1
|
Understanding the role of ancillary ligands in the interaction of Ru(II) complexes with covalent arylamine-DNA adducts. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Yin C, Wang Z, Ding X, Chen X, Wang J, Yang E, Wang W, Martin LL, Sun D. Crystalline ruthenium polypyridine nanoparticles: a targeted treatment of bacterial infection with multifunctional antibacterial, adhesion and surface-anchoring photosensitizer properties. J Mater Chem B 2021; 9:3808-3825. [PMID: 33979422 DOI: 10.1039/d1tb00103e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic antibacterial therapy employs nanocomposites as an alternative to traditional antibiotics for the treatment of bacterial infections. However, many of these antibacterial materials are less effective towards bacteria than traditional drugs, either due to poor specificity or antibacterial activity. This can result in needless and excessive drug use in treatments. This paper describes a multifunctional drug delivery nanoparticle (MDD-NP), Sph-Ru-MMT@PZ, based on the nanostructured-form of [Ru(bpy)2dppz] (PF6)2 (Sph-Ru), which has adhesive properties towards its microbial targets as well as surface-anchoring photosensitizer effects. The design and construction of MDD-NP is based on the adhesive properties of the outer layers of montmorillonite (MMT), which allows Sph-Ru-MMT@PZ to successfully reach its bacterial target; the outer layer of the E. coli. In addition, under 670 nm red irradiation therapy (R-IT), the surface-anchoring properties use the photosensitizer phthalocyanine zinc (PZ) to destroy the bacteria by producing reactive oxygen species (ROS) which causes cell lysis of E. coli. More importantly, Sph-Ru-MMT@PZ has no fluorescence response to live E. coli with intact cell membranes but selectively stained and demonstrated fluorescence during membrane damage of early-stage cells as well as exposure of nuclear materials at late-stage of cell lysis. Sph-Ru-MMT@PZ showed beneficial and synergistic anti-infective effects in vivo by inhibiting the E. coli infection-induced inflammatory response and eventually promoting wound healing in mice. This new strategy for high precision antibacterial therapy towards specific targets, provides an exciting opportunity for the application of multifunctional nanocomposites towards microbial infections.
Collapse
Affiliation(s)
- Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoyuan Ding
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoqing Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Jingyuan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Dayanidhi PD, Vaidyanathan VG. Structural insights into the recognition of DNA defects by small molecules. Dalton Trans 2021; 50:5691-5712. [PMID: 33949406 DOI: 10.1039/d0dt04289g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies on the binding interaction of small molecules and nucleic acids have been explored for their biological applications. With excellent photophysical/chemical properties, numerous metal complexes have been studied as structural probes for nucleic acids. The recognition of DNA defects is of high importance due to their association with various types of cancers. Small molecules that target DNA defects in a specific and selective manner offer a new avenue for developing novel drugs and diagnostic tools. Transition metal complexes have been studied as probes for abasic sites and DNA/RNA mismatches. By changing the ligand structure or metal center, the probing efficiency of the metal complexes varies towards the defects. In this perspective, we have discussed mainly the structural requirement of metal complexes as probes for abasic sites, mismatches, and covalent DNA adducts, followed by the challenges and future directions.
Collapse
Affiliation(s)
- P David Dayanidhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. and Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - V G Vaidyanathan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. and Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|