1
|
Liu Y, Du Z, Sheng C, Zhang G, Yan S, Zhang Z, Qin S. The Double-Edge Sword of Natural Phenanthrenes in the Landscape of Tumorigenesis. Molecules 2025; 30:1204. [PMID: 40141980 PMCID: PMC11946065 DOI: 10.3390/molecules30061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Phenanthrenes, which are polycyclic aromatic hydrocarbons comprising three benzene rings, exhibit a diverse range of functions. These compounds are utilized in the synthesis of resins, plant growth hormones, reducing dyes, tannins and other products. Notably, phenanthrenes possess significant pharmacological properties, including anti-tumor, anti-inflammatory and antioxidant activities, offering broad prospects for development, particularly in the fields of medicine and health. Interestingly, although aristolochic acid (AA) is a potent carcinogen, its lactam analogs can kill cancer cells and exhibit therapeutic effects against cancer. This provides a promising strategy for the toxicity-effect transformation of phenanthrenes. In this paper, we reviewed 137 articles to systematically review the anti-tumor potential and toxic effects of natural phenanthrenes isolated from the 19th century to the present, thus offering references and laying a foundation for their further research, development and utilization.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
| | - Chen Sheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
| | - Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhijun Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Y.L.); (Z.D.); (C.S.); (G.Z.); (S.Y.)
| | - Shuanglin Qin
- Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Kwok HC, Tse HT, Ng KK, Wang S, Au CK, Cai Z, Chan W. Absorptivity Is an Important Determinant in the Toxicity Difference between Aristolochic Acid I and Aristolochic Acid II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2551-2561. [PMID: 39808478 PMCID: PMC11800392 DOI: 10.1021/acs.jafc.4c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison. Despite their structural similarities, findings from cultured human cells and gut sac experiments showed that AA-I is absorbed more effectively than AA-II (∼3 times greater for AA-I than for AA-II; p < 0.001). This increased absorption, along with the previously observed higher activity of reductive activation enzymes for AA-I, results in greater DNA damage and oxidative stress, both of which are key factors in AA-related toxicity. The similar patterns of cell mortality (34.4 ± 2.3% vs 9.7 ± 0.1% for AA-I and AA-II at 80 μM; p < 0.0001), DNA adduct formation (∼3 times greater for AA-I than for AA-II; p < 0.001), and oxidative stress levels in relation to the concentrations of AA-I and AA-II indicate that the higher absorption rate of AA-I is a significant contributor to its greater toxicity. The toxicity of AA-I was also found to be further enhanced by its (natural) coexistence with AA-II. Since AA-I and AA-II differ only by a methoxy group, future research on reducing risks associated with AA exposure should focus on strategies to lower the absorption of these compounds.
Collapse
Affiliation(s)
- Hong-Ching Kwok
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hei-Tak Tse
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Ng
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuangshuang Wang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chun-Kit Au
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zongwei Cai
- Eastern
Institute of Technology Ningbo, Ningbo, Zhejiang 315200, China
- Department
of Chemistry and State Key Laboratory of Environmental and Biological
Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Wan Chan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
3
|
Zhang J, Chan CK, Pavlović NM, Chan W. Effects of Diet on Aristolochic Acid-DNA Adduct Formation: Implications for Balkan Endemic Nephropathy Etiology. Chem Res Toxicol 2023; 36:438-445. [PMID: 36881864 DOI: 10.1021/acs.chemrestox.2c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicine or AA-contaminated food is associated with the development of aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), both public health risks to which the World Health Organization is calling for global action to remove exposure sources. The AA exposure-induced DNA damage is believed to be related to both the nephrotoxicity and carcinogenicity of AA observed in patients suffering from BEN. While the chemical toxicology of AA is well-studied, we investigated in this study the understated effect of different nutrients, food additives, or health supplements on DNA adduct formation by aristolochic acid I (AA-I). By culturing human embryonic kidney cells in an AAI-containing medium enriched with different nutrients, results showed that cells cultured in fatty acid-, acetic acid-, and amino acid-enriched media produced ALI-dA adducts at significantly higher frequencies than that cultured in the normal medium. ALI-dA adduct formation was most sensitive to amino acids, indicating that amino acid- or protein-rich diets might lead to a higher risk of mutation and even cancer. On the other hand, cells cultured in media supplemented with sodium bicarbonate, GSH, and NAC reduced ALI-dA adduct formation rates, which sheds light on their potential use as risk-mitigating strategies for people at risk of AA exposure. It is anticipated that the results of this study will help to better understand the effect of dietary habits on cancer and BEN development.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
4
|
Au CK, Ham YH, Chan W. Bioaccumulation and DNA Adduct Formation of Aristolactam I: Unmasking a Toxicological Mechanism in the Pathophysiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2023; 36:322-329. [PMID: 36757010 DOI: 10.1021/acs.chemrestox.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Prolonged exposure to aristolochic acid (AA) through AA-containing herbal medicines or AA-tainted food is putting a large portion of the global population at risk of developing renal fibrosis and tumors of the upper urinary tract. In an effort to better understand the organotropic property of AA, we studied the cytotoxicity, absorption, oxidative-stress inducing potential, and DNA adduct formation capability of aristolactam I (ALI), one of the major urinary metabolites of aristolochic acid I (AAI) in human cells. Despite ALI having a slightly lower cytotoxicity than that of AAI, the analysis revealed, for the first time, that ALI is bioaccumulated 900 times more than that of AAI inside cultured kidney cells. Furthermore, ALI induced a significantly larger glutathione depletion than that of AAI in the exposed cells. Together with the formation of ALI-DNA adduct at a reasonably high abundance, results of this study unmasked a previously disregarded causative role of ALI in the organotropic tumor-targeting property of AA.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Poivre M, Antoine MH, Kryshen K, Atsapkina A, Shikov AN, Twyffels L, Nachtergael A, Duez P, Nortier J. Assessment of the Cytotoxicity, Mutagenicity, and Genotoxicity of Two Traditional Chinese Herbs: Aristolochia baetica and Magnolia officinalis. Toxins (Basel) 2023; 15:52. [PMID: 36668872 PMCID: PMC9864762 DOI: 10.3390/toxins15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Herbal remedies used in traditional medicine often contain several compounds combined in order to potentiate their own intrinsic properties. However, herbs can sometimes cause serious health troubles. In Belgium, patients who developed severe aristolochic acid nephropathy ingested slimming pills containing root extracts of an Aristolochia species, as well as the bark of Magnolia officinalis. The goal of the study was to evaluate, on a human renal cell line, Aristolochia and Magnolia extracts for their cytotoxicity by a resazurin cell viability assay, and their genotoxicity by immunodetection and quantification of the phosphorylated histone γ-H2AX. The present study also sought to assess the mutagenicity of these extracts, employing an OECD recognized test, the Ames test, using four Salmonella typhimurium strains with and without a microsomial fraction. Based on our results, it has been demonstrated that the Aristolochia-Magnolia combination (aqueous extracts) was more genotoxic to human kidney cells, and that this combination (aqueous and methanolic extracts) was more cytotoxic to human kidney cells after 24 and 48 h. Interestingly, it has also been shown that the Aristolochia-Magnolia combination (aqueous extracts) was mutagenic with a TA98 Salmonella typhimurium strain in the presence of a microsomial liver S9 fraction. This mutagenic effect appears to be dose-dependent.
Collapse
Affiliation(s)
- Mélanie Poivre
- Laboratory of Experimental Nephrology, Faculty of Medecine, Université Libre de Bruxelles, 1000 Bruxelles, Belgium
- Saint-Petersburg Institute of Pharmacy, 197376 Saint Petersburg, Russia
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons—UMONS, 7000 Mons, Belgium
| | - Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Faculty of Medecine, Université Libre de Bruxelles, 1000 Bruxelles, Belgium
| | - Kirill Kryshen
- Saint-Petersburg Institute of Pharmacy, 197376 Saint Petersburg, Russia
| | | | - Alexander N. Shikov
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov 14a, 197376 Saint Petersburg, Russia
| | - Laure Twyffels
- CMMI Center for Microscopy and Molecular Imaging, 6041 Charleroi, Belgium
| | - Amandine Nachtergael
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons—UMONS, 7000 Mons, Belgium
| | - Pierre Duez
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons—UMONS, 7000 Mons, Belgium
| | - Joëlle Nortier
- Laboratory of Experimental Nephrology, Faculty of Medecine, Université Libre de Bruxelles, 1000 Bruxelles, Belgium
| |
Collapse
|
6
|
Zhang J, Wang Y, Wang C, Li K, Tang W, Sun J, Wang X. Uptake, Translocation, and Fate of Carcinogenic Aristolochic Acid in Typical Vegetables in Soil-Plant Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238271. [PMID: 36500364 PMCID: PMC9739334 DOI: 10.3390/molecules27238271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
When Aristolochia plants wilt and decay, aristolochic acids (AAs) are released into the soil, causing soil contamination. It has been demonstrated that aristolochic acid can be accumulated and enriched in crops through plant uptake. However, there is a lack of systematic studies on the migration and accumulation of AAs in a realistic simulated soil environment. In this study, Aristolochia herbal extracts were mixed with soil for growing three typical vegetables: lettuce, celery, and tomato. The contents of AAs in the above-mentioned plants were determined by an established highly sensitive LC-MS/MS method to study the migration and accumulation of AAs. We found that AAs in the soil can be transferred and accumulated in plants. AAs first entered the roots, which were more likely to accumulate AAs, and partially entered the above-ground parts. This further confirms that AAs can enter the food chain through plants and can have serious effects on human health. It was also shown that plants with vigorous growth and a large size absorbed AAs from the soil at a faster rate. The more AAs present in the soil, the more they accumulated in the plant.
Collapse
Affiliation(s)
- Jinghe Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| | - Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kan Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weifang Tang
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xikui Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (Y.W.); or (X.W.)
| |
Collapse
|
7
|
Bukavina L, Bensalah K, Bray F, Carlo M, Challacombe B, Karam JA, Kassouf W, Mitchell T, Montironi R, O'Brien T, Panebianco V, Scelo G, Shuch B, van Poppel H, Blosser CD, Psutka SP. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur Urol 2022; 82:529-542. [PMID: 36100483 DOI: 10.1016/j.eururo.2022.08.019] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
CONTEXT International variations in the rates of kidney cancer (KC) are considerable. An understanding of the risk factors for KC development is necessary to generate opportunities to reduce its incidence through prevention and surveillance. OBJECTIVE To retrieve and summarize global incidence and mortality rates of KC and risk factors associated with its development, and to describe known familial syndromes and genetic alterations that represent biologic risk factors. EVIDENCE ACQUISITION A systematic review was conducted via Medline (PubMed) and Scopus to include meta-analyses, reviews, and original studies regarding renal cell carcinoma, epidemiology, and risk factors. EVIDENCE SYNTHESIS Our narrative review provides a detailed analysis of KC incidence and mortality, with significant variations across time, geography, and sex. In particular, while KC incidence has continued to increase, mortality models have leveled off. Among the many risk factors, hypertension, obesity, and smoking are the most well established. The emergence of new genetic data coupled with observational data allows for integrated management and surveillance strategies for KC care. CONCLUSIONS KC incidence and mortality rates vary significantly by geography, sex, and age. Associations of the development of KC with modifiable and fixed risk factors such as obesity, hypertension, smoking, and chronic kidney disease (CKD)/end-stage kidney disease (ESKD) are well described. Recent advances in the genetic characterization of these cancers have led to a better understanding of the germline and somatic mutations that predispose patients to KC development, with potential for identification of therapeutic targets that may improve outcomes for these at-risk patients. PATIENT SUMMARY We reviewed evidence on the occurrence of kidney cancer (KC) around the world. Currently, the main avoidable causes are smoking, obesity, and high blood pressure. Although other risk factors also contribute, prevention and treatment of these three factors provide the best opportunities to reduce the risk of developing KC at present.
Collapse
Affiliation(s)
- Laura Bukavina
- Division of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA; University Hospitals Cleveland Medical Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Karim Bensalah
- Department of Urology, University of Rennes, Rennes, France
| | - Freddie Bray
- Cancer Surveillance Section, International Agency for Research on Cancer, Lyon, France
| | - Maria Carlo
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Challacombe
- Department of Urology, Guy's and St. Thomas Hospitals, London, UK
| | - Jose A Karam
- Departments of Urology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wassim Kassouf
- Division of Adult Urology, McGill University, Montreal, Canada
| | - Thomas Mitchell
- Department of Urology, Wellcome Sanger Institute, Cambridge, UK
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Ancona, Italy
| | - Tim O'Brien
- Department of Urology, Guy's and St. Thomas Hospitals, London, UK
| | | | | | - Brian Shuch
- Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hein van Poppel
- Department of Urology, Catholic University of Leuven, Leuven, Belgium
| | - Christopher D Blosser
- Department of Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sarah P Psutka
- Department of Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
8
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
9
|
Zhang J, Chan KKJ, Chan W. Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy. Chem Res Toxicol 2022; 35:849-857. [PMID: 35471859 DOI: 10.1021/acs.chemrestox.2c00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with chronic exposure to aristolochic acids (AAs) through AA-contaminated food being one of the major etiological mechanisms. However, the bulk of previous research has only focused on investigating the possible roles of individual pollutants in disease development and the etiological mechanism of BEN remains controversial. In this study, we investigated the exposure concentration and duration dependence of coexposure to phthalate esters and lignite coal-derived phenol and polycyclic aromatic hydrocarbons (PAHs) on the metabolism and DNA adduct formation of aristolochic acid I (AAI). Results showed that both the metabolic activation and DNA adduct formation of AAI in cultured human kidney cells were affected by their coexposure to the above-mentioned environmental pollutants. Furthermore, our results suggest that chemicals leached from lignite coal likely played a role by triggering AA-activating enzymes to produce more of the promutagenic DNA adducts, thus further elevating the nephrotoxicity and carcinogenicity of AAs and increasing the risk of BEN. It is believed that the results of this study provide a better understanding of the etiological mechanism of BEN and offer insights into methods and policies to lower the risk of this devastating disease.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
10
|
Qu M, Xu H, Chen J, Xu B, Li Z, Ma B, Guo L, Ye Q, Xie J. Differential comparison of genotoxic effects of aristolochic acid I and II in human cells by the mass spectroscopic quantification of γ-H2AX. Toxicol In Vitro 2022; 81:105349. [DOI: 10.1016/j.tiv.2022.105349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
11
|
Chan W, Jin L. DNA-Protein Cross-Links Formed by Reacting Lysine with Apurinic/Apyrimidinic Sites in DNA and Human Cells: Quantitative Analysis by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope Dilution. Anal Chem 2021; 94:803-810. [PMID: 34971314 DOI: 10.1021/acs.analchem.1c03356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests that DNA lesion-induced DNA-protein cross-links (DPCs) interrupt normal DNA metabolic processes, such as transcription, replication, and repair, resulting in profound biological consequences, including the development of many human diseases, such as cancers. Although apurinic/apyrimidinic (AP) sites are among the most predominant DNA lesions and are in close proximity to the histone proteins that they wrap around in the nucleosome, knowledge of the chemical structure or biological consequences of their associated DPCs is limited in part due to a lack of sensitive and selective analytical methods. We developed liquid chromatography-tandem mass spectrometry coupled with a stable isotope dilution method for rigorous quantitation of DPCs formed by reacting a DNA AP site with a lysine residue. In combination with chemical derivatization with fluorenylmethoxycarbonyl chloride to form a hydrophobic conjugate, the developed LC-MS/MS method allows sensitive detection of AP site-Lys cross-links down to sub-1 adduct per 106 nt. After validation using a synthetic AP site-lysine-cross-linked peptide and an oligodeoxyribonucleotide, the method was used to determine the concentration of AP site-lysine cross-links in hot acid-treated DNA and in human cells exposed to methyl methanesulfonate.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Long Jin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Chan W, Ham YH. Probing the Hidden Role of Mitochondrial DNA Damage and Dysfunction in the Etiology of Aristolochic Acid Nephropathy. Chem Res Toxicol 2021; 34:1903-1909. [PMID: 34255491 DOI: 10.1021/acs.chemrestox.1c00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aristolochic acid nephropathy (AAN) is a unique type of progressive renal interstitial fibrotic disease caused by prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicines or AA-tainted food. Despite decades of research and affecting millions of people around the world, the pathophysiology of AAN remains incompletely understood. In this study, we tested the potential causative role of mitochondrial dysfunction in AAN development. Our findings revealed AA exposure induces an exposure concentration and duration dependent lowering of adenosine triphosphate in both cultured human kidney and liver cells, highlighting an AA exposure effect on mitochondrial energy production in the kidney and liver, which both are highly metabolically active and energy-demanding organs. Analysis with liquid chromatography-tandem mass spectrometry coupled with stable isotope dilution method detected high levels of mutagenic 8-oxo-2'-deoxyguanosine and 7-(deoxyadenosine-N6-yl)-aristolactam adduct on mitochondrial DNA isolated from AA-treated cells, unmasking a potentially important causative, but previously unknown role of mitochondrial DNA mutation in the pathophysiology of AAN development.
Collapse
Affiliation(s)
- Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
13
|
Guo W, Zhang J, Sun Z, Orem WH, Tatu CA, Radulović NS, Milovanović D, Pavlović NM, Chan W. Analysis of Polycyclic Aromatic Hydrocarbons and Phthalate Esters in Soil and Food Grains from the Balkan Peninsula: Implication on DNA Adduct Formation by Aristolochic Acid I and Balkan Endemic Nephropathy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9024-9032. [PMID: 34125507 DOI: 10.1021/acs.est.1c00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Balkan endemic nephropathy (BEN) is a chronic tubulointerstitial nephropathy affecting residents of rural farming areas in many Balkan countries. Although it is generally believed that BEN is an environmental disease caused by multiple geochemical factors with much attention on aristolochic acids (AAs), its etiology remains controversial. In this study, we tested the hypothesis that environmental contamination and subsequent food contamination by polycyclic aromatic hydrocarbons (PAHs) and phthalate esters are AA toxicity factors and important to BEN development. We identified significantly higher concentrations of phenanthrene, anthracene, diethyl phthalate (DEP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBP) in both maize and wheat grain samples collected from endemic villages than from nonendemic villages. Other PAHs and phthalate esters were also detected at higher concentrations in the soil samples from endemic villages. Subsequent genotoxicity testing of cultured human kidney cells showed an alarming phenomenon that phenanthrene, DEP, BBP, and DBP can interact synergistically with AAs to form elevated levels of AA-DNA adducts, which are associated with both the nephrotoxicity and carcinogenicity of AAs, further increasing their disease risks. This study provides direct evidence that prolonged coexposure to these environmental contaminants via dietary intake may lead to greater toxicity and accelerated development of BEN.
Collapse
Affiliation(s)
- Wanlin Guo
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - Jiayin Zhang
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - Zhihan Sun
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| | - William H Orem
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | - Calin A Tatu
- Department of Immunology, University of Medicine and Pharmacy ″Victor Babes″ Timisoara, Pta. E. Murgu No.2, 300041 Timisoara, Romania
| | - Niko S Radulović
- Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | | | | | - Wan Chan
- Department of Chemistry and Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000000, Hong Kong
| |
Collapse
|
14
|
Gao C, Zhang Q, Ma L, Lu X, Wu S, Song P, Xia L. Dual‐spectroscopic real‐time monitoring of the reduction reaction between aristolochic acid I and Fe
2+
and its bio‐application. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ce Gao
- Department of Chemistry Liaoning University Shenyang China
| | - Qijia Zhang
- Department of Chemistry Liaoning University Shenyang China
| | - Liping Ma
- Department of Chemistry Liaoning University Shenyang China
| | - Xuemei Lu
- Department of Physics Liaoning University Shenyang China
| | - Shiwei Wu
- Department of Chemistry Liaoning University Shenyang China
- Experimental Center Shenyang Normal University Shenyang China
| | - Peng Song
- Department of Physics Liaoning University Shenyang China
| | - Lixin Xia
- Department of Chemistry Liaoning University Shenyang China
- College of Chemistry and Environmental Engineering Yingkou Institute of Technology Yingkou China
| |
Collapse
|
15
|
Chan CK, Pan G, Chan W. Analysis of aristolochic acids in Houttuynia cordata by liquid chromatography-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4652. [PMID: 32975339 DOI: 10.1002/jms.4652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Houttuynia cordata (H. cordata) is a popular vegetable in Asian countries and is also used extensively as herbal medicine in treating various diseases. H. cordata contains aristolactams, which have a similar Chinese name as aristolochic acids (AAs); hence, an emerging concern in the greater China region has arisen about the potential linkage between H. cordata and aristolochic acid nephropathy (AAN). However, only a single study has tested for the presence of AAs in H. cordata samples, and the analysis was limited by the analytical sensitivity of the method. Thus, further analysis of AAs in H. cordata using analytical method of higher sensitivity is needed to alleviate public anxiety over the use of this popular vegetable. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to analyze H. cordata samples for the natural existence of aristolochic acid I (AA-I) and aristolochic acid II (AA-II), which are the most carcinogenic and nephrotoxic compounds in the AA family. After evaluating the method performance by fortifying blank samples with three concentrations of AAs, the validated method was applied to identify AA-I and AA-II in both fresh and sun-dried H. cordata samples (n = 20) collected from different cities in China. The LC-MS/MS method achieved method detection limits (MDLs) as low as 2 ng/g of AAs in H. cordata. Analysis of the collected fresh and sun-dried H. cordata samples revealed that AA-I and AA-II either do not exist naturally in H. cordata or exist at concentrations below the MDLs. Therefore, it is not very likely that consumption of H. cordata will result in AAN because AA-I and AA-II, the nephrotoxic and carcinogenic culprits of AAN, are not produced naturally in the plant or are produced at levels that do not pose a risk of AAN.
Collapse
Affiliation(s)
- Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Au CK, Zhang J, Chan CK, Li C, Liu G, Pavlović NM, Yao J, Chan W. Determination of Aristolochic Acids in Vegetables: Nephrotoxic and Carcinogenic Environmental Pollutants Contaminating a Broad Swath of the Food Supply and Driving Incidence of Balkan Endemic Nephropathy. Chem Res Toxicol 2020; 33:2446-2454. [DOI: 10.1021/acs.chemrestox.0c00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | - Jing Yao
- Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
| | | |
Collapse
|
17
|
Pan G, Ham YH, Chan HW, Yao J, Chan W. LC-MS/MS Coupled with a Stable-Isotope Dilution Method for the Quantitation of Thioproline-Glycine: A Novel Metabolite in Formaldehyde- and Oxidative Stress-Exposed Cells. Chem Res Toxicol 2020; 33:1989-1996. [DOI: 10.1021/acs.chemrestox.0c00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guanrui Pan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong
| | - Yat-Hing Ham
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong
| | - Ho Wai Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong
| | - Jing Yao
- Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong
| |
Collapse
|