1
|
Helmke PS, Ecker GF. Refining Drug-Induced Cholestasis Prediction: An Explainable Consensus Model Integrating Chemical and Biological Fingerprints. J Chem Inf Model 2025. [PMID: 40421892 DOI: 10.1021/acs.jcim.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Effective drug safety assessment, guided by the 3R principle (Replacement, Reduction, Refinement) to minimize animal testing, is critical in early drug development. Drug-induced liver injury (DILI), particularly drug-induced cholestasis (DIC), remains a major challenge. This study introduces a computational method for predicting DIC by integrating PubChem substructure fingerprints with biological data from liver-expressed targets and pathways, alongside nine hepatic transporter inhibition models. To address class imbalance in the public cholestasis data set, we employed undersampling, a technique that constructs a small and robust consensus model by evaluating distinct subsets. The most effective baseline model, which combined PubChem substructure fingerprints, pathway data and hepatic transporter inhibition predictions, achieved a Matthews correlation coefficient (MCC) of 0.29 and a sensitivity of 0.79, as validated through 10-fold cross-validation. Subsequently, target prediction using four publicly available tools was employed to enrich the sparse compound-target interaction matrix. Although this approach showed lower sensitivity compared to experimentally derived targets and pathways, it highlighted the value of incorporating specific systems biology related information. Feature importance analysis identified albumin as a potential target linked to cholestasis within our predictive model, suggesting a connection worth further investigation. By employing an expanded consensus model and applying probability range filtering, the refined method achieved an MCC of 0.38 and a sensitivity of 0.80, thereby enhancing decision-making confidence. This approach advances DIC prediction by integrating biological and chemical descriptors, offering a reliable and explainable model.
Collapse
Affiliation(s)
- Palle S Helmke
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Chakravarti S. Augmenting Expert Knowledge-Based Toxicity Alerts by Statistically Mined Molecular Fragments. Chem Res Toxicol 2023. [PMID: 37207298 DOI: 10.1021/acs.chemrestox.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Structural alerts are molecular substructures assumed to be associated with molecular initiating events in various toxic effects and an integral part of in silico toxicology. However, alerts derived using the knowledge of human experts often suffer from a lack of predictivity, specificity, and satisfactory coverage. In this work, we present a method to build hybrid QSAR models by combining expert knowledge-based alerts and statistically mined molecular fragments. Our objective was to find out if the combination is better than the individual systems. Lasso regularization-based variable selection was applied on combined sets of knowledge-based alerts and molecular fragments, but the variable elimination was only allowed to happen on the molecular fragments. We tested the concept on three toxicity end points, i.e., skin sensitization, acute Daphnia toxicity, and Ames mutagenicity, which covered both classification and regression problems. Results showed the predictive performance of such hybrid models is, indeed, better than the models based solely on expert alerts or statistically mined fragments alone. The method also enables the discovery of activating and mitigating/deactivating features for toxicity alerts and the identification of new alerts, thereby reducing false positive and false negative outcomes commonly associated with generic alerts and alerts with poor coverage, respectively.
Collapse
Affiliation(s)
- Suman Chakravarti
- MultiCASE Inc., 23811 Chagrin Blvd, Suite 305, Beachwood, Ohio 44122, United States
| |
Collapse
|
4
|
Bassan A, Alves VM, Amberg A, Anger LT, Auerbach S, Beilke L, Bender A, Cronin MT, Cross KP, Hsieh JH, Greene N, Kemper R, Kim MT, Mumtaz M, Noeske T, Pavan M, Pletz J, Russo DP, Sabnis Y, Schaefer M, Szabo DT, Valentin JP, Wichard J, Williams D, Woolley D, Zwickl C, Myatt GJ. In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100187. [PMID: 35340402 PMCID: PMC8955833 DOI: 10.1016/j.comtox.2021.100187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Hepatotoxicity is one of the most frequently observed adverse effects resulting from exposure to a xenobiotic. For example, in pharmaceutical research and development it is one of the major reasons for drug withdrawals, clinical failures, and discontinuation of drug candidates. The development of faster and cheaper methods to assess hepatotoxicity that are both more sustainable and more informative is critically needed. The biological mechanisms and processes underpinning hepatotoxicity are summarized and experimental approaches to support the prediction of hepatotoxicity are described, including toxicokinetic considerations. The paper describes the increasingly important role of in silico approaches and highlights challenges to the adoption of these methods including the lack of a commonly agreed upon protocol for performing such an assessment and the need for in silico solutions that take dose into consideration. A proposed framework for the integration of in silico and experimental information is provided along with a case study describing how computational methods have been used to successfully respond to a regulatory question concerning non-genotoxic impurities in chemically synthesized pharmaceuticals.
Collapse
Affiliation(s)
- Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Vinicius M. Alves
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | - Scott Auerbach
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, USA
| | - Andreas Bender
- AI and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | | - Jui-Hua Hsieh
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Nigel Greene
- Data Science and AI, DSM, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Raymond Kemper
- Nuvalent, One Broadway, 14th floor, Cambridge, MA, 02142, USA
| | - Marlene T. Kim
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, 20993, USA
| | - Moiz Mumtaz
- Office of the Associate Director for Science (OADS), Agency for Toxic Substances and Disease, Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Tobias Noeske
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Julia Pletz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Daniel P. Russo
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Yogesh Sabnis
- UCB Biopharma SRL, Chemin du Foriest – B-1420 Braine-l’Alleud, Belgium
| | - Markus Schaefer
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | | | - Joerg Wichard
- Bayer AG, Genetic Toxicology, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominic Williams
- Functional & Mechanistic Safety, Clinical Pharmacology & Safety Sciences, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, UK
| | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN 46229, USA
| | | |
Collapse
|
6
|
Rathman J, Yang C, Ribeiro JV, Mostrag A, Thakkar S, Tong W, Hobocienski B, Sacher O, Magdziarz T, Bienfait B. Development of a Battery of In Silico Prediction Tools for Drug-Induced Liver Injury from the Vantage Point of Translational Safety Assessment. Chem Res Toxicol 2020; 34:601-615. [PMID: 33356149 DOI: 10.1021/acs.chemrestox.0c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) remains a challenge when translating knowledge from the preclinical stage to human use cases. Attempts to model human DILI directly based on the information from drug labels have had some success; however, the approach falls short of providing insights or addressing uncertainty due to the difficulty of decoupling the idiosyncratic nature of human DILI outcomes. Our approach in this comparative analysis is to leverage existing preclinical and clinical data as well as information on metabolism to better translate mammalian to human DILI. The human DILI knowledge base from the United States Food and Drug Administration (U.S. FDA) National Center for Toxicology Research contains 1036 pharmaceuticals from diverse therapeutic categories. A human DILI training set of 305 oral marketed drugs was prepared and a binary classification scheme applied. The second knowledge base consists of mammalian repeated dose toxicity with liver toxicity data from various regulatory sources. Within this knowledge base, we identified 278 pharmaceuticals containing 198 marketed or withdrawn oral drugs with data from the U.S. FDA new drug application and 98 active pharmaceutical ingredients from ToxCast. From this collection, a set of 225 oral drugs was prepared as the mammalian hepatotoxicity training set with particular end points of pathology findings in the liver and bile duct. Both human and mammalian data sets were processed using various learning algorithms, including artificial intelligence approaches. The external validations for both models were comparable to the training statistics. These data sets were also used to extract species-differentiating chemotypes that differentiate DILI effects on humans from mammals. A systematic workflow was devised to predict human DILI and provide mechanistic insights. For a given query molecule, both human and mammalian models are run. If the predictions are discordant, both metabolites and parents are investigated for quantitative structure-activity relationship and species-differentiating chemotypes. Their results are combined using the Dempster-Shafer decision theory to yield a final outcome prediction for human DILI with estimated uncertainty. Finally, these tools are implementable within an in silico platform for systematic evaluation.
Collapse
Affiliation(s)
- James Rathman
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany.,Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chihae Yang
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| | - J Vinicius Ribeiro
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| | - Aleksandra Mostrag
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| | - Shraddha Thakkar
- National Center for Toxicology Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Weida Tong
- National Center for Toxicology Research, United States Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Bryan Hobocienski
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| | - Oliver Sacher
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| | - Tomasz Magdziarz
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| | - Bruno Bienfait
- Molecular Networks GmbH - Computerchemie (MN-AM), 90411 Nurnberg, Germany
| |
Collapse
|