1
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
2
|
Wang X, Cheng D, Liu L, Yu H, Wang M. Magnolol ameliorates fumonisin B 1-induced oxidative damage and lipid metabolism dysfunction in astrocyte-like C6 cells. CHEMOSPHERE 2024; 359:142300. [PMID: 38729444 DOI: 10.1016/j.chemosphere.2024.142300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
The neurotoxicity of fumonisin B1 (FB1), a commonly detected mycotoxin in crops and the environment, has attracted considerable attention in recent years. However, no effective method for eliminating FB1 completely exists due to the thermal stability and water solubility of this mycotoxin. Magnolol (MAG) is a neolignane with antioxidative and neuroprotective effects. It has been applied in neurotoxicity treatment. However, the application of MAG to attenuate FB1-induced toxicity has not been reported. This study explored the protective mechanism of MAG against FB1-induced damage in C6 cells through antioxidant and lipid metabolism modulation. Results showed that exposure to 15 μM FB1 caused oxidative stress by changing the levels of malondialdehyde, reactive oxygen species, total superoxide dismutase, catalase, and total glutathione. These changes were reversed by MAG addition, especially at the concentration of 80 μM. The protective effects of MAG were further confirmed by the reduction in the phosphorylation levels of proteins in the MAPK signaling pathway. Lipidomics analysis identified 263 lipids, which belong to 24 lipid classes. Among all of the identified lipids, triglycerides (TGs), diglycerides (DGs), phosphatidylcholines (PCs), wax monoesters (WEs), Cers, and phosphatidylethanolamines (PEs) were major categories. Moreover, nine categories of lipids showed the opposite change trend in the FB1 exposure and MAG 80 groups. A further investigation of the 34 co-occurring differential lipids with remarkable changes (P value < 0.05 and VIP value > 1) in the control, FB1 exposure, and MAG 80 groups was performed. Therein, nine lipids (PCs, LPCs, and SM) were screened out as potential biomarkers to reveal the cytoprotective effects of MAG. This work is the first to investigate the rescue mechanism of MAG in FB1-induced cytotoxicity. The obtained results may expand the application of MAG to alleviate the toxicity of mycotoxins.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lin Liu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haiqi Yu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
3
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
4
|
Pan Y, Li J, Lin P, Wan L, Qu Y, Cao L, Wang L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer's disease, and their co-morbidities. Front Pharmacol 2024; 15:1348410. [PMID: 38379904 PMCID: PMC10877008 DOI: 10.3389/fphar.2024.1348410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is rapidly increasing, revealing a strong association between these two diseases. Currently, there are no curative medication available for the comorbidity of T2DM and AD. Ceramides are structural components of cell membrane lipids and act as signal molecules regulating cell homeostasis. Their synthesis and degradation play crucial roles in maintaining metabolic balance in vivo, serving as important mediators in the development of neurodegenerative and metabolic disorders. Abnormal ceramide metabolism disrupts intracellular signaling, induces oxidative stress, activates inflammatory factors, and impacts glucose and lipid homeostasis in metabolism-related tissues like the liver, skeletal muscle, and adipose tissue, driving the occurrence and progression of T2DM. The connection between changes in ceramide levels in the brain, amyloid β accumulation, and tau hyper-phosphorylation is evident. Additionally, ceramide regulates cell survival and apoptosis through related signaling pathways, actively participating in the occurrence and progression of AD. Regulatory enzymes, their metabolites, and signaling pathways impact core pathological molecular mechanisms shared by T2DM and AD, such as insulin resistance and inflammatory response. Consequently, regulating ceramide metabolism may become a potential therapeutic target and intervention for the comorbidity of T2DM and AD. The paper comprehensively summarizes and discusses the role of ceramide and its metabolites in the pathogenesis of T2DM and AD, as well as the latest progress in the treatment of T2DM with AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Bendejacq-Seychelles A, Gibot-Leclerc S, Guillemin JP, Mouille G, Steinberg C. Phytotoxic fungal secondary metabolites as herbicides. PEST MANAGEMENT SCIENCE 2024; 80:92-102. [PMID: 37794581 DOI: 10.1002/ps.7813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Among the alternatives to synthetic plant protection products, biocontrol appears as a promising method. This review reports on the diversity of fungal secondary metabolites phytotoxic to weeds and on the approach generally used to extract, characterize, identify and exploit them for weed management. The 183 phytotoxic fungal secondary metabolites discussed in this review fall into five main classes of molecules: 61 polyketides, 53 terpenoids, 36 nitrogenous metabolites, 18 phenols and phenolic acids, and 15 miscellaneous. They are mainly produced by the genera Drechslera, Fusarium and Alternaria. The phytotoxic effects, more often described by the symptoms they produce on plants than by their mode of action, range from inhibition of germination to inhibition of root and vegetative growth, including tissue and organ alterations. The biochemical characterization of fungal secondary metabolites requires expertise and tools to carry out fungal cultivation and metabolite extraction, phytotoxicity tests, purification and fractionation of the extracts, and chemical identification procedures. Phytotoxicity tests are mainly carried out under controlled laboratory conditions (not always on whole plants), while effectiveness against targeted weeds and environmental impacts must be assessed in greenhouses and open fields. These steps are necessary for the formulation of effective, environment-friendly fungal secondary metabolites-derived bioherbicides using new technologies such as nanomaterials. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Bendejacq-Seychelles
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Gibot-Leclerc
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Jean-Philippe Guillemin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Gregory Mouille
- Univ Paris Saclay, AgroParisTech, INRAE, Inst Jean Pierre Bourgin, Versailles, France
| | - Christian Steinberg
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Kaur P, Sharma S, Goel A, Sharma P, Agnihotri N, Kaur R, Singh V. 4‐Hydroxy Enigmol, a 1‐Deoxyphytosphingolipid that Exhibit Good Activity against Prostate and Colon Cancer. ChemistrySelect 2023. [DOI: 10.1002/slct.202203861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Parleen Kaur
- Department of Applied Scienced Punjab Engineering College Deemed to be University) 160 012 Chandigarh India
| | - Sonia Sharma
- Department cum National Genomics studies and Research Panjab University 160 014 Chandigarh India
| | - Akshita Goel
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University 160 014 Chandigarh India
| | - Purshotam Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University 160 014 Chandigarh India
| | - Navneet Agnihotri
- Department of biochemistry Panjab University 160 025 Chandigarh India
| | - Ramandeep Kaur
- Department cum National Genomics studies and Research Panjab University 160 014 Chandigarh India
| | - Vasundhara Singh
- Department of Applied Scienced Punjab Engineering College Deemed to be University) 160 012 Chandigarh India
| |
Collapse
|
7
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Yu XD, Wang JW. Ceramide de novo synthesis in non-alcoholic fatty liver disease: Pathogenic mechanisms and therapeutic perspectives. Biochem Pharmacol 2022; 202:115157. [PMID: 35777449 DOI: 10.1016/j.bcp.2022.115157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its advanced form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma. Ceramides have been shown to exacerbate NAFLD development through enhancing insulin resistance, reactive oxygen species production, liver steatosis, lipotoxicity and hepatocyte apoptosis, and eventually causing hepatic inflammation and fibrosis. Emerging evidence indicates that ceramide production in NAFLD is predominantly attributed to activation of the de novo synthesis pathway of ceramides in hepatocytes. More importantly, pharmacological modulation of ceramide de novo synthesis in preclinical studies seems efficacious for the treatment of NAFLD. In this review, we provide an overview of the pathogenic mechanisms of ceramides in NAFLD, discuss recent advances and challenges in pharmacological interventions targeting ceramide de novo synthesis, and propose some research directions in the field.
Collapse
Affiliation(s)
- Xiao-Dong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Ezdini K, Ben Salah-Abbès J, Belgacem H, Ojokoh B, Chaieb K, Abbès S. The ameliorative effect of Lactobacillus paracasei BEJ01 against FB1 induced spermatogenesis disturbance, testicular oxidative stress and histopathological damage. Toxicol Mech Methods 2022; 33:1-10. [PMID: 35668617 DOI: 10.1080/15376516.2022.2087049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Fumonisin B1 (FB1) is a possible carcinogenic molecule for humans as classified by the International Agency for Research on Cancer (IARC) in 2B group. In livestock, it is responsible for several mycotoxicoses and economic losses. Lactobacillus strains, inhabitants of a wide range of foodstuffs and the gastrointestinal tract, are generally recognized as safe (GRAS). Thus, the aim of this work was to evaluate the protective effect of Lactobacillus paracasei (LP) against FB1-induced reprotoxicities including testicular histopathology, sperm quality disturbance, and testosterone level reduction.Pubescent mice were divided randomly into four groups and treated for 10 days. Group 1: Control; Group 2: FB1 (100 μg/kg b.w); Group 3: LP (2 × 109 CFU/kg b.w); Group 4: LP (2 × 109 CFU/kg b.w) and FB1 (100 μg/kg b.w). After the end of the treatment, animals were sacrificed. Plasma, epididymis, and testis were collected for reproductive system studies.Our results showed that FB1 altered epididymal sperm quality, generated oxidative stress, and induced histological alterations. Interestingly, these deleterious effects have been counteracted by the LP administration in mice.In conclusion, LP was able to prevent FB1-reproductive system damage in BALB/c mice and could be validated as an anti-caking agent in an animal FB1-contaminated diet.
Collapse
Affiliation(s)
- Khawla Ezdini
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Bolanle Ojokoh
- Department of Information Systems, Federal University of Technology, Akure, Nigeria
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| |
Collapse
|
10
|
Cao C, Xian R, Lin F, Li X, Li X, Qiang F, Li X. Fumonisin B1 induces hepatotoxicity in mice through the activation of oxidative stress, apoptosis and fibrosis. CHEMOSPHERE 2022; 296:133910. [PMID: 35143865 DOI: 10.1016/j.chemosphere.2022.133910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Fumonisin B1 (FB1) is a harmful environmental pollutant that induces hepatotoxicity, but the mechanism is still poorly understood. Therefore, the aim of this work was to investigate the effects of FB1 on the liver of mice and discover the underlying molecular mechanisms. A total of 40 male mice were exposed to 0 or 5 mg/kg FB1 for 42 days, and then, they were sacrificed, and the liver and blood were collected. Besides, AML12 cells were exposed to FB1. Biochemical and liver related indexes as well morphological changes, redox, apoptosis and fibrosis related markers were measured in liver and AML12 cells. The results showed that the liver function and biochemical indexes in the blood were changes, and the histopathological analysis indicated that FB1 exposure caused hepatic sinusoid atrophy, hemosiderosis, hepatocyte steatosis and fibrosis, finally inducing liver injury. Notably, a significant increase in the intracellular antioxidant enzymes SOD1, SOD2, NF-κB (p65), H2O2 and NO was found in FB1 exposed AML12 cells and liver tissues. In addition, TUNEL staining showed many apoptotic cells, and western blotting revealed a significant increase in the pro-apoptosis proteins. FB1 also induced liver fibrosis by triggering TGF-β1/α-SMA/collagen/MMP signaling in the hepatocytes. Our results provide a novel explanation of the toxicological mechanism of action of FB1, which provoked oxidative stress, apoptosis and fibrosis in mice liver.
Collapse
Affiliation(s)
- Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Runxi Xian
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Fanghui Lin
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Xinting Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Xiaowen Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Fu Qiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China
| | - Xinran Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, PR China.
| |
Collapse
|
11
|
Hanada K, Sakai S, Kumagai K. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT. Int J Mol Sci 2022; 23:ijms23042098. [PMID: 35216212 PMCID: PMC8875512 DOI: 10.3390/ijms23042098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Lipid transfer proteins (LTPs) are recognized as key players in the inter-organelle trafficking of lipids and are rapidly gaining attention as a novel molecular target for medicinal products. In mammalian cells, ceramide is newly synthesized in the endoplasmic reticulum (ER) and converted to sphingomyelin in the trans-Golgi regions. The ceramide transport protein CERT, a typical LTP, mediates the ER-to-Golgi transport of ceramide at an ER-distal Golgi membrane contact zone. About 20 years ago, a potent inhibitor of CERT, named (1R,3S)-HPA-12, was found by coincidence among ceramide analogs. Since then, various ceramide-resembling compounds have been found to act as CERT inhibitors. Nevertheless, the inevitable issue remains that natural ligand-mimetic compounds might directly bind both to the desired target and to various undesired targets that share the same natural ligand. To resolve this issue, a ceramide-unrelated compound named E16A, or (1S,2R)-HPCB-5, that potently inhibits the function of CERT has recently been developed, employing a series of in silico docking simulations, efficient chemical synthesis, quantitative affinity analysis, protein-ligand co-crystallography, and various in vivo assays. (1R,3S)-HPA-12 and E16A together provide a robust tool to discriminate on-target effects on CERT from off-target effects. This short review article will describe the history of the development of (1R,3S)-HPA-12 and E16A, summarize other CERT inhibitors, and discuss their possible applications.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Quality Assurance, Radiation Safety and Information Management, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
- Correspondence:
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| | - Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (S.S.); (K.K.)
| |
Collapse
|
12
|
Kaur P, Sihag S, Chauhan M, Dhingra N, Agnihotri N, Kaur R, Singh V. Synthesis and In Vitro Analysis of 1‐Deoxysphingolipid Ceramide Analogues via UGI Reaction as Potential Anti‐cancer Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Parleen Kaur
- Department of Applied Scienced Punjab Engineering College (Deemed to be University) Chandigarh 160 012 India
| | - Swati Sihag
- Department cum National Genomics studies and Research Panjab University Chandigarh 160 014 India
| | - Monika Chauhan
- University Institute Of Pharmaceutical Sciences (UIPS) Panjab University Chandigarh 160014 India
| | - Neelima Dhingra
- University Institute Of Pharmaceutical Sciences (UIPS) Panjab University Chandigarh 160014 India
| | - Navneet Agnihotri
- Department of biochemistry Panjab University Chandigarh 160025 India
| | - Ramandeep Kaur
- Department cum National Genomics studies and Research Panjab University Chandigarh 160 014 India
| | - Vasundhara Singh
- Department of Applied Scienced Punjab Engineering College (Deemed to be University) Chandigarh 160 012 India
| |
Collapse
|
13
|
Tanase DM, Gosav EM, Petrov D, Jucan AE, Lacatusu CM, Floria M, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets. Diagnostics (Basel) 2021; 11:2053. [PMID: 34829402 PMCID: PMC8621166 DOI: 10.3390/diagnostics11112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (ATS) are worldwide known diseases with increased incidence and prevalence. These two are driven and are interconnected by multiple oxidative and metabolic functions such as lipotoxicity. A gamut of evidence suggests that sphingolipids (SL), such as ceramides, account for much of the tissue damage. Although in humans they are proving to be accurate biomarkers of adverse cardiovascular disease outcomes and NAFLD progression, in rodents, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of metabolic driven diseases such as diabetes, ATS, and hepatic steatosis. In this narrative review, we discuss the pathways which generate the ceramide synthesis, the potential use of circulating ceramides as novel biomarkers in the development and progression of ATS and related diseases, and their potential use as therapeutic targets in NAFDL-ATS development which can further provide new clues in this field.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Daniela Petrov
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alina Ecaterina Jucan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
14
|
Strong Alterations in the Sphingolipid Profile of Chickens Fed a Dose of Fumonisins Considered Safe. Toxins (Basel) 2021; 13:toxins13110770. [PMID: 34822554 PMCID: PMC8619408 DOI: 10.3390/toxins13110770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Fumonisins (FB) are mycotoxins known to exert most of their toxicity by blocking ceramide synthase, resulting in disruption of sphingolipid metabolism. Although the effects of FB on sphinganine (Sa) and sphingosine (So) are well documented in poultry, little information is available on their other effects on sphingolipids. The objective of this study was to analyze the effects of FB on the hepatic and plasma sphingolipidome in chickens. The first concern of this analysis was to clarify the effects of FB on hepatic sphingolipid levels, whose variations can lead to numerous toxic manifestations. The second was to specify the possible use of an alteration of the sphingolipidome as a biomarker of exposure to FB, in addition to the measurement of the Sa:So ratio already widely used. For this purpose, we developed an UHPLC MS/MS method that enabled the determination of 82 SL, including 10 internal standards, in chicken liver and plasma. The validated method was used to measure the effects of FB administered to chickens at a dose close to 20 mg FB1 + FB2/kg feed for 9 days. Significant alterations of sphingoid bases, ceramides, dihydroceramides, glycosylceramides, sphingomyelins and dihydrosphingomyelins were observed in the liver. In addition, significant increases in plasma sphinganine 1-phosphate, sphingosine 1-phosphate and sphingomyelins were observed in plasma. Interestingly, partial least-squares discriminant analysis of 11 SL in plasma made it possible to discriminate exposed chickens from control chickens, whereas analysis of Sa and So alone revealed no difference. In conclusion, our results show that the effects of FB in chickens are complex, and that SL profiling enables the detection of exposure to FB when Sa and So fail.
Collapse
|
15
|
Gits-Muselli M, Hamane S, Verillaud B, Cherpin E, Denis B, Bondeelle L, Touratier S, Alanio A, Garcia-Hermoso D, Bretagne S. Different repartition of the cryptic species of black aspergilli according to the anatomical sites in human infections, in a French University hospital. Med Mycol 2021; 59:985-992. [PMID: 34022772 DOI: 10.1093/mmy/myab027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/25/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Black aspergilli of the section Nigri are rarely differentiated at the species level when originating from human specimens. We wondered whether some cryptic species could be more frequently observed in some clinical entities. We analyzed the 198 black isolates consecutively collected from the external ear canal (EEC; n = 66), respiratory specimens (n = 99), and environment (n = 33). DNA was extracted and species identification was performed upon the partial calmodulin gene. We identified by decreasing frequency: Aspergillus welwitschiae (35.3%), Aspergillus tubingensis (34.3%), Aspergillus niger (17.2%), Aspergillus luchuensis (4%), Aspergillus aff. welwitschiae (3%), Aspergillus neoniger (2%), Aspergillus piperis (1.5%), Aspergillus japonicus (1.0%), Aspergillus vadensis (0.5%), and two Aspergillus tubingensis clade (1%). The distribution of the three main cryptic species was different between EEC and respiratory samples (P < 0.001) but not different between respiratory and environment samples (P = 0.264). Aspergillus welwitschiae was more often associated with EEC (54.5%), whereas A. tubingensis and A. niger were predominant in respiratory samples (39.4 and 26.3%, respectively). Among the 99 respiratory isolates, only 10 were deemed responsible for probable invasive aspergillosis, of which six were mixed with other pathogenic moulds. This study shows the interest to pursue the identification of clinical isolates in the Aspergillus section Nigri to unravel some specific associations with clinical entities. The association of A. welwitschiae with otomycosis suggests a better fitness to infect/colonize the ear canal. Also, members of the Aspergillus section Nigri alone are rarely responsible for invasive aspergillosis. LAY SUMMARY We analyzed 198 black aspergilli isolates collected from different samples type to determine their species identification. We observe a different distribution of species between ear canal and respiratory samples (P < 0.001), suggesting a better fitness of A. welwitschiae to infect the ear canal.
Collapse
Affiliation(s)
- Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France.,Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycologie et Antifongiques, UMR2000, France.,Université de Paris, France
| | - Samia Hamane
- Laboratoire de Parasitologie-Mycologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Benjamin Verillaud
- Université de Paris, France.,Département d'Otorhinolaryngologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France.,Institut National de la Santé et de la Recherche Médicale U1141, France
| | - Elisa Cherpin
- Laboratoire de Parasitologie-Mycologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Blandine Denis
- Département de Maladies infectieuses, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Louise Bondeelle
- Université de Paris, France.,Pneumologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Sophie Touratier
- Pharmacie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France.,Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycologie et Antifongiques, UMR2000, France.,Université de Paris, France
| | - Dea Garcia-Hermoso
- Laboratoire de Parasitologie-Mycologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, Hôpital Lariboisière Saint-Louis Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), France.,Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycologie et Antifongiques, UMR2000, France.,Université de Paris, France
| |
Collapse
|
16
|
Arumugam T, Ghazi T, Chuturgoon AA. Molecular and epigenetic modes of Fumonisin B 1 mediated toxicity and carcinogenesis and detoxification strategies. Crit Rev Toxicol 2021; 51:76-94. [PMID: 33605189 DOI: 10.1080/10408444.2021.1881040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fumonisin B1 (FB1) is a natural contaminant of agricultural commodities that has displayed a myriad of toxicities in animals. Moreover, it is known to be a hepatorenal carcinogen in rodents and may be associated with oesophageal and hepatocellular carcinomas in humans. The most well elucidated mode of FB1-mediated toxicity is its disruption of sphingolipid metabolism; however, enhanced oxidative stress, endoplasmic reticulum stress, autophagy, and alterations in immune response may also play a role in its toxicity and carcinogenicity. Alterations to the host epigenome may impact on the toxic and carcinogenic response to FB1. Seeing that the contamination of FB1 in food poses a considerable risk to human and animal health, a great deal of research has focused on new methods to prevent and attenuate FB1-induced toxic consequences. The focus of the present review is on the molecular and epigenetic interactions of FB1 as well as recent research involving FB1 detoxification.
Collapse
Affiliation(s)
- Thilona Arumugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Adaku Chilaka C, Mally A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods 2020; 9:E1585. [PMID: 33139646 PMCID: PMC7693847 DOI: 10.3390/foods9111585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany;
| | | |
Collapse
|
18
|
Dozolme PMA, Moukha SM. The in vitro Production Potentialities of Secondary Toxic Metabolites by the Fungal Factory Fusarium verticillioides Is, Fortunately, Largely Underestimated in Fields: Pioneering Study on Fumonisins. Front Microbiol 2020; 11:562754. [PMID: 33193148 PMCID: PMC7661692 DOI: 10.3389/fmicb.2020.562754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
This study presents fungi infrequently viewed as fungal factories for secondary metabolite production resources such as mycotoxins in Ascomycota. Additionally, we demonstrated that biochemical warfare of Fusarium verticillioides factory against animal cells is not only due to mycotoxins such as fumonisins, but acute cytotoxic firing is based on different excreted secondary metabolite series, potentially leading to animal and human diseases. In this study, fumonisins, which can be followed by in situ localization, quantification, or expression of the key gene implicated in their synthesis, are used to understand secondary metabolite production by this fungus. It is known that F. verticillioides produces mycotoxins such as fumonisins on cereals, but until now, there is no evidence demonstrating a method to totally block fumonisin production on feed and food. In this paper, we explained, what was never clearly established before, that fumonisin production depends on two bottlenecks. The fumonisin synthesis and secretion in fungal articles of the mycelium are medium-independent and follow the fungal cell cycle developmental program (ontogenesis). Conversely, the fumonisin excretion into the medium depends on its composition, which also impacts fumonisin biosynthesis level. Using a high-pressure freezing method, we showed that, in non-permissive fumonisin excretion (NPFE) medium, FB1 is sequestered inside extra-vesicles and in the first third of the cell wall next to the plasmalemma, leading to the hypothesis that the fungus develops mechanisms to protect its cytosolic homeostasis against this cytotoxic. In permissive fumonisin excretion (PFE) medium, leading to very high quantities of excreted fumonisins, FB1 localized inside extra-vesicles, crosses the entire cell wall thickness, and then releases into the medium. Our results demonstrated a delayed and lower expression of Fvpks gene in mycelium developed on NPFE medium as compared to PFE medium. Conversely, higher amounts of fumonisins were accumulated in NPFE-grown mycelium than in PFE-grown mycelium. Thus, our results demonstrated for the first time that we have to take into account that the synthesis and secretion inside the article of secondary metabolites depend on the occurrence of cryptic biochemical specialized articles, differentiated in the mycelium. However, those are not morphologically different from other colonial hyphae.
Collapse
|
19
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|
20
|
Structural Similarity with Cholesterol Reveals Crucial Insights into Mechanisms Sustaining the Immunomodulatory Activity of the Mycotoxin Alternariol. Cells 2020; 9:cells9040847. [PMID: 32244540 PMCID: PMC7226804 DOI: 10.3390/cells9040847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The proliferation of molds in domestic environments can lead to uncontrolled continuous exposure to mycotoxins. Even if not immediately symptomatic, this may result in chronic effects, such as, for instance, immunosuppression or allergenic promotion. Alternariol (AOH) is one of the most abundant mycotoxins produced by Alternaria alternata fungi, proliferating among others in fridges, as well as in humid walls. AOH was previously reported to have immunomodulatory potential. However, molecular mechanisms sustaining this effect remained elusive. In differentiated THP-1 macrophages, AOH hardly altered the secretion of pro-inflammatory mediators when co-incubated with lipopolysaccharide (LPS), opening up the possibility that the immunosuppressive potential of the toxin could be related to an alteration of a downstream pro-inflammatory signaling cascade. Intriguingly, the mycotoxin affected the membrane fluidity in macrophages and it synergistically reacted with the cholesterol binding agent MβCD. In silico modelling revealed the potential of the mycotoxin to intercalate in cholesterol-rich membrane domains, like caveolae, and immunofluorescence showed the modified interplay of caveolin-1 with Toll-like Receptor (TLR) 4. In conclusion, we identified the structural similarity with cholesterol as one of the key determinants of the immunomodulatory potential of AOH.
Collapse
|
21
|
Szabó A, Fébel H, Ali O, Kovács M. Fumonisin B 1 induced compositional modifications of the renal and hepatic membrane lipids in rats - Dose and exposure time dependence. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1722-1739. [PMID: 31437116 DOI: 10.1080/19440049.2019.1652772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male Wistar rats were intraperitoneally dosed with fumonisin B1 (FB1; 0, 20, 50 and 100 mg kg-1 dietary dose equivalent) for 5 & 10 days to assess dose- and time-dependent effects on renal and hepatic phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE) fatty acid (FA) profiles. Renal PC showed increasing FA saturation (SAT) after 5 days; after 10 days polyunsaturation (PUFA) decreased markedly (Σ n3 (total n3), Σ n6, PUFA, unsaturation index (UI) and average FA chain length (ACL)), mostly with linear dose response. In the PI FAs similar changes were observed, decreasing monounsaturated FA, PUFA, UI and ACL (5 & 10 days), while the PE fraction was responsive in Σ n6 (↓) and SAT (↑), but only after 5 days (without dose response for both PI & PE). Liver PC exhibited increasing saturation (C16:0), decreasing polyunsaturation (C20:3 n6 [dihomo-γ-linolenic acid, DGLA]; C20:3 n3); the PI FA profile showed similar alterations after 5 days. PC & PI FA failed to respond in a dose-dependent manner to FB1. In PE FA profile DGLA decreased, with a decrease of the total n6 FA proportion and dose-dependent increase of n3 FAs. Results revealed expressed renal sensitivity, supporting our earlier published results in terms of oxidative stress and histopathological modifications.
Collapse
Affiliation(s)
- András Szabó
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary.,Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Hedvig Fébel
- National Agricultural Research and Innovation Centre, Research Institute for Animal Breeding, Nutrition and Meat Science, Herceghalom, Hungary
| | - Omeralfaroug Ali
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Melinda Kovács
- MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár University, Kaposvár, Hungary.,Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| |
Collapse
|