1
|
Bian J, Liu F, Tang Y, Zhao Q, Lyu X, Cheng J. Optimization of sterilization efficiency for medical surgical blades in gamma irradiation using the Monte Carlo method. Sci Rep 2025; 15:8490. [PMID: 40074781 PMCID: PMC11903890 DOI: 10.1038/s41598-025-90327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Sterilizing high-carbon steel medical surgical blades is crucial for public health and safety. To enhance the sterilization efficiency of medical surgical blades, we used the Monte Carlo simulation method to study the effects of gamma irradiation sterilization parameters on high-carbon steel samples. Results show that the time required for irradiation sterilization can be decreased to 23.14 min or even 6.20 min, significantly shorter than the several hours required for chemical sterilization, by optimizing the irradiation facility parameters. The gamma source is a 1 cm thick 60Co, while the reflector is 20 cm thick cylindrical graphite. The five layers of high-carbon steel samples, each 1 cm thick, have areas of 10 × 10 cm2, 40 × 40 cm2, 70 × 70 cm2, 100 × 100 cm2, and 130 × 130 cm2 from top to bottom. The high-carbon steel sample is positioned 30 cm from the radiation source, resulting in energy deposited in the middle layer II zone of 7.6493 × 10- 7 MeV/g, which is used for calculating the total sterilization time. This study provides a viable approach to improving the sterilization efficiency of disposable medical surgical blades and serves as a reference for further promoting irradiation sterilization technology in medical instruments.
Collapse
Affiliation(s)
- Junwei Bian
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Fang Liu
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yunchao Tang
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Qiang Zhao
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xuefeng Lyu
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, School of Nuclear Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jinxing Cheng
- Institute of Nuclear and new Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Le Y, Ren B, Muskhelishvili L, Davis K, Wang Y, Gwinn W, Rua D, Heflich RH, Cao X. Characterizing the Pulmonary Toxicity and Potential Mutagenicity of Formaldehyde Fumes in a Human Bronchial Epithelial Tissue Model. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:6-21. [PMID: 39991966 PMCID: PMC11906256 DOI: 10.1002/em.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Formaldehyde (FA) is a highly reactive aldehyde that is regarded as an inhalation hazard and human carcinogen. Herein, we report a follow-up study evaluating the effects of exposure duration on the toxicity and mutagenicity of FA using a human in vitro air-liquid-interface (ALI) airway tissue model. Previously we exposed ALI cultures to 7.5, 15 and 30-ppm FA fumes 4 h/day for 5 days; currently, we have increased the exposure duration of cultures exposed to 7.5 and 15 ppm FA to 5 days/week for 4 weeks, followed by a 28-day recovery. Due to its toxicity, cultures exposed to 30 ppm FA were treated for 5 days, followed by the recovery. Tissue responses were evaluated following the treatment and recovery. DNA damage was measured using the Comet-Chip assay after 3 days of exposure, and mutagenesis was evaluated by duplex sequencing following the recovery. The toxicity detected following the 4-week exposure was similar to that seen previously with the 5-day exposures: both 7.5 and 15 ppm FA induced moderate decreases in tissue integrity, FANCD2 DNA-repair enzyme expression and IL-6 release, and moderate increases in IL-1RA release. Effects on cell proliferation, ciliary function and tissue structure were minimal. Additionally, neither the 4-week exposure to 7.5 and 15 ppm FA nor the 5-day exposure to 30 ppm FA induced DNA damage or mutations. Using this experimental design, exposure of human ALI airway cultures to FA fumes does not produce genotoxicity or mutagenicity, even when exposures are conducted over a 28-day period.
Collapse
Affiliation(s)
- Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - William Gwinn
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Diego Rua
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Heath, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert H. Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Sommerfeld S, Dos Santos Tomais LF, Gomes LR, Silva MVC, Pedrosa IE, Vieira DS, Peluco AC, de Azevedo VAC, Fonseca BB. The Resistance of Bacillus Spores: Implications for the Strain-Specific Response to High-Performance Disinfectants. Curr Microbiol 2024; 81:339. [PMID: 39225833 DOI: 10.1007/s00284-024-03872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.
Collapse
Affiliation(s)
- Simone Sommerfeld
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil.
| | - Lidianne Fabricia Dos Santos Tomais
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Lara Reis Gomes
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Maysa Vitória Cunha Silva
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Isabelle Ezequiel Pedrosa
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Danielle Silva Vieira
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Arthur Campoi Peluco
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | | | - Belchiolina Beatriz Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
4
|
Wang Y, Le Y, Harris KL, Chen Y, Li X, Faske J, Wynne RA, Mittelstaedt RA, Cao X, Miranda-Colon J, Elkins L, Muskhelishvili L, Davis K, Mei N, Sun W, Robison TW, Heflich RH, Parsons BL. Repeat treatment of organotypic airway cultures with ethyl methanesulfonate causes accumulation of somatic cell mutations without expansion of bronchial-carcinoma-specific cancer driver mutations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503786. [PMID: 39054009 DOI: 10.1016/j.mrgentox.2024.503786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kelly L Harris
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jennifer Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Rebecca A Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lana Elkins
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wei Sun
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Timothy W Robison
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Liu S, Sun L, Sun M, Lv Z, Hua R, Wang Y, Yang X, Zhu M. Influence of para-substituted benzaldehyde derivatives with different push/pull electron strength groups on the conformation of human serum albumin and toxicological effects in zebrafish. Int J Biol Macromol 2024; 266:131246. [PMID: 38554915 DOI: 10.1016/j.ijbiomac.2024.131246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Excessive intake of benzaldehyde and its derivatives can cause irreversible damage to living organisms. Hence, benzaldehyde derivatives with different para-substitutions of push/pull electronic groups were chosen to investigate the effect of different substituent properties on the structure of human serum albumin (HSA). The binding constants, number of binding sites, major interaction forces, protein structural changes, and binding sites of benzaldehyde (BzH) and its derivatives (4-BzHD) with HSA in serum proteins were obtained based on multispectral and molecular docking techniques. The mechanism of BzH/4-BzHD interaction on HSA is mainly static quenching and is accompanied by the formation of a ground state complex. BzH/4-BzHD is bound to HSA in a 1:1 stoichiometric ratio. The interaction forces for the binding of BzH/4-BzHD to HSA are mainly hydrogen bonding and hydrophobic interaction, which are also accompanied by a small amount of electrostatic interactions. The effect of BzH/4-BzHD on HSA conformation follows: 4-Diethylaminobenzaldehyde (4-DBzH) > 4-Nitrobenzaldehyde (4-NBzH) > 4-Hydroxybenzaldehyde (4-HBzH) > 4-Acetaminobenzaldehyde (4-ABzH) > BzH, which means that the stronger push/pull electronic strength of the para-substituted benzaldehyde derivatives has a greater effect on HSA conformation. Furthermore, the concentration-lethality curves of different concentrations for BzH/4-BzHD on zebrafish verified above conclusion. This work provides a scientific basis for the risk assessment of benzaldehyde and its derivatives to the ecological environment and human health and for the environmental toxicological studies of benzaldehyde derivatives with different strengths of push/pull electron substitution.
Collapse
Affiliation(s)
- Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhanao Lv
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
6
|
Du Y, Zhao F, Tao R, Liu B. Effect of forceful suction and air disinfection machines on aerosol removal. BMC Oral Health 2023; 23:652. [PMID: 37684672 PMCID: PMC10492290 DOI: 10.1186/s12903-023-03369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUNDS Dental procedures involving drilling and grinding can produce a significant amount of suspended aerosol particles (PM) and bioaerosols. This study aims to analyze the size and concentration of aerosol particles generated during drilling and to investigate the effectiveness of two air exchange systems, namely forceful suction (FS) and air disinfection machines (DM), in removing PM. METHODS For this study, 100 extracted permanent teeth were collected and divided into three groups: without suction (n = 50), suction with forceful suction (n = 25), and suction with air disinfection machines (n = 25). The removal rate of suspended aerosol particles was analyzed using particle counters and air data multimeter. RESULTS When drilling and grinding were performed without vacuum, 0.75% of the aerosol particles generated were PM2.5-10, 78.25% of total suspended aerosol particles (TSP) were PM2.5, and 98.68% of TSP were PM1. The nanoanalyzer measurements revealed that the aerodynamic diameter of most aerosol particles was below 60 nm, with an average particle diameter of 52.61 nm and an average concentration of 2.6*1011 ultrafine aerosol particles. The air change per hour (ACH) was significantly lower in the air disinfection machines group compared to the forceful suction group. Additionally, the number of aerosol particles and mass concentration was significantly lower in the air disinfection machines group compared to the forceful suction group in terms of PM2.5 levels. However, the forceful suction group also reduced the mass concentration in PM10 level than the air disinfection machines group. CONCLUSION In conclusion, the air exchange system can reduce the aerosol particles generated during drilling and grinding. Comparing the two air exchange systems, it was found that the air disinfection machines group reduces the number of aerosol particles and mass concentration in PM2.5 levels, while the forceful suction group reduces the mass concentration in PM10 level.
Collapse
Affiliation(s)
- Yaru Du
- Department of hospital allergy, Medical department, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fei Zhao
- Department of Periodontal I, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Tao
- Medical department, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bing Liu
- Department of Periodontal I, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
7
|
Aranda E, Iha S, Solari S, Rodríguez D, Romero V, Villarroel L, Pereira J, Panes O, Mezzano D. Serotonin secretion by blood platelets: accuracy of high-performance liquid chromatography-electrochemical technique compared with the isotopic test and use in a clinical laboratory. Res Pract Thromb Haemost 2023; 7:102156. [PMID: 37601022 PMCID: PMC10439442 DOI: 10.1016/j.rpth.2023.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Background Mild secretion defects are the most frequent and challenging blood platelet disorders to diagnose. Most δ-granule secretion tests lack validation, are not quantitative, or have unreliable response to weak platelet agonists. Objectives To compare platelet serotonin secretion by HPLC-electrochemical detection technique (HPLC-ECD) with the reference isotopic test (3H-5-HT), evaluating its performance in clinical laboratories. Methods The assay validation followed STARD-2015 recommendations. HPLC-ECD measured the nonsecreted serotonin remaining in platelet pellets after aggregation, comparing it with the reference 3H-5-HT assay. We studied subjects with inherited and aspirin-induced blood platelet disorders and assessed the HPLC-ECD operation for routine clinical diagnosis. Results Calibration curves were linear (R2 = 0.997), with SD for residuals of 3.91% and analytical sensitivity of 5ng/mL. Intra- and interassay imprecision bias ranged between -8.5% and 2.1% and -9% and 3.1%, respectively. Serotonin recovery and stability were >95%, and the variability range of measurements was -5.5% to 4.6%. Statistical differences detected between tests were biologically irrelevant, with bias of 1.48% (SD, 8.43) and CI agreement of -18% to 15%. Both assays distinctly detected platelet secretion induced by 10 μM epinephrine and 4 μmM adenosine diphosphate. However, HPLC-ECD is quantitative and more sensitive to low serotonin content in blood platelets. Reference cutoffs for each agonist were determined in 87 subjects. Initially, the HPLC-ECD requires relatively expensive equipment and trained operators but has remarkably cheap running costs and a turn-around time of 24-36 hours. We have used this diagnostic tool routinely for >8 years. Conclusion HPLC-ECD assay for platelet serotonin secretion is highly accurate, has advantages over the reference 3H-5-HT test, and is suitable as a clinical laboratory technique.
Collapse
Affiliation(s)
- Eduardo Aranda
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Seiki Iha
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Solari
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Rodríguez
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana Romero
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Villarroel
- Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile
| | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Olga Panes
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Wang Y, Wu Q, Ren B, Muskhelishvili L, Davis K, Wynne R, Rua D, Cao X. Subacute Pulmonary Toxicity of Glutaraldehyde Aerosols in a Human In Vitro Airway Tissue Model. Int J Mol Sci 2022; 23:12118. [PMID: 36292975 PMCID: PMC9603730 DOI: 10.3390/ijms232012118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Glutaraldehyde (GA) has been cleared by the Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) as a high-level disinfectant for disinfecting heat-sensitive medical equipment in hospitals and healthcare facilities. Inhalation exposure to GA is known to cause respiratory irritation and sensitization in animals and humans. To reproduce some of the known in vivo effects elicited by GA, we used a liquid aerosol exposure system and evaluated the tissue responses in a human in vitro airway epithelial tissue model. The cultures were treated at the air interface with various concentrations of GA aerosols on five consecutive days and changes in tissue function and structure were evaluated at select timepoints during the treatment phase and after a 7-day recovery period. Exposure to GA aerosols caused oxidative stress, inhibition of ciliary beating frequency, aberrant mucin production, and disturbance of cytokine and matrix metalloproteinase secretion, as well as morphological transformation. Some effects, such as those on goblet cells and ciliated cells, persisted following the 7-day recovery period. Of note, the functional and structural disturbances observed in GA-treated cultures resemble those found in ortho-phthaldehyde (OPA)-treated cultures. Furthermore, our in vitro findings on GA toxicity partially and qualitatively mimicked those reported in the animal and human survey studies. Taken together, observations from this study demonstrate that the human air-liquid-interface (ALI) airway tissue model, integrated with an in vitro exposure system that simulates human inhalation exposure, could be used for in vitro-based human hazard identification and the risk characterization of aerosolized chemicals.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Rebecca Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Diego Rua
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
9
|
Ren B, Wu Q, Muskhelishvili L, Davis K, Wang Y, Rua D, Cao X. Evaluating the Sub-Acute Toxicity of Formaldehyde Fumes in an In Vitro Human Airway Epithelial Tissue Model. Int J Mol Sci 2022; 23:2593. [PMID: 35269734 PMCID: PMC8910234 DOI: 10.3390/ijms23052593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Formaldehyde (FA) is an irritating, highly reactive aldehyde that is widely regarded as an asthmagen. In addition to its use in industrial applications and being a product of combustion reaction and endogenous metabolism, FDA-regulated products may contain FA or release FA fumes that present toxicity risks for both patients and healthcare workers. Exposure to airborne FA is associated with nasal neoplastic lesions in both animals and humans. It is classified as a Group 1 carcinogen by International Agency for Research on Cancer (IARC) based on the increased incidence of cancer in animals and a known human carcinogen in the Report on Carcinogens by National Toxicology Program (NTP). Herein, we systematically evaluated the tissue responses to FA fumes in an in vitro human air-liquid-interface (ALI) airway tissue model. Cultures were exposed at the air interface to 7.5, 15, and 30 ppm of FA fumes 4 h per day for 5 consecutive days. Exposure to 30 ppm of FA induced sustained oxidative stress, along with functional changes in ciliated and goblet cells as well as possible squamous differentiation. Furthermore, secretion of the proinflammatory cytokines, IL-1β, IL-2, IL-8, GM-CSF, TNF-a and IFN-γ, was induced by repeated exposures to FA fumes. Expression of MMP-1, MMP-3, MMP-7, MMP-10, MMP-12, and MMP-13 was downregulated at the end of the 5-day exposure. Although DNA-damage was not detected by the comet assay, FA exposures downregulated the DNA repair enzymes MGMT and FANCD2, suggesting its possible interference in the DNA repair capacity. Overall, a general concordance was observed between our in vitro responses to FA fume exposures and the reported in vivo toxicity of FA. Our findings provide further evidence supporting the application of the ALI airway system as a potential in vitro alternative for screening and evaluating the respiratory toxicity of inhaled substances.
Collapse
Affiliation(s)
- Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (B.R.); (Y.W.)
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA;
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA; (L.M.); (K.D.)
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (B.R.); (Y.W.)
| | - Diego Rua
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (B.R.); (Y.W.)
| |
Collapse
|
10
|
Wang Y, Mittelstaedt RA, Wynne R, Chen Y, Cao X, Muskhelishvili L, Davis K, Robison TW, Sun W, Schmidt EK, Smith TH, Norgaard ZK, Valentine CC, Yaplee J, Williams LN, Salk JJ, Heflich RH. Genetic toxicity testing using human in vitro organotypic airway cultures: Assessing DNA damage with the CometChip and mutagenesis by Duplex Sequencing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:306-318. [PMID: 34050964 PMCID: PMC8251634 DOI: 10.1002/em.22444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 05/10/2023]
Abstract
The organotypic human air-liquid-interface (ALI) airway tissue model has been used as an in vitro cell culture system for evaluating the toxicity of inhaled substances. ALI airway cultures are highly differentiated, which has made it challenging to evaluate genetic toxicology endpoints. In the current study, we assayed DNA damage with the high-throughput CometChip assay and quantified mutagenesis with Duplex Sequencing, an error-corrected next-generation sequencing method capable of detecting a single mutation per 107 base pairs. Fully differentiated human ALI airway cultures were treated from the basolateral side with 6.25 to 100 μg/mL ethyl methanesulfonate (EMS) over a period of 28 days. CometChip assays were conducted after 3 and 28 days of treatment, and Duplex Sequencing after 28 days of treatment. Treating the airway cultures with EMS resulted in time- and concentration-dependent increases in DNA damage and a concentration-dependent increase in mutant frequency. The mutations observed in the EMS-treated cultures were predominantly C → T transitions and exhibited a unique trinucleotide signature relative to the negative control. Measurement of physiological endpoints indicated that the EMS treatments had no effect on anti-p63-positive basal cell frequency, but produced concentration-responsive increases in cytotoxicity and perturbations in cell morphology, along with concentration-responsive decreases in culture viability, goblet cell and anti-Ki67-positive proliferating cell frequency, cilia beating frequency, and mucin secretion. The results indicate that a unified 28-day study can be used to measure several important safety endpoints in physiologically relevant human in vitro ALI airway cultures, including DNA damage, mutagenicity, and tissue-specific general toxicity.
Collapse
Affiliation(s)
- Yiying Wang
- U.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansasUSA
| | - Roberta A. Mittelstaedt
- U.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansasUSA
| | - Rebecca Wynne
- U.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansasUSA
| | - Ying Chen
- U.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansasUSA
| | - Xuefei Cao
- U.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansasUSA
| | | | - Kelly Davis
- Toxicologic Pathology AssociatesJeffersonArkansasUSA
| | - Timothy W. Robison
- U.S. Food and Drug Administration, Center for Drug Evaluation and ResearchSilver SpringMarylandUSA
| | - Wei Sun
- U.S. Food and Drug Administration, Center for Drug Evaluation and ResearchSilver SpringMarylandUSA
| | | | | | | | | | | | | | | | - Robert H. Heflich
- U.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansasUSA
| |
Collapse
|