1
|
Yan T, Wang Q, Ma C, Teng X, Gong Z, Chu W, Zhou Q, Liu Z. Phage vB_Kpn_HF0522: Isolation, Characterization, and Therapeutic Potential in Combatting K1 Klebsiella pneumoniae Infections. Infect Drug Resist 2025; 18:803-818. [PMID: 39958984 PMCID: PMC11827489 DOI: 10.2147/idr.s501921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Klebsiella pneumoniae is a globally prevalent pathogen responsible for severe hospital- and community-acquired infections, and presents significant challenges for clinical management. Current therapeutic strategies are no longer able to meet the clinical needs; therefore, there is an urgent need to develop novel therapeutic strategies. This study aimed to evaluate the efficacy of phage therapy in treating bacterial infections. Methods Isolated phage vB_Kpn_HF0522 and phage morphology were observed using transmission electron microscopy. Analysis of vB_Kpn_HF0522 characteristics, including optimal multiplicity of infection (MOI), one-step growth curve, host range, stability in different environments, and adsorption capacity. The phage genomic sequence was analyzed to explore evolutionary relationships. The effect of phage vB_Kpn_HF0522 on biofilms was assessed using crystal violet staining assay. The Galleria mellonella (G. mellonella) infection model and mouse infection models were established to evaluate the practical application potential of the phage and the fitness cost of phage-resistant bacteria. Results Phage was isolated from hospital sewage for experimental studies. Genome analysis revealed that vB_Kpn_HF0522 is a double-stranded linear DNA virus. Biological characterization demonstrated that this phage specifically targets serotype K1 K. pneumoniae with an optimal multiplicity of infection (MOI) of 0.01, effectively disrupting biofilms and inhibiting bacterial growth. The bacterial growth rate remained largely unchanged after the phage resistance mutation, but mice infected with the mutant strain showed significantly higher survival rates than those infected with the wild-type strain. vB_Kpn_HF0522 increased the survival rate of infected G. mellonella from 12.5% to 75%, inhibited incisional surgical site infections and alleviated inflammatory response in mice. Conclusion These findings indicate that vB_Kpn_HF0522 has significant potential for treating specific bacterial infections, and may serve as an antimicrobial agent for research and clinical anti-infective therapy.
Collapse
Affiliation(s)
- Tao Yan
- Department of Clinical Laboratory Center, Anhui Chest Hospital, Hefei, 230031, People’s Republic of China
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Qiuyan Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Chengcheng Ma
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Xuan Teng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Zhen Gong
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Wenwen Chu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People’s Republic of China
| | - Zhou Liu
- Department of Clinical Laboratory Center, Anhui Chest Hospital, Hefei, 230031, People’s Republic of China
| |
Collapse
|
2
|
Janem A, Omar G, Hamed O, Jodeh S, Deghles A, Berisha A, Mansour W, Jabal SA, Fares O, Jaser A, Amireh A, Adwan G. Water soluble curcumin with alkyl sulfonate moiety: Synthesis, and anticancer efficacy. Heliyon 2024; 10:e33808. [PMID: 39040342 PMCID: PMC11261864 DOI: 10.1016/j.heliyon.2024.e33808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Curcumin is classified as a chemotherapeutic medication because of its potential against numerous cancer cell lines and ability to inhibit cancer cell proliferation. Despite these findings, curcumin has yet to be commercialized as a drug due to its low water solubility, low absorption, and restricted bioavailability. As a result, there is a demand for water-soluble curcumin with improved solubility, bioavailability, and thus bioactivity. In this study we report the synthesis and the anticancer activities of water-soluble curcumins derivatives with alkyl sulfonate moiety. The target water-soluble curcumin with alkyl sulfonate moieties was created utilizing a straightforward technique that involved reacting curcumin with various sultones. The cytotoxic (24 h) and cytostatic (72 h) anticancer effect on breast carcinoma (MCF-7), liver carcinoma (HepG2), skin melanoma (B16-F110), colon human cancer and HeLa cervical carcinoma cell lines viability % via MTT assay were determined for the prepared derivatives. Results showed that curcumin-derived compounds have a pronounced cytostatic anticancer effect rather than cytotoxic one in relation to the compound type, cancer cell line type, and examined concentration compared to curcumin. The curcumin sulfonates outperformed curcumin activity against the tested cancer cells and showed to be powerful anticancer candidate drugs as supported by the theoretical calculations. This is evident by their high capacity to form H-bonding during docking with the amino acid side chains and the Vina docking score.
Collapse
Affiliation(s)
- Alaa Janem
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ghader Omar
- Biology Department, Faculty of Sciences An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Othman Hamed
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Shehdeh Jodeh
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | | | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, Prishtina, 10000, Republic of Kosovo
- Materials Science-Nanochemistry Research Group, Nano Alb-Unit of Albanian Nanoscience and Nanotechnology, Tirana, 1000 Albania
| | - Waseem Mansour
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Saber Abu Jabal
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Oswa Fares
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ataa Jaser
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ameed Amireh
- Chemistry Department, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ghaleb Adwan
- Biology Department, Faculty of Sciences An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|
3
|
Yang SR, Wang R, Yan CJ, Lin YY, Yeh YJ, Yeh YY, Yeh YC. Ultrasonic interfacial crosslinking of TiO 2-based nanocomposite hydrogels through thiol-norbornene reactions for sonodynamic antibacterial treatment. Biomater Sci 2023. [PMID: 37128891 DOI: 10.1039/d2bm01950g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanocomposite (NC) hydrogels used for sonodynamic therapy (SDT) face challenges such as lacking interfacial interactions between the polymers and nanomaterials as well as presenting uneven dispersion of nanomaterials in the hydrogel network, reducing their mechanical properties and treatment efficiency. Here, we demonstrate a promising approach of co-engineering nanomaterials and interfacial crosslinking to expand the materials construction and biomedical applications of NC hydrogels in SDT. In this work, mesoporous silica-coated titanium dioxide nanoparticles with thiolated surface functionalization (TiO2@MS-SH) are utilized as crosslinkers to react with norbornene-functionalized dextran (Nor-Dex) through ultrasound-triggered thiol-norbornene reactions, forming TiO2@MS-SH/Nor-Dex NC hydrogels. The TiO2@MS-SH nanoparticles act not only as multivalent crosslinkers to improve the mechanical properties of hydrogels under ultrasound irradiation but also as reactive oxygen species (ROS) generators to allow the use of TiO2@MS-SH/Nor-Dex NC hydrogels in SDT applications. Particularly, the TiO2@MS-SH/Nor-Dex NC hydrogels present tailorable microstructures, properties, and sonodynamic killing of bacteria through the modulation of the ultrasound frequency. Taken together, a versatile TiO2-based NC hydrogel platform prepared under ultrasonic interfacial crosslinking reactions is developed for advancing the applications in SDT.
Collapse
Affiliation(s)
- Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, National Taiwan University, Taipei, Taiwan
- GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei, Taiwan
| | - Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Yun Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Pandey M, Singh AK, Pandey PC. Synthesis and in vitro antibacterial behavior of curcumin-conjugated gold nanoparticles. J Mater Chem B 2023; 11:3014-3026. [PMID: 36938847 DOI: 10.1039/d2tb02256g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Owing to the rise in multidrug-resistant bacterial diseases and the dwindling supply of newer antibiotics, it is crucial to discover newer compounds or modify current compounds for more effective antimicrobial therapies. According to reports, more than 80% of bacterial infections have been linked to bacterial biofilms. In addition to having antimicrobial properties, the hydrophobic polyphenol curcumin (Cur) also inhibits quorum sensing. The application of curcumin was constrained by its weak aqueous solubility and quick degradation. Over the past years, nanotechnology-based biomaterials with multi-functional characteristics have been engineered with high interest. The present study focused on the development of nano-biomaterials with excellent testifiers for bacterial infection in vitro. In this study, water dispersibility and stability of curcumin were improved through conjugation with gold nanoparticles. The successful synthesis of curcumin-conjugated gold nanoparticles (Cur-AuNPs) was confirmed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and UV-vis absorbance spectroscopy. Transmission electron microscopy (TEM) revealed an average particle size of about 10-13 nm. The antibacterial characteristics in terms of the minimum inhibitory concentration (MIC) of Cur-AuNP treatments were found to be lowest than those with AuNPs and Cur treatments. The quantitative analysis revealed the superior antibacterial characteristics of Cur-AuNP-treated bacterial cells compared to the untreated samples. In addition, curcumin-conjugated AuNPs, produced more reactive oxygen species and increased the membrane permeability. Besides, the biocompatibility of Cur-AuNPs was also assessed quantitatively and qualitatively. Statistical analyses revealed the augmented MG-63 cell proliferation in Cur-AuNPs compared to those with Cur and AuNPs treatments. Overall, Cur-AuNPs exhibited enhanced antibacterial, and antibiofilm characteristics and cytocompatibility.
Collapse
Affiliation(s)
- Maneesha Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Ashish Kumar Singh
- Model Rural Health Research Unit, Datia; Indian Council of Medical Research-National Institute of Research in Tribal Health (ICMR-NIRTH), Jabalpur-482003, India
| | - P C Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
5
|
Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem 2022; 298:102352. [PMID: 35940306 PMCID: PMC9478923 DOI: 10.1016/j.jbc.2022.102352] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Drug resistance by pathogenic microbes has emerged as a matter of great concern to mankind. Microorganisms such as bacteria and fungi employ multiple defense mechanisms against drugs and the host immune system. A major line of microbial defense is the biofilm, which comprises extracellular polymeric substances that are produced by the population of microorganisms. Around 80% of chronic bacterial infections are associated with biofilms. The presence of biofilms can increase the necessity of doses of certain antibiotics up to 1000-fold to combat infection. Thus, there is an urgent need for strategies to eradicate biofilms. Although a few physicochemical methods have been developed to prevent and treat biofilms, these methods have poor efficacy and biocompatibility. In this review, we discuss the existing strategies to combat biofilms and their challenges. Subsequently, we spotlight the potential of enzymes, in particular, polysaccharide degrading enzymes, for biofilm dispersion, which might lead to facile antimicrobial treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Simran Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
6
|
Karami-Zarandi M, Ghale HE, Ranjbar R. Characterization of virulence factors and antibacterial activity of curcumin in hypervirulent Klebsiella pneumoniae. Future Microbiol 2022; 17:529-540. [PMID: 35322691 DOI: 10.2217/fmb-2021-0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Klebsiella pneumoniae is a threat to human health due to its carbapenem-resistance and hypervirulent phenotype. Curcumin is a well-known antimicrobial agent. Hence, it is important to investigate the antivirulence activity of curcumin against hypervirulent K. pneumoniae isolates. Materials & methods: Carbapenemase presence and prevalence of hypervirulent isolates were determined. Inhibition of biofilm formation and expression of virulence genes were analyzed by colorimetry and real-time PCR tests. Results: Sixteen hypervirulent K. pneumoniae isolates were identified. The optimum activity of curcumin was detected at 1/2 minimum inhibitory concentration. Curcumin possessed appropriate antibiofilm, anti-efflux and anticapsule activities. Conclusion: According to the crucial role of biofilm, capsule and efflux systems in the pathogenesis of hypervirulent K. pneumoniae, curcumin may be used to improve anti-Klebsiella treatment.
Collapse
Affiliation(s)
- Morteza Karami-Zarandi
- Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 14359-16471, Iran
| | - Hadi Eg Ghale
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 14359-16471, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 14359-16471, Iran
| |
Collapse
|
7
|
Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021; 22:7130. [PMID: 34281181 PMCID: PMC8267827 DOI: 10.3390/ijms22137130] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.
Collapse
Affiliation(s)
| | | | | | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araraquara 14800-000, Brazil; (J.K.T.-G.); (Y.V.-C.); (A.B.S.)
| |
Collapse
|
8
|
Abstract
The recent development of several methods for extracting curcumin from the root of the plant Curcuma longa has led to intensified research on the properties of curcumin and its fields of application. Following the studies and the accreditation of curcumin as a natural compound with antifungal, antiviral, and antibacterial properties, new fields of application have been developed in two main directions—food and medical, respectively. This review paper aims to synthesize the fields of application of curcumin as an additive for the prevention of spoilage, safety, and quality of food. Simultaneously, it aims to present curcumin as an additive in products for the prevention of bacterial infections and health care. In both cases, the types of curcumin formulations in the form of (nano)emulsions, (nano)particles, or (nano)composites are presented, depending on the field and conditions of exploitation or their properties to be used. The diversity of composite materials that can be designed, depending on the purpose of use, leaves open the field of research on the conditioning of curcumin. Various biomaterials active from the antibacterial and antibiofilm point of view can be intuited in which curcumin acts as an additive that potentiates the activities of other compounds or has a synergistic activity with them.
Collapse
|
9
|
Yadav S, Singh AK, Agrahari AK, Pandey AK, Gupta MK, Chakravortty D, Tiwari VK, Prakash P. Galactose-Clicked Curcumin-Mediated Reversal of Meropenem Resistance among Klebsiella pneumoniae by Targeting Its Carbapenemases and the AcrAB-TolC Efflux System. Antibiotics (Basel) 2021; 10:388. [PMID: 33916608 PMCID: PMC8066637 DOI: 10.3390/antibiotics10040388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
In over eighty years, despite successive antibiotics discoveries, the rapid advent of multidrug resistance among bacterial pathogens has jolted our misapprehension of success over them. Resistance is spreading faster than the discovery of new antibiotics/antimicrobials. Therefore, the search for better antimicrobials/additives becomes prudent. A water-soluble curcumin derivative (Curaq) was synthesised, employing a Cu (I) catalysed 1, 3-cyclo addition reaction; it has been evaluated as a potential treatment for multidrug-resistant isolates and as an antibiotic adjuvant for meropenem against hypervirulent multidrug-resistant Klebsiella pneumoniae isolates. We also investigated its solubility and effect over carbapenemase activity. Additionally, we investigated its impact on the AcrAB-TolC system. We found that Curaq inhibited bacterial growth at a minimal concentration of 16 µg/mL; at a 32 µg/mL concentration, it killed bacterial growth completely. Only nine (9.4%) Klebsiella isolates were sensitive to meropenem; however, after synergising with Curaq (8 µg/mL), 85 (88.54%) hvKP isolates became sensitive to the drug. The Curaq also inhibited the AcrAB-TolC efflux system at 1 µg/mL concentration by disrupting the membrane potential and causing depolarisation. The kinetic parameters obtained also indicated its promise as a carbapenemase inhibitor. These results suggest that Curaq can be an excellent drug candidate as a broad-spectrum antibacterial and anti-efflux agent.
Collapse
Affiliation(s)
- Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (S.Y.); (A.K.S.); (M.K.G.)
| | - Ashish Kumar Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (S.Y.); (A.K.S.); (M.K.G.)
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India;
| | - Anand K. Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India;
| | - Akhilesh Kumar Pandey
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India;
| | - Munesh Kumar Gupta
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (S.Y.); (A.K.S.); (M.K.G.)
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India;
- Center for Biosystem Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Vinod Kumar Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India;
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (S.Y.); (A.K.S.); (M.K.G.)
| |
Collapse
|
10
|
Yadav S, Singh AK, Agrahari AK, Sharma K, Singh AS, Gupta MK, Tiwari VK, Prakash P. Making of water soluble curcumin to potentiate conventional antimicrobials by inducing apoptosis-like phenomena among drug-resistant bacteria. Sci Rep 2020; 10:14204. [PMID: 32848171 PMCID: PMC7450046 DOI: 10.1038/s41598-020-70921-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022] Open
Abstract
The upsurge of multidrug resistant bacterial infections with declining pipeline of newer antibiotics has made it imperative to develop newer molecules or tailor the existing molecules for more effective antimicrobial therapies. Since antiquity, the use of curcumin, in the form of Curcuma longa paste, to treat infectious lesions is unperturbed despite its grave limitations like instability and aqueous insolubility. Here, we utilized "click" chemistry to address both the issues along with improvisation of its antibacterial and antibiofilm profile. We show that soluble curcumin disrupts several bacterial cellular processes leading to the Fenton's chemistry mediated increased production of reactive oxygen species and increased membrane permeability of both Gram-positive and Gram-negative bacteria. We here report that its ability to induce oxidative stress can be harnessed to potentiate activities of ciprofloxacin, meropenem, and vancomycin. In addition, we demonstrated that the soluble curcumin reported herein even sensitizes resistant Gram-negative clinical isolates to the Gram-positive specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. This work shows that the soluble curcumin can be used to enhance the action of existing antimicrobials against both Gram-positive and Gram-negative bacteria thus strengthening the antibiotic arsenal for fighting resistant bacterial infections for many years to come.
Collapse
Affiliation(s)
- Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Kumar Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kavyanjali Sharma
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop Shyam Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Munesh Kumar Gupta
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother Res 2020; 34:1745-1760. [PMID: 32157749 DOI: 10.1002/ptr.6642] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Curcumin is a naturally occurring nutraceutical compound with a number of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antitumor, and cardioprotective. This plant-derived chemical has demonstrated great potential in targeting various signaling pathways to exert its protective effects. Signal transducers and activator of transcription (STAT) is one of the molecular pathways involved in a variety of biological processes such as cell proliferation and cell apoptosis. Accumulating data demonstrates that the STAT pathway is an important target in treatment of a number of disorders, particularly cancer. Curcumin is capable of affecting STAT signaling pathway in induction of its therapeutic impacts. Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway. Furthermore, studies show that inhibition of JAK/STAT pathway by curcumin is involved in reduced migration and invasion of cancer cells. Curcumin normalizes the expression of JAK/STAT signaling pathway to exert anti-diabetic, renoprotective, and neuroprotective impacts. At the present review, we provide a comprehensive discussion about the effect of curcumin on JAK/STAT signaling pathway to direct further studies in this field.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham G Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
12
|
Wang Y, Sun Y, Liu S, Zhi L, Wang X. Preparation of sonoactivated TiO 2-DVDMS nanocomposite for enhanced antibacterial activity. ULTRASONICS SONOCHEMISTRY 2020; 63:104968. [PMID: 31972375 DOI: 10.1016/j.ultsonch.2020.104968] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 05/19/2023]
Abstract
Titanium dioxide (TiO2) nanoparticle has good photo-/sono-catalytic features, the reunion of this particle in solution-phase generally limits the extensive biomedical application. In the present study, the aggregation of TiO2 nanoparticles was alleviated by facile fabrication under different pH conditions. A novel TiO2 nanocomposite was further synthesized by properly conjugation with trace amount of DVDMS sensitizer (named DFT). The characterization, sonoactivity, as well as the antibacterial efficiency were specially evaluated. The results showed that the sonochemical activity of DFT was greatly improved as compared with the simple surface modification of TiO2 (F-TiO2) and free DVDMS, regarding to the hydroxyl radicals and singlet oxygen yields using the same ultrasound exposure. Moreover, ultrasonic stimulation of DFT exhibited excellent bacterial eradication, with up to 92.41% of killing efficiency in S. aureus. The flow cytometry analysis indicated an increased intracellular ROS and membrane disturbance by combination of DFT and ultrasound. The findings suggest that the proper fabrication and DVDMS incorporation greatly improved the sonocatalytic process of TiO2, and the ultrasound based biomedical applications of DFT deserve future deep investigation.
Collapse
Affiliation(s)
- Yihui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Shupei Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lijuan Zhi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
13
|
Structural studies on thiosalicylate complexes of Zn(II) & Hg(II). First insight into Zn(II)-thiosalicylate complex as potential antibacterial, antibiofilm and anti-tumour agent. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Agrahari AK, Singh AK, Singh AS, Singh M, Maji P, Yadav S, Rajkhowa S, Prakash P, Tiwari VK. Click inspired synthesis of p-tert-butyl calix[4]arene tethered benzotriazolyl dendrimers and their evaluation as anti-bacterial and anti-biofilm agents. NEW J CHEM 2020. [DOI: 10.1039/d0nj02591g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CuAAC inspired calix-[4]arene tethered benzotriazolyl dendrimers were developed and investigated for their therapeutic potential, where 7 displayed potent anti-bacterial and anti-biofilm activities against drug-resistant & slime producing organisms.
Collapse
Affiliation(s)
- Anand K. Agrahari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Ashish K. Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Anoop S. Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Mala Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| | - Pathik Maji
- Department of Chemistry
- Guru Ghasidas University
- Bilaspur-495009
- India
| | - Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Sanchayita Rajkhowa
- Department of Chemistry
- Jorhat Institute of Science and Technology
- Jorhat-785010
- India
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory
- Department of Microbiology, Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vinod K. Tiwari
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
| |
Collapse
|
15
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|