1
|
Miguel-Casañ E, Orton GRF, Schier DE, Champness NR. Supramolecular Chemistry in Metal-Organic Framework Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414509. [PMID: 39895182 DOI: 10.1002/adma.202414509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia R F Orton
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Danielle E Schier
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Miao P, Chen J, Xu G, Yu T, Du Y. Enantiomeric analysis of chiral phenyl aromatic compounds by coated capillary electrochromatography based on a MOF-on-MOF stationary phase. Mikrochim Acta 2024; 191:160. [PMID: 38411791 DOI: 10.1007/s00604-024-06243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Chiral phenyl aromatic compounds (CPACs) are widely used in drug development, food/cosmetic production, and other organic synthesis processes, and their different enantiomers have distinct physiological activities and application differences. A double-layer metal-organic framework composite (MOF-on-MOF) was obtained by in situ synthesis of chiral metal-organic framework (CMOM-3S) on the surface of an iron-based metal-organic framework (NH2-MIL-101(Fe)). According to our investigation, MOF-on-MOF composite was for the first time applied to the stationary phase of capillary electrochromatography (CEC), and enantioseparations of eight CPACs were accomplished. Compared with single CMOM-3S, the enantioseparation performance of the coated capillary columns based on NH2-MIL-101(Fe)@CMOM-3S was improved by 34.07 ~ 720.0%. The R-/S-mandelic acid in actual sample (apricot leaves) was detected by the newly CEC system to be 0.0118 mg mL-1 and 0.0523 mg mL-1, respectively. The spike recoveries were 96.60 ~ 104.7%, indicating its good stability and accuracy. In addition, the selective adsorption capacity of MOF-on-MOF composites was verified by adsorption experiments.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiaquan Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Guangfu Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Tao Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
3
|
Deng C, Zhao L, Gao MY, Darwish S, Song BQ, Sensharma D, Lusi M, Peng YL, Mukherjee S, Zaworotko MJ. Ultramicroporous Lonsdaleite Topology MOF with High Propane Uptake and Propane/Methane Selectivity for Propane Capture from Simulated Natural Gas. ACS MATERIALS LETTERS 2024; 6:56-65. [PMID: 38178981 PMCID: PMC10762655 DOI: 10.1021/acsmaterialslett.3c01157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chenghua Deng
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Li Zhao
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mei-Yan Gao
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shaza Darwish
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bai-Qiao Song
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Debobroto Sensharma
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Yun-Lei Peng
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Soumya Mukherjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
4
|
Deng C, Song BQ, Sensharma D, Gao MY, Bezrukov AA, Nikolayenko VI, Lusi M, Mukherjee S, Zaworotko MJ. Effect of Extra-Framework Anion Substitution on the Properties of a Chiral Crystalline Sponge. CRYSTAL GROWTH & DESIGN 2023; 23:8139-8146. [PMID: 37937187 PMCID: PMC10626566 DOI: 10.1021/acs.cgd.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Indexed: 11/09/2023]
Abstract
Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(S-IDEC)(bipy)(H2O)][NO3]}n (S-IDEC = S-indoline-2-carboxylicate, bipy = 4,4'-bipyridine), CMOM-5[NO3]. The modularity of CMOM-5[NO3] means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni2+); bridging ligand (S-IDEC); linker (bipy); extra-framework anion (NO3-); and terminal ligand (H2O). Herein, we report the effect of anion substitution on the CCS properties of CMOM-5[NO3] by preparing and characterizing {[Ni(S-IDEC)(bipy)(H2O)][BF4]}n, CMOM-5[BF4]. The chiral channels in CMOM-5[BF4] enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed CMOM-5[BF4] to be highly selective toward the S-isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for S-EM surpasses the 64.3% exhibited by [DyNaL(H2O)4] 6H2O and far exceeds that of CMOM-5[NO3] (6.0%). Structural studies of the binding sites in CMOM-5[BF4] provide insight into their high enantioselectivity.
Collapse
Affiliation(s)
- Chenghua Deng
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bai-Qiao Song
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Debobroto Sensharma
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mei-Yan Gao
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Andrey A. Bezrukov
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Varvara I. Nikolayenko
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Soumya Mukherjee
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Bernal Institute, Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|