1
|
Hayes TR, Chao CK, Blecha JE, Huynh TL, VanBrocklin HF, Zinn KR, Gerdes JM, Thompson CM. [ 11C]Paraoxon: Radiosynthesis, Biodistribution and In Vivo Positron Emission Tomography Imaging in Rat. J Pharmacol Exp Ther 2024; 388:333-346. [PMID: 37770203 PMCID: PMC10801775 DOI: 10.1124/jpet.123.001832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([11C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [11C]POX showed a rapid decrease in parent tracer to ∼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [11C]POX. Ex vivo biodistribution and imaging profiles in naïve rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection and persisted over the 60-minute experiment. This showed for the first time that even low POX exposures (∼200 ng tracer) can rapidly enter brain. Rats given an LD50 dose of nonradioactive paraoxon at the LD50 20 or 60 minutes prior to [11C]POX tracer revealed that protein pools were blocked. Blood radioactivity at 20 minutes was markedly lower than naïve levels due to rapid protein modification by nonradioactive POX; however, by 60 minutes the blood radioactivity returned to near naïve levels. Live rat tissue imaging-derived radioactivity values were 10%-37% of naïve levels in nonradioactive POX pretreated rats at 20 minutes, but by 60 minutes the area under the curve (AUC) values had recovered to 25%-80% of naïve. The live rat imaging supported blockade by nonradioactive POX pretreatment at 20 minutes and recovery of proteins by 60 minutes. SIGNIFICANCE STATEMENT: Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX, etc. To study the distribution and penetration of POX into the central nervous system (CNS) and other tissues, a positron emission tomography (PET) tracer analog, carbon-11-labeled paraoxon ([11C]POX), was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Joseph E Blecha
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Tony L Huynh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Henry F VanBrocklin
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Kurt R Zinn
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| |
Collapse
|
2
|
Hayes TR, Chao CK, Blecha JE, Huynh TL, Zinn KR, Thompson CM, Gerdes JM, VanBrocklin HF. Biological Distribution and Metabolic Profiles of Carbon-11 and Fluorine-18 Tracers of VX- and Sarin-Analogs in Sprague-Dawley Rats. Chem Res Toxicol 2020; 34:63-69. [PMID: 33373198 PMCID: PMC7818893 DOI: 10.1021/acs.chemrestox.0c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organophosphorus esters (OPs) were originally developed as pesticides but were repurposed as easily manufactured, inexpensive, and highly toxic chemical warfare agents. Acute OP toxicity is primarily due to inhibition of acetylcholinesterase (AChE), an enzyme in the central and peripheral nervous system. OP inhibition of AChE can be reversed using oxime reactivators but many show poor CNS penetration, indicating a need for new clinically viable reactivators. However, challenges exist on how to best measure restored AChE activity in vivo and assess the reactivating agent efficacy. This work reports the development of molecular imaging tools using radiolabeled OP analog tracers that are less toxic to handle in the laboratory, yet inhibit AChE in a similar fashion to the actual OPs. Carbon-11 and fluorine-18 radiolabeled analog tracers of VX and sarin OP agents were prepared. Following intravenous injection in normal Sprague-Dawley rats (n = 3-4/tracer), the tracers were evaluated and compared using noninvasive microPET/CT imaging, biodistribution assay, and arterial blood analyses. All showed rapid uptake and stable retention in brain, heart, liver, and kidney tissues determined by imaging and biodistribution. Lung uptake of the sarin analog tracers was elevated, 2-fold and 4-fold higher uptake at 5 and 30 min, respectively, compared to that for the VX analog tracers. All tracers rapidly bound to red blood cells (RBC) and blood proteins as measured in the biodistribution and arterial blood samples. Analysis of the plasma soluble activity (nonprotein/cell bound activity) showed only 1-6% parent tracer and 88-95% of the activity in the combined solid fractions (RBC and protein bound) as early as 0.5 min post injection. Multivariate analysis of tracer production yield, molar activity, brain uptake, brain area under the curve over 0-15 min, and the amount of parent tracer in the plasma at 5 min revealed the [18F]VX analog tracer had the most favorable values for each metric. This tracer was considered the more optimal tracer relative to the other tracers studied and suitable for future in vivo OP exposure and reactivation studies.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California 94143, United States
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California 94143, United States
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California 94143, United States
| | - Kurt R Zinn
- Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
3
|
Talley TT, Chao CK, Berkman CE, Richardson RJ, Thompson CM. Inhibition of Acetylcholinesterases by Stereoisomeric Organophosphorus Compounds Containing Both Thioester and p-Nitrophenyl Leaving Groups. Chem Res Toxicol 2020; 33:2455-2466. [PMID: 32833441 DOI: 10.1021/acs.chemrestox.0c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies with acetylcholinesterase (AChE) inhibited by organophosphorus (OP) compounds with two chiral centers can serve as models or surrogates for understanding the rate, orientation, and postinhibitory mechanisms by the nerve agent soman that possesses dual phosphorus and carbon chiral centers. In the current approach, stereoisomers of O-methyl, [S-(succinic acid, diethyl ester), O-(4-nitrophenyl) phosphorothiolate (MSNPs) were synthesized, and the inhibition, reactivation, and aging mechanisms were studied with electric eel AChE (eeAChE) and recombinant mouse brain AChE (rmAChE). The MSNP RPRC isomer was the strongest inhibitor of both eeAChE and rmAChE at 8- and 24-fold greater potency, respectively, than the weakest SPSC isomer. eeAChE inhibited by the RPRC- or RPSC-MSNP isomer underwent spontaneous reactivation ∼10- to 20-fold faster than the enzyme inhibited by SPRC- and SPSC-MSNP, and only 4% spontaneous reactivation was observed from the SPRC-eeAChE adduct. Using 2-pyridine aldoxime methiodide (2-PAM) or trimedoxime (TMB-4), eeAChE inhibited by RPRC- or SPRC-MSNP reactivated up to 90% and 3- to 4-fold faster than eeAChE inhibited by the RPSC- or SPSC-MSNP isomer. Spontaneous reactivation rates for rmAChE were 1.5- to 10-fold higher following inhibition by RPSC- and SPSC-MSNPs than inhibition by either RC isomer, a trend opposite to that found for eeAChE. Oxime reactivation of rmAChE following inhibition by RPRC- and SPRC-MSNPs was 2.5- to 5-fold faster than inhibition by RPSC- or SPSC-MSNPs. Due to structural similarities, MSNPs that phosphylate AChE with the loss of the p-nitrophenoxy (PNP) group form identical, nonreactivatable adducts to those formed from SP-isomalathion; however, all the MSNP isomers inhibited AChE to form adducts that reactivated. Thus, MSNPs inactivate AChE via the ejection of either PNP or thiosuccinyl groups to form a combination of reactivatable and nonreactivatable adducts, and this differs from the mechanism of AChE inhibition by isomalathion.
Collapse
Affiliation(s)
- Todd T Talley
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, United States
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, United States
| | - Clifford E Berkman
- Department of Chemistry and Biochemistry, Washington State University, Pullman, Washington 99164, United States
| | - Rudy J Richardson
- Departments of Environmental Health Sciences and Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
4
|
Hayes TR, Blecha JE, Chao CK, Huynh TL, VanBrocklin HF, Zinn KR, Taylor PW, Gerdes JM, Thompson CM. Positron emission tomography evaluation of oxime countermeasures in live rats using the tracer O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate [ 18 F]-VXS. Ann N Y Acad Sci 2020; 1479:180-195. [PMID: 32436233 DOI: 10.1111/nyas.14363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 11/27/2022]
Abstract
Oxime antidotes regenerate organophosphate-inhibited acetylcholinesterase (AChE). Although they share a common mechanism of AChE reactivation, the rate and amount of oxime that enters the brain are critical to the efficacy, a process linked to the oxime structure and charge. Using a platform based on the organophosphate [18 F]-VXS as a positron emission tomography tracer for active AChE, the in vivo distribution of [18 F]-VXS was evaluated after an LD50 dose (250 μg/kg) of the organophosphate paraoxon (POX) and following oximes as antidotes. Rats given [18 F]-VXS tracer alone had significantly higher radioactivity (two- to threefold) in the heart and lung than rats given LD50 POX at 20 or 60 min prior to [18 F]-VXS. When rats were given LD50 POX followed by 2-PAM (cationic), RS194b (ionizable), or monoisonitrosoacetone (MINA) (neutral), central nervous system (CNS) radioactivity returned to levels at or above untreated naive rats (no POX), whereas CNS radioactivity did not increase in rats given the dication oximes HI-6 or MMB-4. MINA showed a significant, pairwise increase in CNS brain radioactivity compared with POX-treated rats. This new in vivo dynamic platform using [18 F]-VXS tracer measures and quantifies peripheral and CNS relative changes in AChE availability after POX exposure and is suitable for comparing oxime delivery and AChE reactivation in rats.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kurt R Zinn
- Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Palmer W Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
5
|
Bharate SB, Chao CK, Thompson CM. Comparison of the reactivation rates of acetylcholinesterase modified by structurally different organophosphates using novel pyridinium oximes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103218. [PMID: 31302432 PMCID: PMC6736693 DOI: 10.1016/j.etap.2019.103218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/27/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
A novel panel of oximes were synthesized, which have displayed varying degree of reactivation ability towards different organophosphorus (OP) modified cholinesterases. In the present article, we report a comparative reactivation profile of a series of quaternary pyridinium-oximes for electric eel acetylcholinesterase (EEAChE) inhibited by the organophosphorus (OP) inhibitors methyl paraoxon (MePOX), ethyl paraoxon (POX; paraoxon) and diisopropyl fluorophosphate (DFP) that are distinguishable as dimethoxyphosphoryl, diethoxyphosphoryl and diisopropoxyphosphoryl AChE-OP-adducts. Most of the 59-oximes tested led to faster and more extensive reactivation of MePOX- and POX-inhibited EEAChE as compared to DFP-modified EEAChE. All were effective reactivators of three OP-modified EEAChE conjugates showing 18-21% reactivation for DFP-inhibited AChE and ≥45% reactivation for MePOX- and POX-inhibited EEAChE. Oximes 7 and 8 showed kr values better than pralidoxime (1) for DFP-inhibited EEAChE. Reactivation rates determined at different inhibition times showed no significant change in kr values during 0-90 min incubation with three OPs. However, a 34-72% decrease in kr for MePOX and POX and > 95% decrease in kr for DFP-inhibited EEAChE was observed after 24 h of OP-exposure (aging).
Collapse
Affiliation(s)
- Sandip B Bharate
- The Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, USA; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Chih-Kai Chao
- The Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Charles M Thompson
- The Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
6
|
Hayes TR, Blecha JE, Thompson CM, Gerdes JM, VanBrocklin HF. Divergent synthesis of organophosphate [ 11C]VX- and [ 11C]Sarin-surrogates from a common set of starting materials. Appl Radiat Isot 2019; 151:182-186. [PMID: 31202183 DOI: 10.1016/j.apradiso.2019.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 11/27/2022]
Abstract
Radiolabeled 1-[11C]ethyl, 4-nitrophenyl methylphosphonate (VX surrogate) and 2-[11C]-propanyl, 4-nitrophenyl methylphosphonate (sarin surrogate) were developed as organophosphate (OP) tracers. The [11C]ethyl- and [11C]isopropyl-iodide radiolabeled synthons were obtained by temperature controlled, in loop reactions of [11C]CO2 with MeMgBr followed by reduction with LiAlH4, then reaction with HI. Distillation of the [11C]alkyl iodides into a solution of hydrogen (4-nitrophenyl)methylphosphonate and cesium carbonate afforded the desired tracers in >95% radiochemical purity, yields from [11C]CO2 of 1-3% and 1.7-15.1 GBq/mmol molar activities.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry St. Suite 350, San Francisco, CA, 94107, United States
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry St. Suite 350, San Francisco, CA, 94107, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, United States
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, United States
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry St. Suite 350, San Francisco, CA, 94107, United States.
| |
Collapse
|
7
|
Thompson CM, Gerdes JM, VanBrocklin HF. Positron emission tomography studies of organophosphate chemical threats and oxime countermeasures. Neurobiol Dis 2019; 133:104455. [PMID: 31022458 DOI: 10.1016/j.nbd.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 01/31/2023] Open
Abstract
There is a unique in vivo interplay involving the mechanism of inactivation of acetylcholinesterase (AChE) by toxic organophosphorus (OP) compounds and the restoration of AChE activity by oxime antidotes. OP compounds form covalent adducts to this critical enzyme target and oximes are introduced to directly displace the OP from AChE. For the most part, the in vivo inactivation of AChE leading to neurotoxicity and antidote-based therapeutic reversal of this mechanism are well understood, however, these molecular-level events have not been evaluated by dynamic imaging in living systems at millimeter resolution. A deeper understanding of these critically, time-dependent mechanisms is needed to develop new countermeasures. To address this void and to help accelerate the development of new countermeasures, positron-emission tomography (PET) has been investigated as a unique opportunity to create platform technologies to directly examine the interdependent toxicokinetic/pharmacokinetic and toxicodynamic/pharmacodynamic features of OPs and oximes in real time within live animals. This review will cover two first-in-class PET tracers representing an OP and an oxime antidote, including their preparation, requisite pharmacologic investigations, mechanistic interpretations, biodistribution and imaging.
Collapse
Affiliation(s)
- Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco 185 Berry St. Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
8
|
Impairment of neuro-renal cells on exposure to cosmopolitan polluted river water followed by differential protection of Launea taraxacifolia in male rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-02898-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Hayes TR, Thompson CM, Blecha JE, Gerdes JM, VanBrocklin HF. Radiosynthesis of O-(1-[ 18 F]fluoropropan-2-yl)-O-(4-nitrophenyl)methylphosphonate: A novel PET tracer surrogate of sarin. J Labelled Comp Radiopharm 2018; 61:1089-1094. [PMID: 30347484 DOI: 10.1002/jlcr.3688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022]
Abstract
O-(1-Fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate is a reactive organophosphate ester (OP) developed as a surrogate of the chemical warfare agent sarin that forms a similar covalent adduct at the active site serine of acetylcholinesterase. The radiolabeled O-(1-[18 F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate ([18 F] fluorosarin surrogate) has not been previously prepared. In this paper, we report the first radiosynthesis of this tracer from the reaction of bis-(4-nitrophenyl) methylphosphonate with 1-[18 F]fluoro-2-propanol in the presence of DBU. The 1-[18 F]fluoro-2-propanol was prepared by reaction of propylene sulfite with Kryptofix 2.2.2 and [18 F] fluoride ion. The desired tracer O-(1-[18 F]fluoropropan-2-yl)-O-(4-nitrophenyl) methylphosphonate was obtained in a >98% radiochemical purity with a 2.4% ± 0.6% yield (n = 5, 65 minutes from start of synthesis) based on starting [18 F] fluoride ion and a molar activity of 49.9 GBq/μmol (1.349 ± 0.329 Ci/μmol, n = 3). This new facile radiosynthesis routinely affords sufficient quantities of [18 F] fluorosarin surrogate in high radiochemical purity, which will further enable the tracer development as a novel radiolabeled OP acetylcholinesterase inhibitor for assessment of OP modes of action with PET imaging in vivo.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Chao CK, Balasubramanian N, Gerdes JM, Thompson CM. The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE. Chem Biol Interact 2018; 291:220-227. [PMID: 29920286 PMCID: PMC6061941 DOI: 10.1016/j.cbi.2018.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/20/2018] [Accepted: 06/15/2018] [Indexed: 10/14/2022]
Abstract
In this study, the mechanisms of HuAChE and HuBChE inhibition by Me-P(O) (OPNP) (OR) [PNP = p-nitrophenyl; R = CH2CH3, CH2CH2F, OCH(CH3)2, OCH(CH3) (CH2F)] representing surrogates and fluoro-surrogates of VX and sarin were studied by in vitro kinetics and mass spectrometry. The in vitro measures showed that the VX- and fluoro-VX surrogates were relatively strong inhibitors of HuAChE and HuBChE (ki ∼ 105-106 M-1min-1) and underwent spontaneous and 2-PAM-mediated reactivation within 30 min. The sarin surrogates were weaker inhibitors of HuAChE and HuBChE (ki ∼ 104-105 M-1min-1), and in general did not undergo spontaneous reactivation, although HuAChE adducts were partially reactivatable at 18 h using 2-PAM. The mechanism of HuAChE and HuBChE inhibition by the surrogates was determined by Q-TOF and MALDI-TOF mass spectral analyses. The surrogate-adducted proteins were trypsin digested and the active site-containing peptide bearing the OP-modified serine identified by Q-TOF as triply- and quadruply-charged ions representing the respective increase in mass of the attached OP moiety. Correspondingly, monoisotopic ions of the tryptic peptides representing the mass increase of the OP-adducted peptide was identified by MALDI-TOF. The mass spectrometry analyses validated the identity of the OP moiety attached to HuAChE or HuBChE as MeP(O) (OR)-O-serine peptides (loss of the PNP leaving group) via mechanisms consistent with those found with chemical warfare agents. MALDI-TOF MS analyses of the VX-modified peptides versus time showed a steady reduction in adduct versus parent peptide (reactivation), whereas the sarin-surrogate-modified peptides remained largely intact over the course of the experiment (24 h). Overall, the presence of a fluorine atom on the surrogate modestly altered the rate constants of inhibition and reactivation, however, the mechanism of inhibition (ejection of PNP group) did not change.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, United States
| | | | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, United States.
| |
Collapse
|
11
|
Neumann KD, Thompson CM, Blecha JE, Gerdes JM, VanBrocklin HF. An improved radiosynthesis of O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate: A first-in-class cholinesterase PET tracer. J Labelled Comp Radiopharm 2017; 60:337-342. [PMID: 28406525 DOI: 10.1002/jlcr.3511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/06/2022]
Abstract
O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo.
Collapse
Affiliation(s)
- Kiel D Neumann
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|