1
|
Lyu R, Wan R, Moore CE, Wu Y. Chiral Viologen-Derived Water-Stable Small Band Gap Lead Halides: Synthesis, Characterization, and Optical Properties. Inorg Chem 2024; 63:5885-5896. [PMID: 38506554 DOI: 10.1021/acs.inorgchem.3c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chiral organic-inorganic metal halides (OIMHs) are attractive for their potential applications in chiral optoelectronics and spintronics, such as circular polarized light emitters, detectors, and chiral-induced spin selectivity. Here, we report three pairs of chiral OIMHs with great water stability constructed from chiral viologens. These OIMHs contain either 1D or 0D structures, however, with small band gaps around 2 eV. Circular dichroism (CD) spectroscopy on transparent thin films of two OIMH pairs showed a wide CD response covering most of the visible light range. Although the chiral center is not directly attached to the pyridinium in these chiral viologens, the chirality is still successfully transferred into both the band gap and the exciton absorption ranges. Liquid and solid CD studies of the chiral viologens further indicate that the chiral induction inside these OIMHs is possibly through chiral crystallization. This work demonstrated the design strategy of water-stable, small band gap chiral OIMHs through chiral viologens. These low-dimensional chiral materials may provide an interesting system to investigate chiral induction, and their broad CD response may enable their potential application as circular photodetectors with a wide detection range.
Collapse
Affiliation(s)
- Ruiyang Lyu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ruichen Wan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Prabhakaran A, Dhanabalan B, Andrusenko I, Pianetti A, Lauciello S, Prato M, Marras S, Solokha P, Gemmi M, Brovelli S, Manna L, Arciniegas MP. Stable Sn-Based Hybrid Perovskite-Related Structures with Tunable Color Coordinates via Organic Cations in Low-Temperature Synthesis. ACS ENERGY LETTERS 2023; 8:2630-2640. [PMID: 37324542 PMCID: PMC10262684 DOI: 10.1021/acsenergylett.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Organic-inorganic Pb-free layered perovskites are efficient broadband emitters and thus are promising materials for lighting applications. However, their synthetic protocols require a controlled atmosphere, high temperature, and long preparation time. This hinders the potential tunability of their emission through organic cations, as is instead common practice in Pb-based structures. Here, we present a set of Sn-Br layered perovskite-related structures that display different chromaticity coordinates and photoluminescence quantum yield (PLQY) up to 80%, depending on the choice of the organic monocation. We first develop a synthetic protocol that is performed under air and at 4 °C, requiring only a few steps. X-ray and 3D electron diffraction analyses show that the structures exhibit diverse octahedra connectivity (disconnected and face-sharing) and thus optical properties, while preserving the organic-inorganic layer intercalation. These results provide key insight into a previously underexplored strategy to tune the color coordinates of Pb-free layered perovskites through organic cations with complex molecular configurations.
Collapse
Affiliation(s)
- Aarya Prabhakaran
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Balaji Dhanabalan
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Pianetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Simone Lauciello
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mirko Prato
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Marras
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pavlo Solokha
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso, 31, 16146 Genova, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Liberato Manna
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Milena P. Arciniegas
- Center
for Convergent Technologies, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|