1
|
Wei ZW, Niikura H, Wang M, Ryan KS. Identification of the Azaserine Biosynthetic Gene Cluster Implicates Hydrazine as an Intermediate to the Diazo Moiety. Org Lett 2023; 25:4061-4065. [PMID: 37235858 DOI: 10.1021/acs.orglett.3c01229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Azaserine (1) is a natural product and nonproteinogenic amino acid containing a diazo group. Here we report the biosynthetic gene cluster for 1 from Glycomyces harbinensis. We then use isotopic feeding, gene deletion, and biochemical experiments to support a pathway whereby hydrazinoacetic acid (2) and a peptidyl carrier protein-loaded serine (3) are intermediates on route to the final natural product 1.
Collapse
Affiliation(s)
- Zi-Wang Wei
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Haruka Niikura
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Menghua Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
2
|
Huang J, Quest A, Cruz-Morales P, Deng K, Pereira JH, Van Cura D, Kakumanu R, Baidoo EEK, Dan Q, Chen Y, Petzold CJ, Northen TR, Adams PD, Clark DS, Balskus EP, Hartwig JF, Mukhopadhyay A, Keasling JD. Complete integration of carbene-transfer chemistry into biosynthesis. Nature 2023; 617:403-408. [PMID: 37138074 PMCID: PMC11334723 DOI: 10.1038/s41586-023-06027-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Biosynthesis is an environmentally benign and renewable approach that can be used to produce a broad range of natural and, in some cases, new-to-nature products. However, biology lacks many of the reactions that are available to synthetic chemists, resulting in a narrower scope of accessible products when using biosynthesis rather than synthetic chemistry. A prime example of such chemistry is carbene-transfer reactions1. Although it was recently shown that carbene-transfer reactions can be performed in a cell and used for biosynthesis2,3, carbene donors and unnatural cofactors needed to be added exogenously and transported into cells to effect the desired reactions, precluding cost-effective scale-up of the biosynthesis process with these reactions. Here we report the access to a diazo ester carbene precursor by cellular metabolism and a microbial platform for introducing unnatural carbene-transfer reactions into biosynthesis. The α-diazoester azaserine was produced by expressing a biosynthetic gene cluster in Streptomyces albus. The intracellularly produced azaserine was used as a carbene donor to cyclopropanate another intracellularly produced molecule-styrene. The reaction was catalysed by engineered P450 mutants containing a native cofactor with excellent diastereoselectivity and a moderate yield. Our study establishes a scalable, microbial platform for conducting intracellular abiological carbene-transfer reactions to functionalize a range of natural and new-to-nature products and expands the scope of organic products that can be produced by cellular metabolism.
Collapse
Affiliation(s)
- Jing Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Andrew Quest
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pablo Cruz-Morales
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kai Deng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Devon Van Cura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ramu Kakumanu
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Qingyun Dan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Trent R Northen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
- Department of Bioengineering, University of California, Berkeley, CA, USA.
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
3
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
4
|
Ramirez Garcia A, Hurley K, Marastoni G, Diard M, Hofer S, Greppi A, Hardt WD, Lacroix C, Sturla SJ, Schwab C. Pathogenic and Commensal Gut Bacteria Harboring Glycerol/Diol Dehydratase Metabolize Glycerol and Produce DNA-Reactive Acrolein. Chem Res Toxicol 2022; 35:1840-1850. [PMID: 36116084 PMCID: PMC9580524 DOI: 10.1021/acs.chemrestox.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/20/2022]
Abstract
Bacteria harboring glycerol/diol dehydratase (GDH) encoded by the genes pduCDE metabolize glycerol and release acrolein during growth. Acrolein has antimicrobial activity, and exposure of human cells to acrolein gives rise to toxic and mutagenic responses. These biological responses are related to acrolein's high reactivity as a chemical electrophile that can covalently bind to cellular nucleophiles including DNA and proteins. Various food microbes and gut commensals transform glycerol to acrolein, but there is no direct evidence available for bacterial glycerol metabolism giving rise to DNA adducts. Moreover, it is unknown whether pathogens, such as Salmonella Typhymurium, catalyze this transformation. We assessed, therefore, acrolein formation by four GDH-competent strains of S. Typhymurium grown under either aerobic or anaerobic conditions in the presence of 50 mM glycerol. On the basis of analytical derivatization with a heterocyclic amine, all wild-type strains were observed to produce acrolein, but to different extents, and acrolein production was not detected in fermentations of a pduC-deficient mutant strain. Furthermore, we found that, in the presence of calf thymus DNA, acrolein-DNA adducts were formed as a result of bacterial glycerol metabolism by two strains of Limosilactobacillus reuteri, but not a pduCDE mutant strain. The quantification of the resulting adducts with increasing levels of glycerol up to 600 mM led to the production of up to 1.5 mM acrolein and 3600 acrolein-DNA adducts per 108 nucleosides in a model system. These results suggest that GDH-competent food microbes, gut commensals, and pathogens alike have the capacity to produce acrolein from glycerol. Further, the acrolein production can lead to DNA adduct formation, but requires high glycerol concentrations that are not available in the human gut.
Collapse
Affiliation(s)
- Alejandro Ramirez Garcia
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katherine Hurley
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Giovanni Marastoni
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel 4056, Switzerland
- Institute
of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Sophie Hofer
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Anna Greppi
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Wolf-Dietrich Hardt
- Institute
of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Christophe Lacroix
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Shana J. Sturla
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Clarissa Schwab
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Department
of Biological and Chemical Engineering, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Aloisi CMN, Escher NA, Kim HS, Geisen SM, Fontana GA, Yeo JE, Schärer OD, Sturla SJ. A combination of direct reversion and nucleotide excision repair counters the mutagenic effects of DNA carboxymethylation. DNA Repair (Amst) 2022; 110:103262. [PMID: 35030424 PMCID: PMC9232693 DOI: 10.1016/j.dnarep.2021.103262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Distinct cellular DNA damage repair pathways maintain the structural integrity of DNA and protect it from the mutagenic effects of genotoxic exposures and processes. The occurrence of O6-carboxymethylguanine (O6-CMG) has been linked to meat consumption and hypothesized to contribute to the development of colorectal cancer. However, the cellular fate of O6-CMG is poorly characterized and there is contradictory data in the literature as to how repair pathways may protect cells from O6-CMG mutagenicity. To better address how cells detect and remove O6-CMG, we evaluated the role of two DNA repair pathways in counteracting the accumulation and toxic effects of O6-CMG. We found that cells deficient in either the direct repair protein O6-methylguanine-DNA methyltransferase (MGMT), or key components of the nucleotide excision repair (NER) pathway, accumulate higher levels O6-CMG DNA adducts than wild type cells. Furthermore, repair-deficient cells were more sensitive to carboxymethylating agents and displayed an increased mutation rate. These findings suggest that a combination of direct repair and NER circumvent the effects O6-CMG DNA damage.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nora A Escher
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Susanne M Geisen
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
6
|
Stratenwerth B, Geisen SM, He Y, Beltzig L, Sturla SJ, Kaina B. Molecular Dosimetry of Temozolomide: Quantification of Critical Lesions, Correlation to Cell Death Responses, and Threshold Doses. Mol Cancer Ther 2021; 20:1789-1799. [PMID: 34253592 PMCID: PMC9398175 DOI: 10.1158/1535-7163.mct-21-0228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
Temozolomide (TMZ) is a DNA-methylating agent used in cancer chemotherapy, notably for glioblastoma multiforme (GBM), where it is applied as a front-line drug. One of the DNA alkylation products of TMZ is the minor lesion O6 -methylguanine (O6 MeG), which is responsible for nearly all genotoxic, cytotoxic, and cytostatic effects induced in the low-dose range relevant for cancer therapy. Here, we addressed the question of how many O6 MeG adducts are required to elicit cytotoxic responses. Adduct quantification revealed that O6 MeG increases linearly with dose. The same was observed for DNA double-strand breaks (DSB) and p53ser15. Regarding apoptosis, hockeystick modeling indicated a possible threshold for A172 cells at 2.5 μmol/L TMZ, whereas for LN229 cells no threshold was detected. Cellular senescence, which is the main cellular response, also increased linearly, without a threshold. Using a dose of 20 μmol/L, which is achievable in a therapeutic setting, we determined that 14,000 adducts give rise to 32 DSBs (γH2AX foci) in A172 cells. This leads to 12% cell death and 35% of cells entering senescence. In LN229 cells, 20 μmol/L TMZ induced 20,600 O6 MeG adducts, 66 DSBs (γH2AX foci), 24% apoptosis, and 52% senescence. The linear dose response and the genotoxic and cytotoxic effects observed at therapeutically relevant dose levels make it very likely that the TMZ target concentration triggers a significant cytotoxic and cytostatic effect in vivo Despite a linear increase in the O6 MeG adduct level, DSBs, and p53 activation, the low curative effect of TMZ results presumably from the low rate of apoptosis compared to senescence.
Collapse
Affiliation(s)
- Björn Stratenwerth
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Susanne M. Geisen
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yang He
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany.,Corresponding Author: Bernd Kaina, Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, Mainz D-55131, Germany. E-mail:
| |
Collapse
|
7
|
Kostka T, Empl MT, Seiwert N, Geisen SM, Hoffmann P, Adam J, Seeger B, Shay JW, Christmann M, Sturla SJ, Fahrer J, Steinberg P. Repair of O6-carboxymethylguanine adducts by O6-methylguanine-DNA methyltransferase in human colon epithelial cells. Carcinogenesis 2021; 42:1110-1118. [PMID: 34115837 DOI: 10.1093/carcin/bgab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine adduct back to guanine. In this context, it may protect against colorectal cancer (CRC) formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-methylguanine (O6-MeG) and O6-carboxymethylguanine (O6-CMG) adducts. It is well-established that O6-MeG is repaired by MGMT. However, up to now, whether O6-CMG is repaired by this enzyme remains unresolved. Therefore, the aim of the present study was to analyze the fate of both types of O6-guanine adducts in the presence and absence of MGMT activity. To this end, MGMT activity was efficiently blocked by its chemical inhibitor O6-benzylguanine in human colon epithelial cells (HCEC). Exposure of cells to azaserine (AZA) caused significantly higher levels of both O6-MeG and O6-CMG adducts in MGMT-inhibited cells, with O6-CMG as the more abundant DNA lesion. Interestingly, MGMT inhibition did not result in higher levels of AZA-induced DNA strand breaks in spite of elevated DNA adduct levels. In contrast, MGMT inhibition significantly increased DNA strand break formation after exposure to temozolomide (TMZ), a drug that exclusively generates O6-MeG adducts. In line with this finding, the viability of the cells was moderately reduced by TMZ upon MGMT inhibition, whereas no clear effect was observed in cells treated with AZA. In conclusion, our study clearly shows that O6-CMG is repaired by MGMT in HCEC, thereby suggesting that MGMT might play an important role as a tumor suppressor in diet-mediated CRC.
Collapse
Affiliation(s)
- Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.,Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Nina Seiwert
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Susanne M Geisen
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Janine Adam
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Bettina Seeger
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.,Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany.,Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany
| |
Collapse
|