1
|
Kwok HC, Tse HT, Ng KK, Wang S, Au CK, Cai Z, Chan W. Absorptivity Is an Important Determinant in the Toxicity Difference between Aristolochic Acid I and Aristolochic Acid II. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2551-2561. [PMID: 39808478 PMCID: PMC11800392 DOI: 10.1021/acs.jafc.4c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison. Despite their structural similarities, findings from cultured human cells and gut sac experiments showed that AA-I is absorbed more effectively than AA-II (∼3 times greater for AA-I than for AA-II; p < 0.001). This increased absorption, along with the previously observed higher activity of reductive activation enzymes for AA-I, results in greater DNA damage and oxidative stress, both of which are key factors in AA-related toxicity. The similar patterns of cell mortality (34.4 ± 2.3% vs 9.7 ± 0.1% for AA-I and AA-II at 80 μM; p < 0.0001), DNA adduct formation (∼3 times greater for AA-I than for AA-II; p < 0.001), and oxidative stress levels in relation to the concentrations of AA-I and AA-II indicate that the higher absorption rate of AA-I is a significant contributor to its greater toxicity. The toxicity of AA-I was also found to be further enhanced by its (natural) coexistence with AA-II. Since AA-I and AA-II differ only by a methoxy group, future research on reducing risks associated with AA exposure should focus on strategies to lower the absorption of these compounds.
Collapse
Affiliation(s)
- Hong-Ching Kwok
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hei-Tak Tse
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ka-Ki Ng
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuangshuang Wang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chun-Kit Au
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zongwei Cai
- Eastern
Institute of Technology Ningbo, Ningbo, Zhejiang 315200, China
- Department
of Chemistry and State Key Laboratory of Environmental and Biological
Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Wan Chan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
2
|
Xue S, Bao W, Lyu J, Wang C, Zhang Y, Li H, Chen D, Lu Y. In vitro nephrotoxicity and structure-toxicity relationships of eight natural aristolactams. Toxicon 2025; 254:108214. [PMID: 39674407 DOI: 10.1016/j.toxicon.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The structural similarity between aristolactams (ALs) and aristolochic acids (AAs) raises constant concerns about the safety of ALs-containing plants. Natural ALs are distributed more extensively than AAs, leading to a higher risk of ALs exposure in daily consumption. This study aimed to evaluate and compare the in vitro nephrotoxicity on human renal tubular epithelial cells (HK-2 cells) of eight natural ALs with different substituents on the phenanthrene ring and amide ring, including aristolactam Ⅰ (AL Ⅰ), AL BⅡ, velutinam, AL AⅡ, sauristolactam, AL AⅠa, AL FⅠ and N-methyl piperolactam A. Their IC50 values of cell viability were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of kidney injury molecule-1 (KIM-1), transforming growth factor-β1 (TGF-β1) and fibronectin (FN). The reactive oxygen species (ROS) assay was used to detect the intracellular oxidative stress level. The results showed that the eight ALs all had specific nephrotoxicity on HK-2 cells. Particularly, AL Ⅰ, AL BⅡ and velutinam exhibited more potent cytotoxicity on HK-2 cells (IC50 = 2.49-2.78 μM) than the other five ALs (IC50 = 12.33-43.84 μM). The structure-toxicity relationships indicated that both methylenedioxy (-OCH2O-) and methoxy (-OCH3) were positively contributing functional groups of ALs on nephrotoxicity, while the hydroxy group (-OH) and methyl substitution on nitrogen (N-CH3) accounted for a detrimental effect conversely. Consistent with this structure-toxicity relationship, the eight ALs increased KIM-1 levels in the same trend as their cytotoxicity at the same concentration of 2.5 μg/mL, associating with different levels of ROS generation. And the four most toxic ALs, AL Ⅰ, AL BⅡ, velutinam and AL AⅡ, could also induce fibrosis by increasing TGF-β1 and FN levels.
Collapse
Affiliation(s)
- Shiyu Xue
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiaren Lyu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Changyue Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Liu S, Zhao Y, Li C, Yi Y, Zhang Y, Tian J, Han J, Pan C, Lu X, Su Y, Wang L, Liu C, Meng J, Liang A. Long-term oral administration of Kelisha capsule does not cause hepatorenal toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118320. [PMID: 38740107 DOI: 10.1016/j.jep.2024.118320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 μg/g, 1.89-2.16 μg/g, and 0.55-1.60 μg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.
Collapse
Affiliation(s)
- Suyan Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yong Zhao
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunying Li
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan Yi
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yushi Zhang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingzhuo Tian
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiayin Han
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chen Pan
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao Lu
- Zhejiang Sukean Pharmaceutical CO.LTD, Hangzhou, 311228, China.
| | - Yan Su
- Zhejiang Sukean Pharmaceutical CO.LTD, Hangzhou, 311228, China.
| | - Lianmei Wang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chenyue Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Meng
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aihua Liang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Au CK, Nagl S, Chan W. Effects of Heavy Metal Co-Exposure on the formation of DNA Adducts from Aristolochic Acid I: Implications for Balkan Endemic Nephropathy Development. Chem Res Toxicol 2024; 37:545-548. [PMID: 38551460 DOI: 10.1021/acs.chemrestox.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Accumulated evidence has shown that Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with exposure to aristolochic acids (AA), and the associated DNA adduct formation, as a key causative factor of BEN development. Here, we show that coexposure to arsenic, cadmium, and iron increases the DNA adduct formation of AA in cultured kidney cells, while exhibiting both an exposure concentration and duration dependence. In contrast, coexposure to calcium and copper showed a decreasing DNA adduct formation. Because DNA damage is responsible for both the nephrotoxicity and carcinogenicity of AA, these results shed greater light on the endemic nature of BEN.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Sun J, Zheng Z, Jia Z, Wang J, Lin X. Multivariate surface self-assembly strategy to fabricate ionic covalent organic framework surface grafting monolithic sorbent for enrichment of aristolochic acids prior to high performance liquid chromatography analysis. J Chromatogr A 2024; 1713:464504. [PMID: 37979512 DOI: 10.1016/j.chroma.2023.464504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Herein, an ionic covalent organic framework (iCOF) surface grafting monolithic sorbent was prepared by the multivariate surface self-assembly strategy for in-tube solid-phase microextraction (SPME) of trace aristolochic acids (AAs) in serum, traditional Chinese medicines (TCMs) and Chinese patent drug. Via adjusting the proportion of ionic COF building block during the self-assembly, the density of quaternary ammonium ions in the iCOF was modulated for the enhanced adsorption of AAs. The successful preparation of iCOF surface grafting monolithic sorbent was confirmed by different means. A multiple mode mechanism involving π-π stacking, hydrophobic, electrostatic and hydrogen-bonding interactions was primarily attributed to the adsorption. Several in-tube SPME operating conditions, such as the dosage of ionic COF building block, ACN percentage and TFA percentage in the sampling solution, ACN percentage and TFA percentage in eluent and the collection time span, were optimized to develop the online in-tube SPME-HPLC method for analysis of AAs. Under the optimized conditions, a good linearity was obtained in the concentration range of 20-1000 ng/mL for target AAs in serum samples, the limits of detection (LODs) were less than 10 ng/mL, while the recoveries ranged from 90.3 % to 98.7 % with RSDs (n = 5) below 7.9 %. This study developed a feasible approach to iCOF functionalized monolithic sorbent for SPME and further exhibited the vast potential for the application of COF based monolithic sorbent in sample preparation.
Collapse
Affiliation(s)
- Jian Sun
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zheheng Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zixiao Jia
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiabin Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
6
|
Liu Y, Guan H, Feng M, Du C, Zhang Q, Shou Y, Qi G, Yu D, Jin Y. MiR-766-3p and miR-671-5p attenuate aristolochic acid-induced hepatotoxicity by directly targeting the key bioactivating enzyme NQO1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115103. [PMID: 37285672 DOI: 10.1016/j.ecoenv.2023.115103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Aristolochic acid (AA) as an emerging contaminant in herbal medicines or crops has been well-recognized for causing nephropathy since 1990s. Over the last decade, mounting evidence has linked AA to liver injury; however, the underlying mechanism is poorly elucidated. MicroRNAs respond to environmental stress and mediate multiple biological processes, thus showing biomarker potentials prognostically or diagnostically. In the present study, we investigated the role of miRNAs in AA-induced hepatotoxicity, specifically in regulating NQO1, the key enzyme responsible for AA bioactivation. In silico analysis showed that hsa-miR-766-3p and hsa-miR-671-5p were significantly associated with AAI exposure as well as NQO1 induction. A 28-day rat experiment of 20 mg/kg AA exposure demonstrated a 3-fold increase of NQO1 and an almost 50 % decrease of the homologous miR-671 that were accompanied with liver injury, which was consistent with in silico prediction. Further mechanistic investigation using Huh7 cells with IC50 of AAI at 146.5 µM showed both hsa-miR-766-3p and hsa-miR-671-5p were able to directly bind to and down-regulate NQO1 basal expression. In addition, both miRNAs were shown to suppress AAI-induced NQO1 upregulation in Huh7 cells at a cytotoxic concentration of 70 μM, and consequently alleviate AAI-induced cellular effects, including cytotoxicity and oxidative stress. Together, these data illustrate that miR-766-3p and miR-671-5p attenuate AAI-induced hepatotoxicity, and thus have monitoring and diagnostic potentials.
Collapse
Affiliation(s)
- Yuzhen Liu
- School of Public Health, Qingdao University, Qingdao, China
| | - Heyuan Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Meiyao Feng
- Department of Environmental Health, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Chenlong Du
- School of Public Health, Qingdao University, Qingdao, China
| | - Qianqian Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yingqing Shou
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Chiang SY, Wey MT, Luo YS, Shih WC, Chimeddulam D, Hsu PC, Huang HF, Tsai TH, Wu KY. Simultaneous toxicokinetic studies of aristolochic acid I and II and aristolactam I and II using a newly-developed microdialysis liquid chromatography-tandem mass spectrometry. Food Chem Toxicol 2023; 177:113856. [PMID: 37257633 DOI: 10.1016/j.fct.2023.113856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Aristolochic acids (AAs) are naturally occurring genotoxic carcinogens linked to Balkan endemic nephropathy and aristolochic acid nephropathy. Aristolochic acid I and II (AA-I and AA-II) are the most abundant AAs, and AA-I has been reported to be more genotoxic and nephrotoxic than AA-II. This study aimed to explore metabolic differences underlying the differential toxicity. We developed a novel microdialysis sampling coupled with solid-phase extraction liquid chromatography-tandem mass spectrometry (MD-SPE-LC-MS/MS) to simultaneously study the toxicokinetics (TK) of AA-I and AA-II and their corresponding aristolactams (AL-I and AL-II) in the blood of Sprague Dawley rats co-treated with AA-1 and AA-II. Near real-time monitoring of these analytes in the blood of treated rats revealed that AA-I was absorbed, distributed, and eliminated more rapidly than AA-II. Moreover, the metabolism efficiency of AA-I to AL-I was higher compared to AA-II to AL-II. Only 0.58% of AA-I and 0.084% of AA-II was reduced to AL-I and AL-II, respectively. The findings are consistent with previous studies and support the contention that differences in the in vivo metabolism of AA-I and AA-II may be critical factors for their differential toxicities.
Collapse
Affiliation(s)
- Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Rd, North Dist., Taichung, 404333, Taiwan
| | - Ming-Tsai Wey
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan
| | - Yu-Syuan Luo
- Institute of Food and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 404333, Taiwan
| | - Wei-Chung Shih
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan
| | - Dalaijamts Chimeddulam
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan
| | - Po-Chi Hsu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Rd, North Dist., Taichung, 404333, Taiwan
| | - Hui-Fen Huang
- School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2. Linong St., Taipei, 100147, Taiwan
| | - Kuen-Yuh Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan; Institute of Food and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 404333, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan.
| |
Collapse
|
8
|
Tian J, Liu C, Wang L, Xian Z, Zhao Y, Qin S, Yi Y, Li C, Han J, Pan C, Zhang Y, Liu S, Meng J, Tang X, Wang F, Liu M, Liang A. Study on the difference and correlation between the contents and toxicity of aristolochic acid analogues in Aristolochia plants. JOURNAL OF ETHNOPHARMACOLOGY 2023:116568. [PMID: 37217154 DOI: 10.1016/j.jep.2023.116568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The nephrotoxicity and carcinogenicity induced by traditional Chinese medicines (TCMs) containing aristolochic acids (AAs) and related compound preparations have greatly limited their clinical application. While the toxicity of AA-I and AA-II is relatively clear, there are marked differences in the toxic effects of different types of aristolochic acid analogues (AAAs). Thus, the toxicity of TCMs containing AAAs cannot be evaluated based on the toxicity of a single compound. AIM OF THE STUDY To systematically investigate the toxicity induced by Zhushalian (ZSL), Madouling (MDL) and Tianxianteng (TXT) as representative TCMs derived from Aristolochia. MATERIALS AND METHODS AAA contents in ZSL, MDL and TXT were determined using HPLC. Subsequently, mice were treated for 2 weeks with high (H) and low (L) dosages of TCMs containing total AAA contents of 3 mg/kg and 1.5 mg/kg, respectively. Toxicity was evaluated using biochemical and pathological examination and was based on organ indices. Correlations between AAA contents and induced toxicity were analysed using multiple methods. RESULTS Of the total AAA content, ZSL contained mainly AA-I and AA-II (>90%, of which AA-I accounted for 49.55%). AA-I accounted for 35.45% in MDL. TXT mainly contained AA-IVa (76.84%) and other AAAs accounted for <10%. Short-term toxicity tests indicated that ZSL and high-dose MDL induced obvious renal interstitial fibrosis and gastric injury, whereas TXT (high and low dosages) caused only slight toxicity. Correlation analysis suggested that AA-I might be the critical hazard factor for toxicity. CONCLUSIONS The toxicity of TCMs containing AAAs cannot be generalised. The toxicity of TXT is relatively low compared with those of ZSL and MDL. The toxicity of Aristolochia depends mainly on the AA-I content; therefore, control of AA-I levels in TCMs and related compound preparations is required to reduce the risk of toxicity associated with the use of Aristolochia herbs in clinical settings.
Collapse
Affiliation(s)
- Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Xuan Tang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Meiting Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China.
| |
Collapse
|
9
|
Zhang J, Chan CK, Pavlović NM, Chan W. Effects of Diet on Aristolochic Acid-DNA Adduct Formation: Implications for Balkan Endemic Nephropathy Etiology. Chem Res Toxicol 2023; 36:438-445. [PMID: 36881864 DOI: 10.1021/acs.chemrestox.2c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Prolonged exposure to aristolochic acids (AAs) through AA-containing herbal medicine or AA-contaminated food is associated with the development of aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), both public health risks to which the World Health Organization is calling for global action to remove exposure sources. The AA exposure-induced DNA damage is believed to be related to both the nephrotoxicity and carcinogenicity of AA observed in patients suffering from BEN. While the chemical toxicology of AA is well-studied, we investigated in this study the understated effect of different nutrients, food additives, or health supplements on DNA adduct formation by aristolochic acid I (AA-I). By culturing human embryonic kidney cells in an AAI-containing medium enriched with different nutrients, results showed that cells cultured in fatty acid-, acetic acid-, and amino acid-enriched media produced ALI-dA adducts at significantly higher frequencies than that cultured in the normal medium. ALI-dA adduct formation was most sensitive to amino acids, indicating that amino acid- or protein-rich diets might lead to a higher risk of mutation and even cancer. On the other hand, cells cultured in media supplemented with sodium bicarbonate, GSH, and NAC reduced ALI-dA adduct formation rates, which sheds light on their potential use as risk-mitigating strategies for people at risk of AA exposure. It is anticipated that the results of this study will help to better understand the effect of dietary habits on cancer and BEN development.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chi-Kong Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
10
|
Penning TM, Su AL, El-Bayoumy K. Nitroreduction: A Critical Metabolic Pathway for Drugs, Environmental Pollutants, and Explosives. Chem Res Toxicol 2022; 35:1747-1765. [PMID: 36044734 PMCID: PMC9703362 DOI: 10.1021/acs.chemrestox.2c00175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitro group containing xenobiotics include drugs, cancer chemotherapeutic agents, carcinogens (e.g., nitroarenes and aristolochic acid) and explosives. The nitro group undergoes a six-electron reduction to form sequentially the nitroso-, N-hydroxylamino- and amino-functional groups. These reactions are catalyzed by nitroreductases which, rather than being enzymes with this sole function, are enzymes hijacked for their propensity to donate electrons to the nitro group either one at a time via a radical mechanism or two at time via the equivalent of a hydride transfer. These enzymes include: NADPH-dependent flavoenzymes (NADPH: P450 oxidoreductase, NAD(P)H-quinone oxidoreductase), P450 enzymes, oxidases (aldehyde oxidase, xanthine oxidase) and aldo-keto reductases. The hydroxylamino group once formed can undergo conjugation reactions with acetate or sulfate catalyzed by N-acetyltransferases or sulfotransferases, respectively, leading to the formation of intermediates containing a good leaving group which in turn can generate a nitrenium or carbenium ion for covalent DNA adduct formation. The intermediates in the reduction sequence are also prone to oxidation and produce reactive oxygen species. As a consequence, many nitro-containing xenobiotics can be genotoxic either by forming stable covalent adducts or by oxidatively damaging DNA. This review will focus on the general chemistry of nitroreduction, the enzymes responsible, the reduction of xenobiotic substrates, the regulation of nitroreductases, the ability of nitrocompounds to form DNA adducts and act as mutagens as well as some future directions.
Collapse
Affiliation(s)
| | | | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033-2360, United States
| |
Collapse
|
11
|
Zhang J, Chan KKJ, Chan W. Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy. Chem Res Toxicol 2022; 35:849-857. [PMID: 35471859 DOI: 10.1021/acs.chemrestox.2c00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Balkan endemic nephropathy (BEN) is a multifactorial environmental disease, with chronic exposure to aristolochic acids (AAs) through AA-contaminated food being one of the major etiological mechanisms. However, the bulk of previous research has only focused on investigating the possible roles of individual pollutants in disease development and the etiological mechanism of BEN remains controversial. In this study, we investigated the exposure concentration and duration dependence of coexposure to phthalate esters and lignite coal-derived phenol and polycyclic aromatic hydrocarbons (PAHs) on the metabolism and DNA adduct formation of aristolochic acid I (AAI). Results showed that both the metabolic activation and DNA adduct formation of AAI in cultured human kidney cells were affected by their coexposure to the above-mentioned environmental pollutants. Furthermore, our results suggest that chemicals leached from lignite coal likely played a role by triggering AA-activating enzymes to produce more of the promutagenic DNA adducts, thus further elevating the nephrotoxicity and carcinogenicity of AAs and increasing the risk of BEN. It is believed that the results of this study provide a better understanding of the etiological mechanism of BEN and offer insights into methods and policies to lower the risk of this devastating disease.
Collapse
Affiliation(s)
- Jiayin Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kwan-Kit Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
12
|
Guo W, Shi Z, Zhang J, Zeng T, He Y, Cai Z. Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS. Talanta 2021; 235:122774. [PMID: 34517632 DOI: 10.1016/j.talanta.2021.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
A method combining magnetic solid-phase extraction (MSPE) and ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the analysis of aristolochic acids I (AAI) in mouse serum and tissues. The magnetic covalent organic frameworks (MNP@COF)-based MSPE exhibited high adsorption capacity towards AAI (93.1 mg/g) in optimal conditions. After MSPE extraction, AAI was separated with C18 column using gradient elution and quantified (m/z 342.21 → 298.13) by UHPLC-MS/MS with monitor reaction monitoring (MRM) mode. This MSPE-based UHPLC-MS/MS method was validated with respected to lower limit of quantification (LLOQ), linearity, recovery, precision and accuracy of intra- and inter-day, and matrix effect. Good calibration linearities at the range of 1-500 ng/L for AAI in biological matrices (serum, kidney, and liver) with high correlation coefficient (R2) > 0.9970, and high enrichment factors (mean values from 1038 to 1045) were obtained. This method was highly sensitive to determine AAI with LLOQ within the range of 4.62-5.24 ng/L in extracted serum, kidney, and liver samples. Recoveries at 5, 50, 100 and 300 ng/L in biological samples ranged from 93.2 to 104.0%, and intra- and inter day accuracy and precision (defined as bias and coefficient of variation, respectively) were below ± 15%. The method was successfully applied in the analysis of biological samples collected from mice exposed with AAI with concentrations range of 0.007-0.041 μg/L for consecutive four days. The established method might be applied for the investigation of risk assessment and toxicity induced by long-time use of AAI-containing herbs or dietary supplements.
Collapse
Affiliation(s)
- Wenjing Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhangsheng Shi
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Ting Zeng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China
| | - Yu He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, SAR, Hong Kong, China.
| |
Collapse
|
13
|
Bárta F, Dedíková A, Bebová M, Dušková Š, Mráz J, Schmeiser HH, Arlt VM, Hodek P, Stiborová M. Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats. Int J Mol Sci 2021; 22:ijms221910479. [PMID: 34638820 PMCID: PMC8509051 DOI: 10.3390/ijms221910479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804–2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.
Collapse
Affiliation(s)
- František Bárta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Alena Dedíková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Michaela Bebová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Šárka Dušková
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic; (Š.D.); (J.M.)
| | - Jaroslav Mráz
- Centre of Occupational Health, National Institute of Public Health, Šrobárova 48, 100 42 Prague 10, Czech Republic; (Š.D.); (J.M.)
| | - Heinz H. Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences Division, King’s College London, 150 Stamford Street, London SE1 9NH, UK
- Toxicology Department, GAB Consulting GmbH, Heinrich-Fuchs-Str. 96, 69126 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-432018-0
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic; (F.B.); (A.D.); (M.B.); (P.H.); (M.S.)
| |
Collapse
|
14
|
Aristolochic acid IVa forms DNA adducts in vitro but is non-genotoxic in vivo. Arch Toxicol 2021; 95:2839-2850. [PMID: 34223934 DOI: 10.1007/s00204-021-03077-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/06/2021] [Indexed: 10/20/2022]
Abstract
Aristolochic acids (AAs) are a family of natural compounds with AA I and AA II being known carcinogens, whose bioactivation causes DNA adducts formation. However, other congeners have rarely been investigated. This study aimed to investigate genotoxicity of AA IVa, which differs from AA I by a hydroxyl group, abundant in Aristolochiaceae plants. AA IVa reacted with 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) to form three dA and five dG adducts as identified by high-resolution mass spectrometry, among which two dA and three dG adducts were detected in reactions of AA IVa with calf thymus DNA (CT DNA). However, no DNA adducts were detected in the kidney, liver, and forestomach of orally dosed mice at 40 mg/kg/day for 2 days, and bone marrow micronucleus assay also yielded negative results. Pharmacokinetic analyses of metabolites in plasma indicated that AA IVa was mainly O-demethylated to produce a metabolite with two hydroxyl groups, probably facilitating its excretion. Meanwhile, no reduced metabolites were detected. The competitive reaction of AA I and AA IVa with CT DNA, with adducts levels varying with pH of reaction revealed that AA IVa was significantly less reactive than AA I, probably by hydroxyl deprotonation of AA IVa, which was explained by theoretical calculations for reaction barriers, energy levels of the molecular orbits, and charges at the reaction sites. In brief, although it could form DNA adducts in vitro, AA IVa was non-genotoxic in vivo, which was attributed to its low reactivity and biotransformation into an easily excreted metabolite rather than bioactivation.
Collapse
|