1
|
Podlesnaia E, Stanca SE, Çinçin B, Zieger G, Csáki A, Fritzsche W. Customizable ligand exchange on the surface of gold nanotriangles enables their application in LSPR-based sensing. NANOSCALE ADVANCES 2024; 6:d4na00352g. [PMID: 39247867 PMCID: PMC11375502 DOI: 10.1039/d4na00352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Nanomaterials made of noble metals have been actively utilized in sensorics and bioanalytics. Nanoparticles of anisotropic shapes are promising for increasing sensitivity due to the generated hotspots of electron density. Such structures can be effectively manufactured by a relatively accessible colloidal synthesis. However, the shape control requires the attachment of a surfactant on specific crystal facets during their growth. Commonly used cetrimonium halides form a closely packed bilayer, lowering the surface accessibility for subsequent (bio)functionalization steps. While there are numerous studies on functionalizing gold nanospheres, novel materials, such as nanotriangles (AuNTs), often require thorough studies to adapt the existing procedures. This is mainly caused by the incomplete characterization of initial nanoparticle colloids in empirically developed protocols. Herein, we report a rational approach utilizing the surface area of AuNTs as a function of both their dimensions and concentration, determined with an express UV-VIS analysis. We demonstrate its efficiency for the exchange of cetyltrimethylammonium chloride (CTAC) with polystyrene sulfonate (PSS) and with biocompatible citrate using direct and indirect methods, respectively. Fourier-transform infrared spectroscopy unequivocally proves the ligand exchange. Such functionalization allows evaluating the bulk refractive index sensitivity of AuNTs as a measure of their potential in LSPR-based sensing.
Collapse
Affiliation(s)
- Ekaterina Podlesnaia
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Sarmiza Elena Stanca
- Quantum Detection Department Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Buşra Çinçin
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Gabriel Zieger
- Quantum Detection Department Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Andrea Csáki
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| |
Collapse
|
2
|
Podlesnaia E, Hoxha A, Achikkulathu S, Kandathikudiyil Antony A, Antony JP, Spörl K, Csáki A, Leiterer M, Fritzsche W. Variations in CTAC batches from different suppliers highly affect the shape yield in seed-mediated synthesis of gold nanotriangles. Sci Rep 2024; 14:19610. [PMID: 39179614 PMCID: PMC11344135 DOI: 10.1038/s41598-023-50337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 08/26/2024] Open
Abstract
The rapidly developing miniaturization in numerous fields require low-demanding but robust methods of nanomaterial production. Colloidal synthesis provides great flexibility in product material, size, and shape. Gold nanoparticle synthesis has been thoroughly studied, however, recent reports on mechanistic insights of crystal formation have been hindered by the numerous procedures and parameter optimization works. With every new study, scientists fill another blank space on the map of understanding anisotropic growth and find out the critical parameters. In the current work, we highlight the choice importance for surfactant supplier in achieving the gold nanotriangle formation. We systematically study the variation in the shape yield when utilizing five batches of cetyltrimethylammonium chloride (CTAC) from varied suppliers. Using analytical techniques, we search for deviations causing such variation, e.g. different impurity content. We found only a marginal effect of iodine contamination on the studied system, excluding this factor as decisive in contrast to what was proposed earlier in the literature, and leaving the high dependency of the yield to originate from yet unknown reagent characteristics. A deeper understanding of these factors would provide highly effective protocols lowering the reagent consumption and increasing the accessibility of nanomaterials manufactured in a sustainable manner.
Collapse
Affiliation(s)
- Ekaterina Podlesnaia
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
| | - Amarildo Hoxha
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Sreevalsan Achikkulathu
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Athulesh Kandathikudiyil Antony
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Jerestine Philomina Antony
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Kathrin Spörl
- Thüringer Landesamt für Landwirtschaft und Ländlichen Raum (TLLLR), 07743, Jena, Germany
| | - Andrea Csáki
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Matthias Leiterer
- Thüringer Landesamt für Landwirtschaft und Ländlichen Raum (TLLLR), 07743, Jena, Germany
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
| |
Collapse
|
3
|
Ratre P, Nazeer N, Soni N, Kaur P, Tiwari R, Mishra PK. Smart carbon-based sensors for the detection of non-coding RNAs associated with exposure to micro(nano)plastics: an artificial intelligence perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8429-8452. [PMID: 38182954 DOI: 10.1007/s11356-023-31779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Micro(nano)plastics (MNPs) are pervasive environmental pollutants that individuals eventually consume. Despite this, little is known about MNP's impact on public health. In this article, we assess the evidence for potentially harmful consequences of MNPs in the human body, concentrating on molecular toxicity and exposure routes. Since MNPs are present in various consumer products, foodstuffs, and the air we breathe, exposure can occur through ingestion, inhalation, and skin contact. MNPs exposure can cause mitochondrial oxidative stress, inflammatory lesions, and epigenetic modifications, releasing specific non-coding RNAs in circulation, which can be detected to diagnose non-communicable diseases. This article examines the most fascinating smart carbon-based nanobiosensors for detecting circulating non-coding RNAs (lncRNAs and microRNAs). Carbon-based smart nanomaterials offer many advantages over traditional methods, such as ease of use, sensitivity, specificity, and efficiency, for capturing non-coding RNAs. In particular, the synthetic methods, conjugation chemistries, doping, and in silico approach for the characterization of synthesized carbon nanodots and their adaptability to identify and measure non-coding RNAs associated with MNPs exposure is discussed. Furthermore, the article provides insights into the use of artificial intelligence tools for designing smart carbon nanomaterials.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nazim Nazeer
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nikita Soni
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Prasan Kaur
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
4
|
Limantoro C, Das T, He M, Dirin D, Manos J, Kovalenko MV, Chrzanowski W. Synthesis of Antimicrobial Gallium Nanoparticles Using the Hot Injection Method. ACS MATERIALS AU 2023; 3:310-320. [PMID: 38090131 PMCID: PMC10347687 DOI: 10.1021/acsmaterialsau.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 09/03/2024]
Abstract
Antibiotic resistance continues to be an ongoing problem in global public health despite interventions to reduce antibiotic overuse. Furthermore, it threatens to undo the achievements and progress of modern medicine. To address these issues, the development of new alternative treatments is needed. Metallic nanoparticles have become an increasingly attractive alternative due to their unique physicochemical properties that allow for different applications and their various mechanisms of action. In this study, gallium nanoparticles (Ga NPs) were tested against several clinical strains of Pseudomonas aeruginosa (DFU53, 364077, and 365707) and multi-drug-resistant Acinetobacter baumannii (MRAB). The results showed that Ga NPs did not inhibit bacterial growth when tested against the bacterial strains using a broth microdilution assay, but they exhibited effects in biofilm production in P. aeruginosa DFU53. Furthermore, as captured by atomic force microscopy imaging, P. aeruginosa DFU53 and MRAB biofilms underwent morphological changes, appearing rough and irregular when they were treated with Ga NPs. Although Ga NPs did not affect planktonic bacterial growth, their effects on both biofilm formation and established biofilm demonstrate their potential role in the race to combat antibiotic resistance, especially in biofilm-related infections.
Collapse
Affiliation(s)
- Christina Limantoro
- Sydney
Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Theerthankar Das
- Department
of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Meng He
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Dmitry Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Jim Manos
- Department
of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich—Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Wojciech Chrzanowski
- Sydney
Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney
Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Simple model of the electrophoretic migration of spherical and rod-shaped Au nanoparticles in gels with varied mesh sizes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Elumalai M, Vimalraj S, Chandirasekar S, Ezhumalai N, Kasthuri J, Rajendiran N. N-Cholyl d-Penicilamine Micelles Templated Red Light-Emitting Silver Nanoclusters: Fluorometric Sensor for S 2- Ions and Bioimaging Application Using Zebrafish Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7580-7592. [PMID: 35674287 DOI: 10.1021/acs.langmuir.2c00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Red-light-emitting silver nanoclusters (AgNCs) are recently emerged as a promising nanoprobe in the field of biomedical applications, because of their attractive properties, including brightness, luminescence stability, and better biocompatibility. In this report, we have developed highly water-soluble red-light-emitting AgNCs by using N-cholyl d-penicilamine (NCPA) as a biosurfactant at above the critical micelle concentration (CMC) at room temperature. Moreover, the NCPA was initially synthesized by demonstrating the reaction between cholic acid and d-penicilamine via a simple coupling reaction strategy. The primary and secondary critical micellar concentration (CMC) of NCPA surfactant was measured using pyrene (1 × 10-6 M) as a fluorescent probe, and the values were found to be 3.18 and 10.6 mM, respectively. Steady-state fluorescence measurements reveal that the prepared AgNCs shows the excitation and emission maxima at 365 and 672 nm, respectively, with a large Stokes shift (307 nm). The average lifetime measurements and quantum yield of the AgNCs were calculated to be 143.43 ns and 16.34%, respectively. Also, the red luminescent NCPA-templated AgNCs was synthesized in various protic and aprotic polar solvents, among which DMF and DMSO exhibit bright emission at longer wavelength as synthesized in aqueous medium. At higher concentration of AgNO3, bright luminescent and highly stable solid AgNCs was obtained with excitation and emission maxima at 607 and 711 nm, respectively. Furthermore, the synthesized AgNCs has been successfully utilized as a fluorescent probe for selective and sensitive detection of S2- ions at nanomolar level in water samples, showing its potential applicability for the detection of S2- ions in drinking, river, and tap water samples. Finally, toxicity and bioimaging studies of NCPA-templated AgNCs was demonstrated using zebrafish as in vivo model, showing no significant toxicity up to 200 μL/mL. The AgNCs-stained embryos exhibited red fluorescence with high intensity, which shows that AgNCs are stable in a living system.
Collapse
Affiliation(s)
- Manikandan Elumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Guindy, Chennai 600025, Tamil Nadu, India
| | | | - Nishanthi Ezhumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Jayapalan Kasthuri
- Department of Chemistry, Quaid-E- Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
7
|
Wen M, Li J, Zhong W, Xu J, Qu S, Wei H, Shang L. High-Throughput Colorimetric Analysis of Nanoparticle-Protein Interactions Based on the Enzyme-Mimic Properties of Nanoparticles. Anal Chem 2022; 94:8783-8791. [PMID: 35676761 DOI: 10.1021/acs.analchem.2c01618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While an in-depth understanding of the biological behavior of engineered nanoparticles (NPs) is of great importance for their various applications, it remains challenging to quantitatively characterize NP-protein interactions in a simple and high-throughput manner. In the present work, we propose a new, colorimetric approach capable of quantitatively analyzing the adsorption of proteins onto the surface of NPs by their distinct peroxidase-mimic properties. Taking cationic AuNPs as an example, we demonstrate that this colorimetric method is capable of evaluating NP-protein interactions in a simple and high-throughput manner in multiwell plates. Important binding parameters (e.g., the binding affinity) of three different serum proteins (bovine serum albumin, transferrin, and lysozyme) as well as human serum to AuNPs with three different sizes (average diameters of 5, 10, and 15 nm) have been obtained. Based on a quantitative analysis of NP-protein interactions, we observe that the binding affinity and the inhibition efficiency of the nanozyme activity of AuNPs are strongly affected by the characteristics of proteins as well as the sizes of NPs. These results illustrate the great potential of the present colorimetric method as a simple, low-cost, and high-throughput platform for quantitatively investigating NP-protein interactions.
Collapse
Affiliation(s)
- Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Juanmin Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Jie Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| |
Collapse
|
8
|
Deblock L, Goossens E, Pokratath R, De Buysser K, De Roo J. Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands. JACS AU 2022; 2:711-722. [PMID: 35373200 PMCID: PMC8969999 DOI: 10.1021/jacsau.1c00565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 05/24/2023]
Abstract
Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.
Collapse
Affiliation(s)
- Loren Deblock
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Eline Goossens
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Rohan Pokratath
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | | - Jonathan De Roo
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Graham AJ, Gibbs SL, Saez Cabezas CA, Wang Y, Green AM, Milliron DJ, Keitz BK. In Situ
Optical Quantification of Extracellular Electron Transfer Using Plasmonic Metal Oxide Nanocrystals**. ChemElectroChem 2022. [DOI: 10.1002/celc.202101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Austin J. Graham
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Stephen L. Gibbs
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
| | - Camila A. Saez Cabezas
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Yongdan Wang
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
| | - Allison M. Green
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Delia J. Milliron
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering University of Texas at Austin TX, 78712 Austin United States
- Center for the Dynamics and Control of Materials University of Texas at Austin TX, 78712 Austin United States
| |
Collapse
|
10
|
Baronnier J, Mahler B, Boisron O, Dujardin C, Kulzer F, Houel J. Optical properties of fully inorganic core/gradient-shell CdSe/CdZnS nanocrystals at the ensemble and single-nanocrystal levels. Phys Chem Chem Phys 2021; 23:22750-22759. [PMID: 34608907 DOI: 10.1039/d1cp02927d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and optical characterization of fully inorganic gradient-shell CdSe/CdZnS nanocrystals (NCs) with high luminescence quantum yield (QY, 50%), which were obtained by replacing native oleic-acid (OA) ligands with halide ions (Cl-and Br-). Absorption, photoluminescence excitation (PLE) and photoluminescence (PL) spectra in solution were unaffected by the ligand-exchange procedure. The halide-capped NCs were stable in solution for several weeks without modification of their PL spectra; once deposited as unprotected thin films and exposed to air, however, they did show signs of aging which we attribute to increasing heterogeneity of (effective) NC size. Time-resolved PL measurements point to the existence of four distinct emissive states, which we attribute to neutral, singly-charged and multi-excitonic entities. We found that the relative contribution of these four components to the overall PL decay is modified by the OA-to-halide ligand exchange, while the excited-state lifetimes themselves, surprisingly, remain largely unaffected. The high PL quantum yield of the halide-capped NCs allowed observation of single particle blinking and photon-antibunching; one surprising result was that aging processes that occurs during the first few days after deposition on glass seemed to offer a certain increased protection against photobleaching. These results suggest that halide-capped CdSe/CdZnS NCs are promising candidates for incorporation into opto-electronic devices, based on, for example, hybrid perovskite matrices, which require eliminating the steric hindrance and electronic barrier of bulky organic ligands to ensure efficient coupling.
Collapse
Affiliation(s)
- Justine Baronnier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France.
| | - Benoit Mahler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France.
| | - Olivier Boisron
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France.
| | - Christophe Dujardin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France.
| | - Florian Kulzer
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France.
| | - Julien Houel
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France.
| |
Collapse
|
11
|
Ranathunge TA, Yaddehige ML, Varma JH, Smith C, Nguyen J, Owolabi I, Kolodziejczyk W, Hammer NI, Hill G, Flynt A, Watkins DL. Heteroacene-Based Amphiphile as a Molecular Scaffold for Bioimaging Probes. Front Chem 2021; 9:729125. [PMID: 34485246 PMCID: PMC8416430 DOI: 10.3389/fchem.2021.729125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
The challenges faced with current fluorescence imaging agents have motivated us to study two nanostructures based on a hydrophobic dye, 6H-pyrrolo[3,2-b:4,5-b']bis [1,4]benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure, multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA) dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA. TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a hydrodynamic radius that was <150 nm. For comparison, TRPZ-PG was encapsulated in pluronic-F127 (Mw = 12 kD), a polymer surfactant to afford NPs almost twice as large as those formed by TRPZ-bisMPA. Size and stability studies confirm the suitability of the TRPZ-bisMPA NPs for biomedical applications. The photophysical properties of the TRPZ-bisMPA NPs show a quantum yield of 49%, a Stokes shift of 201 nm (0.72 eV) and a lifetime of 6.3 ns in water. Further evidence was provided by cell viability and cellular uptake studies confirming the low cytotoxicity of TRPZ-bisMPA NPs and their potential in bioimaging.
Collapse
Affiliation(s)
- Tharindu A. Ranathunge
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
| | - Mahesh Loku Yaddehige
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
| | - Jordan H. Varma
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
| | - Cameron Smith
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
| | - Jay Nguyen
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Iyanuoluwani Owolabi
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Wojciech Kolodziejczyk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, United States
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
| | - Glake Hill
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, United States
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, MS, United States
| |
Collapse
|
12
|
Ray R, Ghosh S, Jana NR. Phosphate-Dependent Colloidal Stability Controls Nonendocytic Cell Delivery of Arginine-Terminated Nanoparticles. J Phys Chem B 2021; 125:9186-9196. [PMID: 34374554 DOI: 10.1021/acs.jpcb.1c05931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although arginine-rich polymers and peptides are extensively used as delivery carriers for drugs/proteins/nanoparticles, their cell delivery mechanism is not clearly understood. Recent studies show that arginine-terminated nanoparticles can enter into a cell via a nonendocytic approach that involves direct membrane penetration. However, poor colloidal stability of arginine-terminated nanoparticles under physiological conditions restricts their application potential. Here, we show that the nonendocytic cell delivery of arginine-terminated nanoparticles is controlled by their colloidal stability in the presence of phosphates. We have designed arginine-terminated quantum dots (QDs) of 10-15 nm hydrodynamic size, which enter into the cell via a nonendocytic approach, provided that they are colloidal and dispersed during cellular uptake. We have demonstrated that arginine-terminated QDs rapidly precipitate in the presence of monophosphates or polyphosphates, and polyphosphates have a stronger effect than monophosphates. Introducing polyethylene glycol at the QD surface can improve the colloidal stability against phosphates. Control experiments show that amine/ammonium-terminated cationic QDs of similar sizes do not have such a type of phosphate-dependent precipitation issue. We propose that arginine-terminated colloidal nanoparticles have a unique advantage over amine/ammonium-terminated nanoparticles as they can bind with the cell membrane phosphate via guanidinium-phosphate salt bridging. Bulk phosphate provides reversibility in this binding interaction so that nonendocytic cell uptake occurs via charge compensation of cationic nanoparticles without membrane damage. The developed surface chemistry approach and the proposed mechanisms can be adapted to other nanoparticles for efficient cell delivery and for designing delivery carriers.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
13
|
Simms BL, Ji N, Chandrasiri I, Zia MF, Udemgba CS, Kaur R, Delcamp JH, Flynt A, Tan C, Watkins DL. Physicochemical properties and bio‐interfacial interactions of surface modified
PDLLA‐PAMAM
linear dendritic block copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Briana L. Simms
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Nan Ji
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy University of Mississippi University Oxford Mississippi USA
| | - Indika Chandrasiri
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Mohammad Farid Zia
- Department of Biological Sciences The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Chinwe S. Udemgba
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Ravinder Kaur
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Alex Flynt
- Department of Biological Sciences The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy University of Mississippi University Oxford Mississippi USA
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| |
Collapse
|
14
|
Shi L, Zhang D, Zhao J, Xue J, Yin M, Liang A, Pan B. New insights into the different adsorption kinetics of gallic acid and tannic acid on minerals via 1H NMR relaxation of bound water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144447. [PMID: 33434839 DOI: 10.1016/j.scitotenv.2020.144447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The slower adsorption of lower molecular weight organic molecules remains poorly understood. This study investigated the adsorption kinetics of gallic acid (GA) and tannic acid (TA) on kaolinite (Kao), montmorillonite (Mon) and hematite (Hem), with an emphasis on the role of the bound water on the minerals. The lower adsorption of TA and GA on Kao than on Mon attributed to the lower specific surface area of Kao. Because of the electrostatic attraction, the adsorption of TA and GA on Hem was higher than that on Mon, even the specific surface area of the former was much lower than that of the later. The adsorption rates of TA on the three minerals were generally two orders of magnitude higher than those of GA. The adsorption kinetics of GA was strongly diffusion dependent; however, the diffusion process had limited influence on TA adsorption kinetics. The decreased c values of the intraparticle diffusion model of GA with increasing ionic strength provided additional direct evidence for the diffusion-dependent adsorption and the reduced hindrance by bound water via hydration layer compression. However, hydration layer compression had no effect on TA adsorption kinetics. The reduced 1H NMR relaxation rate of bound water indicated that the bound water quantity on minerals decreased with increasing ionic strength, which proved the occurrence of hydration layer compression. This study highlighted the importance of bound water and the relative sizes of organic molecules in the adsorption kinetics of organic compounds on minerals, which should be carefully considered for their environmental fate studies.
Collapse
Affiliation(s)
- Lin Shi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Di Zhang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Jinfeng Zhao
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mengnan Yin
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Aiping Liang
- School of Environmental & Material Engineering, Yantai University, Yantai 264005, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
15
|
Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. NANOSCALE 2020; 12:15588-15603. [PMID: 32677648 DOI: 10.1039/d0nr02563a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies heavily on the assessment of structure-function relationships at the nanoscale. Ever since the development of the first optical microscope, the reliance of scientists across disciplines on microscopy has increased. The development of the first electron microscope and with it the access to information at the nanoscale has prompted numerous disruptive discoveries. While fluorescence imaging allows identification of specific entities based on the labelling with fluorophores, the unlabelled constituents of the samples remain invisible. In electron microscopy on the other hand, structures can be comprehensively visualized based on their distinct electron density and geometry. Although electron microscopy is a powerful tool, it does not implicitly provide information on the location and activity of specific organic molecules. While correlative light and electron microscopy techniques have attempted to unify the two modalities, the resolution mismatch between the two data sets poses major challenges. Recent developments in optical super resolution microscopy enable high resolution correlative light and electron microscopy, however, with considerable constraints due to sample preparation requirements. Labelling of specific structures directly for electron microscopy using small gold nanoparticles (i.e. immunogold) has been used extensively. However, identification of specific entities solely based on electron contrast, and the differentiation from endogenous dense granules, remains challenging. Recently, the use of correlative cathodoluminescence electron microscopy (CCLEM) imaging based on luminescent inorganic nanocrystals has been proposed. While nanometric resolution can be reached for both the electron and the optical signal, high energy electron beams are potentially damaging to the sample. In this review, we discuss the opportunities of (volumetric) multi-color single protein labelling based on correlative cathodoluminescence electron microscopy, and its prospective impact on biomedical research in general. We elaborate on the potential challenges of correlative cathodoluminescence electron microscopy-based bioimaging and benchmark CCLEM against alternative high-resolution correlative imaging techniques.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland.
| | | | | |
Collapse
|
16
|
Benyettou F, Ramdas Nair A, Dho Y, Prakasam T, Pasricha R, Whelan J, Traboulsi H, Mazher J, Sadler KC, Trabolsi A. Aqueous Synthesis of Triphenylphosphine‐Modified Gold Nanoparticles for Synergistic In Vitro and In Vivo Photothermal Chemotherapy. Chemistry 2020; 26:5270-5279. [DOI: 10.1002/chem.202000216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Anjana Ramdas Nair
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Yaereen Dho
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Thirumurugan Prakasam
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Renu Pasricha
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Jamie Whelan
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Hassan Traboulsi
- Department of ChemistryKing Faisal University Al-Ahsa 31982 Kingdom of Saudi Arabia
| | - Javed Mazher
- Department of PhysicsKing Faisal University Al-Ahsa 31982 Kingdom of Saudi Arabia
| | - Kirsten C. Sadler
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Ali Trabolsi
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| |
Collapse
|
17
|
Pozo-Torres E, Caro C, Avasthi A, Páez-Muñoz JM, García-Martín ML, Fernández I, Pernia Leal M. Clickable iron oxide NPs based on catechol derived ligands: synthesis and characterization. SOFT MATTER 2020; 16:3257-3266. [PMID: 32163076 DOI: 10.1039/c9sm02512j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clickable magnetic nanoparticles have attracted great attention as potential nanoplatforms for biomedical applications because of the high functionalization efficiency of their surfaces with biomolecules, which facilitates their bio-compatibilization. However, the design and synthesis of clickable NPs is still challenging because of the complexity of the chemistry on the magnetic NP surface, thus robust methods that improve the ligand synthesis and the transfer of magnetic NPs in physiological media being in high-demand. In this work, we developed a versatile and enhanced synthetic route to fabricate potentially clickable IONPs of interest in nanomedicine. Catechol anchor ligands with different stereo-electronic features were synthetized from a hetero bi-functional PEG spacer backbone. The resulting catechol ligands transferred in good yields and high stability to magnetic NPs by an improved energetic ligand exchange method that combines sonication and high temperature. The azido functionalized IONPs exhibited excellent characteristics as T2 MRI contrast agents with low cytotoxicity, making these clickable magnetic NPs promising precursors for nanomedicines.
Collapse
Affiliation(s)
- Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain.
| | - Carlos Caro
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain.
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Ashish Avasthi
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Jose María Páez-Muñoz
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - María Luisa García-Martín
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology, Junta de Andalucía, Universidad de Málaga, C/Severo Ochoa, 35, 29590 Málaga, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 29590 Málaga, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain.
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
18
|
Sun Y, Shi F, Niu Y, Zhang Y, Xiong F. Fe3O4@OA@Poloxamer nanoparticles lower triglyceride in hepatocytes through liposuction effect and nano-enzyme effect. Colloids Surf B Biointerfaces 2019; 184:110528. [DOI: 10.1016/j.colsurfb.2019.110528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023]
|
19
|
Sasaki E, Dragoman RM, Mantri S, Dirin DN, Kovalenko MV, Hilvert D. Self‐Assembly of Proteinaceous Shells around Positively Charged Gold Nanomaterials Enhances Colloidal Stability in High‐Ionic‐Strength Buffers. Chembiochem 2019; 21:74-79. [DOI: 10.1002/cbic.201900469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Eita Sasaki
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Present address: Graduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113–8657 Japan
| | - Ryan M. Dragoman
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Überland Strasse 129 8600 Dübendorf Switzerland
| | - Shiksha Mantri
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
| | - Dmitry N. Dirin
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Überland Strasse 129 8600 Dübendorf Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology Überland Strasse 129 8600 Dübendorf Switzerland
| | - Donald Hilvert
- Laboratory of Organic ChemistryETH Zürich Vladimir-Prelog-Weg, 1-5/10 8093 Zürich Switzerland
| |
Collapse
|
20
|
Fan JZ, Andersen NT, Biondi M, Todorović P, Sun B, Ouellette O, Abed J, Sagar LK, Choi MJ, Hoogland S, de Arquer FPG, Sargent EH. Mixed Lead Halide Passivation of Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904304. [PMID: 31600007 DOI: 10.1002/adma.201904304] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/24/2019] [Indexed: 05/25/2023]
Abstract
Infrared-absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport. Lead bromide passivated CQDs have higher charge mobilities, but worse passivation. Here a mixed lead-halide (MPbX) ligand exchange is introduced that enables thorough surface passivation without compromising transport. MPbX-PbS CQDs exhibit properties that exceed the best features of single lead-halide PbS CQDs: they show improved passivation (43 ± 5 meV vs 44 ± 4 meV in Stokes shift) together with higher charge transport (4 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 vs 3 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 in mobility). This translates into PV devices having a record IR open-circuit voltage (IR Voc ) of 0.46 ± 0.01 V while simultaneously having an external quantum efficiency of 81 ± 1%. They provide a 1.7× improvement in the power conversion efficiency of IR photons (>1.1 µm) relative to the single lead-halide controls reported herein.
Collapse
Affiliation(s)
- James Z Fan
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Nigel T Andersen
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Petar Todorović
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Bin Sun
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Olivier Ouellette
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Laxmi K Sagar
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
21
|
Bilal M, Oh E, Liu R, Breger JC, Medintz IL, Cohen Y. Bayesian Network Resource for Meta-Analysis: Cellular Toxicity of Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900510. [PMID: 31207082 DOI: 10.1002/smll.201900510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 05/14/2023]
Abstract
A web-based resource for meta-analysis of nanomaterials toxicity is developed whereby the utility of Bayesian networks (BNs) is illustrated for exploring the cellular toxicity of Cd-containing quantum dots (QDs). BN models are developed based on a dataset compiled from 517 publications comprising 3028 cell viability data samples and 837 IC50 values. BN QD toxicity (BN-QDTox) models are developed using both continuous (i.e., numerical) and categorical attributes. Using these models, the most relevant attributes identified for correlating IC50 are: QD diameter, exposure time, surface ligand, shell, assay type, surface modification, and surface charge, with the addition of QD concentration for the cell viability analysis. Data exploration via BN models further enables identification of possible association rules for QDs cellular toxicity. The BN models as web-based applications can be used for rapid intelligent query of the available body of evidence for a given nanomaterial and can be readily updated as the body of knowledge expands.
Collapse
Affiliation(s)
- Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, Los Angeles, CA, 90095-7227, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, 90095-1496, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- KeyW Corporation, Hanover, MD, 21076, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, 90095-1496, USA
| | - Joyce C Breger
- Center for Biomolecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Biomolecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Yoram Cohen
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, Los Angeles, CA, 90095-7227, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, 90095-1496, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
22
|
Berestok T, Guardia P, Ibáñez M, Meyns M, Colombo M, Kovalenko MV, Peiró F, Cabot A. Electrostatic-Driven Gelation of Colloidal Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9167-9174. [PMID: 30015491 DOI: 10.1021/acs.langmuir.8b01111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The assembly of colloidal nanocrystals (NCs) is a unique strategy to produce porous materials with high crystallinity and unmatched control over structural and chemical parameters. This strategy has been demonstrated mostly for single-component nanomaterials. In the present work, we report the gelation of colloidal NC solutions driven by the electrostatic interaction of oppositely charged NCs. A key step for leading this strategy to success is to produce a stable colloidal solution of the positively charged component. We achieved this goal by functionalizing the NCs with inexpensive and nontoxic amino acids such as glutamine. We demonstrate the combination of positively and negatively charged NCs in proper concentrations to result in gels with a homogeneous distribution of the two compounds. In this way, porous nanocomposites with virtually any combination can be produced. We illustrate this approach by combining positively charged ceria NCs with negatively charged gold NCs to form Au-CeO2 gels. These gels were dried from supercritical CO2 to produce highly porous Au-CeO2 aerogels with specific surface areas of 120 m2 g-1. The formation of a proper interface is confirmed through the evaluation of nanocomposite catalytic activity toward CO oxidation. We further demonstrate the versatility of this strategy to produce porous metal chalcogenide-metal oxide and metal-metal chalcogenide nanocomposites by the examples of PbS-CeO2 and Au-PbS.
Collapse
Affiliation(s)
- Taisiia Berestok
- Catalonia Institute for Energy Research-IREC , Sant Adrià de Besòs 08930 , Barcelona , Spain
- LENS-MIND, Departament d'Enginyeria Electrònica I Biomèdica , Universitat de Barcelona , 08028 Barcelona , Spain
| | - Pablo Guardia
- Catalonia Institute for Energy Research-IREC , Sant Adrià de Besòs 08930 , Barcelona , Spain
| | - Maria Ibáñez
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , CH-8093 , Switzerland
| | - Michaela Meyns
- Catalonia Institute for Energy Research-IREC , Sant Adrià de Besòs 08930 , Barcelona , Spain
| | - Massimo Colombo
- Nanochemistry Department , Istituto Italiano di Tecnologia , via Morego 30 , 16130 Genova , Italy
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , CH-8093 , Switzerland
- EMPA-Swiss Federal Laboratories for Materials Science and Technology , Dübendorf , CH-8600 , Switzerland
| | - Francesca Peiró
- LENS-MIND, Departament d'Enginyeria Electrònica I Biomèdica , Universitat de Barcelona , 08028 Barcelona , Spain
- Institute of Nanoscience and Nanotechnology (In2UB) , Universitat de Barcelona , 08028 Barcelona , Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research-IREC , Sant Adrià de Besòs 08930 , Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
23
|
Rocca DM, Vanegas JP, Fournier K, Becerra MC, Scaiano JC, Lanterna AE. Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Adv 2018; 8:40454-40463. [PMID: 35558201 PMCID: PMC9091494 DOI: 10.1039/c8ra08169g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/25/2018] [Indexed: 12/02/2022] Open
Abstract
One-pot thermal and photochemical syntheses of lignin-doped silver and gold nanoparticles were developed and their antimicrobial properties were studied against Escherichia coli and Staphylococcus aureus. The nature of the lignin as well as the metal are directly involved in the antimicrobial activity observed in these nanocomposites. Whereas one of the nanocomposites is innocuous under dark conditions and shows photoinduced activity only against Staphylococcus aureus, the rest of the lignin-coated silver nanoparticles studied show antimicrobial activity under dark and light conditions for both bacteria strains. Additionally, only photoinduced activity is observed for lignin-coated gold nanoparticles. Importantly, the particles are non-cytotoxic towards human cells at the bactericidal concentrations. Preliminary assays show these silver nanoparticles as potential antimicrobial agents towards S. aureus biofilm eradication. Natural derived compounds, lignins, can be used as reducing and stabilizing agents to synthesize noble metal nanoparticles with antimicrobial properties.![]()
Collapse
Affiliation(s)
- Diamela María Rocca
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
- Departamento de Ciencias Farmacéuticas
| | - Julie P. Vanegas
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
- Liquid Crystal Institute
| | - Kelsey Fournier
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
| | - M. Cecilia Becerra
- Departamento de Ciencias Farmacéuticas
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
| | - Anabel E. Lanterna
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|