9
|
Khan A, Usman R, Li R, Hajji M, Tang H, Ma D. Polycyclic motif engineering in cyanostilbene-based donors towards highly efficient modulable emission properties in two-component systems. CrystEngComm 2021. [DOI: 10.1039/d1ce00959a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cynostilbene based two-component materials are fabricated which exhibit tunable structures and excellent photophysical properties depending on the IP of the polycyclic moiety and organization of the donor-acceptor in the condensed phase.
Collapse
Affiliation(s)
- Arshad Khan
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, P. R. China
| | - Rabia Usman
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, P. R. China
| | - Rongrong Li
- School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China
| | - Melek Hajji
- Research Unit: Electrochemistry, Materials and Environment, University of Kairouan, 3100 Kairouan, Tunisia
| | - Haiming Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, P. R. China
| | - Di Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, P. R. China
| |
Collapse
|