1
|
Luo Y, Luo S, Zhu Q. Inherently Chiral Seven- and Eight-Membered Rings: Enantioselective Synthesis and Applications. J Org Chem 2025; 90:5307-5322. [PMID: 40243159 DOI: 10.1021/acs.joc.5c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Compared to smaller or larger rings, seven- and eight-membered carbo- and heterocycles are typically nonplanar and exhibit greater conformational rigidity. This property alone can impart chirality to certain 7- or 8-membered ring systems. Herein, we summarize recent achievements in the enantioselective synthesis of this class of inherently chiral medium rings, including both ring construction and ring modification, as well as the applications of chiral ligands and catalysts derived from these rigid cyclic scaffolds in asymmetric catalysis.
Collapse
Affiliation(s)
- Yu Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Doan TH, Chardon A, Vanthuyne N, Ramos TN, Tumanov N, Fusaro L, Albalat M, Collard L, Wouters J, Champagne B, Berionni G. Atropisomerism in Triarylboranes: Lewis Base Assisted Rotation at C-B Stereogenic Axis in Asymmetrical Boron Lewis Acids. Angew Chem Int Ed Engl 2025; 64:e202421931. [PMID: 39969421 DOI: 10.1002/anie.202421931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
The synthesis, properties and structural requirements for atropisomerism at the C-B bond in boron Lewis acids such as triarylboranes have been understudied so far. We report the first series of atropisomeric triarylboranes constituted of a naphthyl rotor and a dihydro-9-bora-anthracenyl stator subunits, connected by a C-B stereogenic axis. Through systematic crystallographic, kinetic, photophysical and quantum chemical studies, the mechanisms, rates and barriers of diastereomerization and enantiomerization were determined. The orthogonal arrangement between the naphthyl and the dihydro-9-bora-anthracenyl scaffold moiety hamper the rotation of these two moieties around their Csp2-B bonds, enabling chiral resolution leading to enantiopure triarylboranes of high configurational stability. Furthermore, we fully elucidated a Lewis-base assisted pathway controlling the rotation speed at the C-B stereogenic axis, enabling the atropisomerical behavior of these triarylboranes be controlled by a Lewis base.
Collapse
Affiliation(s)
- Thu-Hong Doan
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Aurélien Chardon
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Med, FSCM, Chiropole, Marseille, France
| | - Tárcius N Ramos
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Nikolay Tumanov
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Luca Fusaro
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Muriel Albalat
- Aix Marseille Univ, CNRS, Centrale Med, FSCM, Chiropole, Marseille, France
| | - Laurent Collard
- Institute of Condensed Matter and Nanosciences-Molecules, UCLouvain -, Place Louis Pasteur 1, Louvain la Neuve, bte L4.01.03
| | - Johan Wouters
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Benoît Champagne
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Guillaume Berionni
- Department of Chemistry, NISM Research Institute, University of Namur -, 61 Rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
3
|
Li S, Han Y, Yang Z, Wang C, Feng R, Zeng M, Liu Z, Zhang Y. Rhodium(III)-Catalyzed Redox-Neutral [4 + 2] Annulation of 3,5-Diaryloxadiazoles with Alkynes: A Dual C-H Activation Strategy for Constructing C-N Atropisomers. Org Lett 2025. [PMID: 40261209 DOI: 10.1021/acs.orglett.5c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A rhodium(III)-catalyzed dual-ring formation via cascade C-H activation/[4 + 2] annulation of 3,5-diaryoxadiazoles with alkynes was developed. This strategy has been demonstrated with a variety of 3,5-diaryloxadiazoles and alkynes, and it has been successfully scaled up to gram-scale synthesis, highlighting its potential significance in the direct construction of C-N atropisomers. Furthermore, the cleavage of the N-O bond is essential for the formation of the bicyclic structure in the absence of an external oxidant. Mechanistic studies revealed that cleavage of the C-H bond at the 3-phenyl group of oxadiazole was likely a rate-determining step in this reaction.
Collapse
Affiliation(s)
- Siyuan Li
- Zhejiang Province Key Laboratory of Traditional Process Substitution Technology for Fin Chemicals, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yinsong Han
- Zhejiang Province Key Laboratory of Traditional Process Substitution Technology for Fin Chemicals, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Zhen Yang
- Zhejiang Province Key Laboratory of Traditional Process Substitution Technology for Fin Chemicals, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Chen Wang
- Zhejiang Province Key Laboratory of Traditional Process Substitution Technology for Fin Chemicals, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ruokun Feng
- Zhejiang Province Key Laboratory of Traditional Process Substitution Technology for Fin Chemicals, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Minfeng Zeng
- Zhejiang Province Key Laboratory of Traditional Process Substitution Technology for Fin Chemicals, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Liao G, Shi BF. Synthesis of Axially Chiral Compounds via Transition Metal-Catalyzed Atroposelective C-H Functionalization. Acc Chem Res 2025. [PMID: 40223767 DOI: 10.1021/acs.accounts.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
ConspectusAxially chiral skeletons are prevalent in natural products and biologically important compounds, and they are widely utilized as privileged scaffolds in enantioselective catalysis. Consequently, the catalytic atroposelective synthesis of enantiopure atropisomers has garnered considerable attention. A variety of synthetic strategies involving metal catalysis or organocatalysis have been developed. Among these elegant approaches, transition metal-catalyzed enantioselective C-H activation has emerged as an atom- and step-economical strategy to streamline the construction of axially chiral compounds in recent years.In this Account, we discuss our efforts in the atroposelective synthesis of different types of axially chiral compounds, including biaryls, atropisomeric styrenes, and C-N atropisomers, via transition metal-catalyzed enantioselective C-H activation strategies. To this end, we have developed several approaches, including the chiral transient directing group (cTDG) strategy using catalytic Pd(OAc)2 and tert-leucine (Tle), as well as catalytic enantioselective systems involving Pd(II)/chiral phosphoric acid (CPA), Pd(II)/l-pyroglutamic acid (pGlu), Pd(0)/norbornene cooperative catalysis with a chiral biimidazoline (BiIM) ligand, and Co(II)/salicyloxazoline (Salox).At the outset, we successfully applied the cTDG strategy to access axially chiral biaryl aldehydes through Pd-catalyzed atroposelective C-H olefination, alkynylation, allylation, naphthylation, and alkylation. The efficacy of these methods has been demonstrated in the enantioselective synthesis of chiral aldehyde catalysts and natural products, such as TAN-1085, (+)-isochizandrin, and (+)-steganone. To facilitate the synthesis of biaryl atropisomers with diverse functionalities, we developed a novel Pd(II)/CPA catalytic system, which enables the preparation of various axially chiral quinolines, biaryl-2-amines, and atropisomeric biaryls bearing chalcogenoether units with high enantioselectivities. The Pd(II)/CPA system also allows for the synthesis of more challenging conjugated diene-based axially chiral styrenes.Nonbiaryl atropisomers, such as axially chiral styrenes and anilides, present synthetic challenges due to their conformational instability and higher degree of rotational freedom compared to their biaryl counterparts. We have addressed these challenges and achieved the highly efficient synthesis of atropisomeric styrenes and anilides using Pd(II)/pGlu and Pd(0)/norbornene/BiIM catalysis. In addition to palladium catalysis, cobalt(II)/Salox catalysis has also been developed for the construction of chiral biaryls, atropisomers with vicinal C-N and C-C stereogenic axes, remote distinct C-N diaxes, and chiral calix[4]arenes featuring both inherent and axial chirality. We anticipate that the enantioselective C-H activation strategy will find broad applications in the construction of synthetically useful axially chiral compounds.
Collapse
Affiliation(s)
- Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Gou BB, Shen WJ, Gao YJ, Gu Q, You SL. Rhodium-Catalyzed Atroposelective Synthesis of Axially Chiral 1-Aryl Isoquinolines via De Novo Isoquinoline Formation. Angew Chem Int Ed Engl 2025:e202502131. [PMID: 40178184 DOI: 10.1002/anie.202502131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
Axially chiral heterobiaryl moieties serve as core skeletons for bioactive molecules, chiral ligands, and organocatalysts. Enantioselective de novo formation of the heteroaromatic ring is one of the most straightforward approaches to access enantioenriched heterobiaryls. Herein, an enantioselective de novo construction of isoquinolines by rhodium-catalyzed C─H activation/annulation of aromatic imines with alkynes is disclosed. This approach is operationally simple, allowing for rapid access to a variety of axially chiral 1-aryl isoquinolines in excellent yields and enantioselectivity (up to 98% yield and 99:1 er). The synthetic application of the current method was demonstrated by functional group transformations and suitability for millimolar-scale reactions. Detailed experimental and theoretical studies revealed the turnover-limiting step and provided insight into the origin of the enantioselectivity for this reaction.
Collapse
Affiliation(s)
- Bo-Bo Gou
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
6
|
Qian PF, Wu YX, Hu JH, Chen JH, Zhou T, Yao QJ, Zhang ZH, Wang BJ, Shi BF. Atroposelective Synthesis of Pyridoindolones Bearing Two Remote Distinct C-N Axes through Cobalt-Catalyzed Enantioselective C-H Activation. J Am Chem Soc 2025; 147:10791-10802. [PMID: 40079535 DOI: 10.1021/jacs.5c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
C-N axially chiral compounds represent an important class of atropisomers that are prevalent in bioactive and material molecules. Despite recent advances in synthetic methodologies, the asymmetric construction of atropisomers featuring multiple C-N axes has been rarely explored, significantly limiting their further applications. Herein, we report a novel atroposelective synthesis of diaxially chiral pyridoindolones featuring both six-five and six-six C-N axes through cobalt-catalyzed asymmetric C-H annulation. This approach demonstrates exceptional efficiency, yielding a diverse array of chiral pyridoindolones with excellent yields and atroposelectivities (60 examples, up to >99% yield, >99% ee, and >20:1 dr). Mechanistic studies revealed that the stereochemistry of both C-N axes were generated and fixed simultaneously during the C-H cyclometalation step, along with an unexpected asymmetric amplification effect. The practicality of this protocol is further underscored by successful gram-scale syntheses and various transformations, including the formation of a chiral phosphine ligand. Notably, exceptional photoluminescence quantum yields (ΦF up to 0.99) and positive solvatochromism were observed, coupled with significant chiroptical properties, underscoring the potential applications of these compounds in organic fluorescent materials.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yan-Xuan Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jia-Heng Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zi-Hang Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Jie Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Echizen K, Akine S, Furuyama T, Nishimura T, Maeda K, Taniguchi T. Structures and Properties of Axially Chiral (2E,4E,6Z,8Z)-Nona-2,4,6,8-Tetraenoate Derivatives Highly Substituted by Aryl Groups. Chemistry 2025; 31:e202404565. [PMID: 39803981 DOI: 10.1002/chem.202404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Unprecedented (2E,4E,6Z,8Z)-nona-2,4,6,8-tetraenoate derivatives highly substituted by aryl groups have been synthesized by the reaction of rhodium complexes having aryl-substituted hexa-1,3,5-trienyl ligands with acrylates. These compounds have potential axial chirality, and their enantiomers are isolable by the chiral HPLC technique. Although the racemization barrier of isolated enantiomers was not high, it was found that a cyclic dimer synthesized by head-to-tail transesterification of a modified analog has quite a stable axial chirality even at a high temperature. From a structural analogy with tetraphenylethene, those compounds are emissive in the solid state, and the chiral cyclic dimer exhibits solid-state circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Taniyuki Furuyama
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
8
|
Wootton JM, Roper NJ, Morris CE, Maguire VE, Duff LC, Waddell PG, Whitwood AC, Gammons RJ, Miah AH, Lynam JM, Armstrong RJ, Unsworth WP. Stereoselective synthesis of atropisomeric amides enabled by intramolecular acyl transfer. Chem Sci 2025; 16:3938-3945. [PMID: 39886439 PMCID: PMC11776508 DOI: 10.1039/d4sc05760k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
C-N atropisomeric amides are important compounds in medicinal chemistry and agrochemistry. Atropselective methods for their synthesis are therefore important. In this study, a novel strategy to make C-N atropisomeric amides based on intramolecular acyl transfer via a tethered Lewis basic pyridine or tertiary amine group is reported. The reactions operate under kinetic control and in most cases are highly atropselective, with the products isolable as pure, single diastereoisomers following chromatography. The kinetically favored atropisomer can also be isomerised into the alternative thermodynamically favored atropisomer upon heating. The kinetic and thermodynamic outcomes are supported by computational studies, while additional mechanistic studies support operation via initial fast acylation of the Lewis basic group, followed by rate-determining acyl transfer, which also enables control over the atropisomer formed.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York York YO10 5DD UK
| | - Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Catrin E Morris
- Department of Chemistry, University of York York YO10 5DD UK
| | | | - Lee C Duff
- Department of Chemistry, University of York York YO10 5DD UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | | | | | | | - Jason M Lynam
- Department of Chemistry, University of York York YO10 5DD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | | |
Collapse
|
9
|
Li X, Wang XZ, Shen B, Chen QY, Xiang H, Yu P, Liu PN. Organocatalyzed diastereo- and enantioselective synthesis of N-N atropisomeric isoindolinones bearing central chirality. Nat Commun 2025; 16:1662. [PMID: 39955272 PMCID: PMC11830031 DOI: 10.1038/s41467-025-56838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Methods for catalytically constructing of N-N axially chiral scaffolds have garnered significant attention since such compounds are widely present in natural products, bioactive molecules, and organic materials. Herein, we report a highly diastereoselective and enantioselective organocatalyzed [4 + 1] annulation method for synthesizing diverse valuable isoindolinones that possessing N-N axial and central chiralities. This methodology uses a chiral phosphoric acid as a bifunctional catalyst to promote a cascade sequence involving two nucleophilic additions, dehydration, and dearomatization processes. Control experiments and DFT calculations revealed a possible mechanism in which the stereoselectivity-determining step is likely to involve the irreversible formation of a hydroxy biaryl intermediate. Additionally, preliminary biological activity studies showed that some of these N-N axially chiral isoindolinones have potential in suppressing tumor-cell proliferation.
Collapse
Affiliation(s)
- Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xin-Ze Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian-Yu Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2025; 54:1102-1124. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
Weng CY, Liu LG, Sun M, Lu X, Hong X, Ye LW, Zhou B. Enantioselective Synthesis of Axially Chiral Tetrasubstituted Alkenes by Copper-Catalyzed C(sp 2)-H Functionalization of Arenes with Vinyl Cations. Angew Chem Int Ed Engl 2025; 64:e202418254. [PMID: 39565118 DOI: 10.1002/anie.202418254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Axially chiral tetrasubstituted alkenes are of increasing value and interest in chemistry-related areas. However, their catalytic asymmetric synthesis remains elusive, owing to the high steric repulsion and relatively low conformational stability. Herein, we disclose the straightforward construction of atropisomeric tetrasubstituted alkenes by effective enantiocontrol in a reaction with vinyl cation intermediates. This copper-catalyzed enantioselective C(sp2)-H functionalization of sterically hindered (hetero)arenes with vinyl cations enables the efficient and atom-economical preparation of axially chiral acyclic tetrasubstituted styrenes and pyrrolyl ethylenes with high atroposelectivities. Importantly, this reaction represents the first example of the assembly of axially chiral alkenes via vinyl cations. Computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity, Z/E selectivity and enantioselectivity. The synthetic utility has been demonstrated by diverse product derivatizations, chiral organocatalyst synthesis, as well as further applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Chen-Yong Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Miao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Wang B, Zhao J, Ying J, Cheng B, Lu Z. Asymmetric Heck Silylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2025; 64:e202421500. [PMID: 39794289 DOI: 10.1002/anie.202421500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98 % ee. Aryl and alkyl groups as well as quaternary carbon centers at the 4-position of vinylcyclohexane could be well tolerated, featuring good functional group tolerance. The gram-scale reaction proceeds smoothly under mild conditions even with 0.5 mol % catalyst loading. A possible mechanism has been proposed, in which enantioselectivity is controlled by alkene insertion. A templating strategy that enhances weak bond interaction is employed to control regioselectivity by modifying the substituents on the ligand and silane.
Collapse
Affiliation(s)
- Bingcheng Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiajin Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Ying
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Biao Cheng
- College of Tobacco Science Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Tong S, Pu J, Qi Y, Li SW. Chiral Phosphoric Acid-Catalyzed Asymmetric Synthesis of Axially Chiral Arylpyrazole. Org Lett 2025; 27:932-936. [PMID: 39846447 DOI: 10.1021/acs.orglett.4c03996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A chiral phosphoric acid-catalyzed efficient, operationally simple, general method for straightforward syntheses of axially chiral arylpyrazole employing N-alkyl of 3-aryl-5-aminopyrazoles reacting with azonaphthalenes was achieved. A wide variety of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities were obtained under mild conditions. In addition, a scaled-up experiment and postmodification of the chiral product further highlighted the synthetic utility.
Collapse
Affiliation(s)
- Shujun Tong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiaqi Pu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yu Qi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
14
|
Qu HY, Zheng WH. Construction of Axially Chiral Tetra-ortho-Substituted Biaryls by Palladium-Catalyzed Asymmetric Suzuki-Miyaura Coupling. Chem Asian J 2025:e202401906. [PMID: 39853951 DOI: 10.1002/asia.202401906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/26/2025]
Abstract
Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves. This method provides a variety of products in good enantioselectivities and good yields (up to 90.7 : 9.3 er and 82 % yield) under mild conditions. Further control experiments indicate that the chiral side chain is crucial to the enantioselectivity.
Collapse
Affiliation(s)
- Hong-Yu Qu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
15
|
Zhang P, Yuan B, Li J, Li C, Guo J, Zhang B, Qu G, Su H, Turner NJ, Sun Z. Biocatalytic Desymmetrization for the Atroposelective Synthesis of Axially Chiral Biaryls Using an Engineered Imine Reductase. Angew Chem Int Ed Engl 2025; 64:e202416569. [PMID: 39271458 DOI: 10.1002/anie.202416569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in the academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this study, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities (24 examples, up to 99 % ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily scaled up to allow isolation of the atropisomeric product in 99 % ee and 82 % yield. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivity and enzymatic activity. The current strategy expands the scope of the IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.
Collapse
Affiliation(s)
- Pengpeng Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Junkuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Jiaxin Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Bowen Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Hao Su
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, U. K
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| |
Collapse
|
16
|
Zhang JW, Zhang Y, Huang Y. Organocatalytic Atroposelective Synthesis of Axially Chiral Indolyl Ketosulfoxonium Ylides. Angew Chem Int Ed Engl 2025; 64:e202413102. [PMID: 39105615 DOI: 10.1002/anie.202413102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Despite recent advancements in the catalytic generation of axial chirality, reports on non-biaryl atropisomers remain limited because of the stringent steric requirements necessary to establish effective rotational brakes. Herein, we present a novel class of monoaryl atropisomers, indolyl ketosulfoxonium ylides, and describe an organocatalytic protocol for their synthesis. We discovered that a chiral phosphoric acid (CPA) serves as an effective catalyst for the highly enantioselective iodination of ortho-aminophenylethynyl sulfoxonium ylides. Under the optimized reaction conditions, a strong preference for the intended iodination process over the competing protonation was observed. Subsequently, intramolecular amide cyclization enabled the formation of sterically congested indole fragments. Furthermore, the synthetic utility of the products was demonstrated by showcasing versatile transformations into other chiral scaffolds with complete retention of optical purity.
Collapse
Affiliation(s)
- Ji-Wei Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
17
|
Chen HH, Chen YB, Gao JZ, Ye LW, Zhou B. Copper-Catalyzed Enantioselective Dehydro-Diels-Alder Reaction: Atom-Economical Synthesis of Axially Chiral Carbazoles. Angew Chem Int Ed Engl 2024; 63:e202411709. [PMID: 39267546 DOI: 10.1002/anie.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The dehydro-Diels-Alder (DDA) reaction is a powerful method for the construction of aromatic compounds. However, the enantioselective DDA reaction has been rarely developed, probably due to the competitive thermal reaction. Herein, we report a copper-catalyzed enantioselective DDA reaction through vinyl cation pathway. The reaction leads to the atom-economical synthesis of axially chiral phenyl and indolyl carbazoles in generally excellent yields with good to excellent atroposelectivities. This methodology represents the first example of non-noble metal-catalyzed enantioselective DDA reaction. Notably, new chiral ligand and organocatalyst derived from the constructed axially chiral carbazole are demonstrated to be useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Hua-Hong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jun-Zhe Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
18
|
Zhan W, Hu J, Chen X, Luo G, Song X. Atroposelective synthesis of axially chiral indolizinylpyrroles by catalytic asymmetric Paal-Knorr reaction. Chem Commun (Camb) 2024; 60:14984-14987. [PMID: 39589073 DOI: 10.1039/d4cc04678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We present herein a highly efficient atroposelective synthesis of five/five-membered N-indolizinylpyrrole through the chiral phosphoric acid (CPA) catalyzed Paal-Knorr reaction of 3-aminoindolizines and 1,4-diketones. The reaction features mild reaction conditions, broad substrate scope and excellent enantioselectivity. Moreover, this method provides a facile approach to a novel axially chiral indolizine-pyrrole framework.
Collapse
Affiliation(s)
- Wenyan Zhan
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Jiameng Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaoxiao Song
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| |
Collapse
|
19
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
20
|
Parthiban J, Garg D, Sivaguru J. Photoinduced Transformations with Diverse Maleimide Scaffolds. Molecules 2024; 29:4895. [PMID: 39459263 PMCID: PMC11510057 DOI: 10.3390/molecules29204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Maleimides serve as crucial components in various synthetic processes and are of significant interest to researchers in bioorganic chemistry and biotechnology. Although thermal reactions involving maleimides have been studied extensively, light-mediated reactions with maleimides remain relatively underutilized. This review focuses on understanding the behavior of maleimides in their excited state, particularly their role as synthetic scaffolds for excited-state reactions. Specific emphasis is placed on the diverse photoreactions involving maleimides and photophysical evaluation from our research group.
Collapse
Affiliation(s)
| | | | - Jayaraman Sivaguru
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, 141 Overman Hall, Bowling Green, OH 43403, USA; (J.P.); (D.G.)
| |
Collapse
|
21
|
Sau S, Kanikarapu S, Gandon V, Sahoo AK. Chiral Sulfoximine Mediated Cobalt-Catalyzed Atropselective C-H Annulation of Ynamides. Chemistry 2024; 30:e202401639. [PMID: 38829278 DOI: 10.1002/chem.202401639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
An achiral Cp*Co(III)-catalyzed enantioselective C-H activation/annulation of chiral sulfoximine-enabled thioamides with ynamides is presented herein. This method successfully synthesizes axially chiral five-membered 2-amidoindenones with good enantiocontrol. Interestingly, the annulation with chiral oxazolidone-containing ynamides could provide a separable mixture of diastereomers (up to ~10 : 1 dr). Moreover, enantiopure sulfoximines could be recovered with ~99 % purity, making this method practical. DFT studies show valuable insight into the mechanism and origin of asymmetric induction.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, 17 avenue des Sciences, 91400, Orsay, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
22
|
Gao G, Liang PY, Jin N, Zhao ZB, Tian XC, Xie D, Tu CZ, Zhang HR, Zhou PP, Yang Z. Mechanism and origin of enantioselectivity for organocatalyzed asymmetric heteroannulation of alkynes in the construction of axially chiral C2-arylquinoline. Org Biomol Chem 2024; 22:7500-7517. [PMID: 39189805 DOI: 10.1039/d4ob01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Peng-Yu Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Nengzhi Jin
- Key Laboratory of Advanced Computing of Gansu Province, Gansu Computing Center, 42 Qingyang Road, Lanzhou 730000, P. R. China
| | - Zi-Bo Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Xiao-Cheng Tian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Chi-Zhou Tu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Hai-Rong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100050, P. R. China.
| |
Collapse
|
23
|
Roper NJ, Campbell ADG, Waddell PG, Brown AK, Ermanis K, Armstrong RJ. A stereodivergent multicomponent approach for the synthesis of C-N atropisomeric peptide analogues. Chem Sci 2024:d4sc04700a. [PMID: 39323517 PMCID: PMC11418089 DOI: 10.1039/d4sc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
A four-component Ugi reaction is described for the stereoselective synthesis of novel C-N atropisomeric peptide analogues. Using this approach, a combination of simple, readily available starting materials (ortho-substituted anilines, aldehydes, carboxylic acids and isocyanides) could be combined to access complex products possessing both central and axial chirality in up to 92% yield and >95 : 5 d.r. Variation of the reaction temperature enabled the development of stereodivergent reactions capable of selectively targeting either diastereoisomer of a desired product from a single set of starting materials with high levels of stereocontrol. Detailed experimental and computational studies have been performed to probe the reaction mechanism and stereochemical outcome of these reactions. Preliminary studies show that novel atropisomeric scaffolds prepared using this method display inhibitory activity against M. tuberculosis with a significant difference in activity observed between different atropisomers.
Collapse
Affiliation(s)
- Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Aaron D G Campbell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Alistair K Brown
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Kristaps Ermanis
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
24
|
Li TZ, Wu SF, Wang NY, Hong CS, Zhang YC, Shi F. Catalytic Atroposelective Synthesis of N-N Axially Chiral Indolylamides. J Org Chem 2024; 89:12559-12575. [PMID: 39189641 DOI: 10.1021/acs.joc.4c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The catalytic atroposelective synthesis of N-N axially chiral indolylamides was established via dynamic kinetic resolution, which makes use of chiral Lewis base-catalyzed asymmetric acylation of N-acylaminoindoles as a new type of platform molecule with anhydrides. By this strategy, a series of N-N axially chiral indolylamides were synthesized in overall good yields (up to 98%) with excellent enantioselectivities (up to 99% ee). Moreover, some of these N-N axially chiral indolylamides display some extent of anticancer activity, which demonstrates their potential application in medicinal chemistry. Therefore, this work has not only provided a new strategy for the synthesis of N-N axially chiral monoaryl indoles but also offered a new member of N-N axially chiral monoaryl indoles with configurational stability and promising application, thereby solving the challenges in atroposelective synthesis and application of N-N axially chiral monoaryl indoles.
Collapse
Affiliation(s)
- Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Chen-Shengping Hong
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
25
|
Li T, Zhang Y, Du C, Yang D, Song MP, Niu JL. Simultaneous construction of inherent and axial chirality by cobalt-catalyzed enantioselective C-H activation of calix[4]arenes. Nat Commun 2024; 15:7673. [PMID: 39242562 PMCID: PMC11379863 DOI: 10.1038/s41467-024-52133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The simultaneous construction of multiple stereogenic elements in a single step is highly appealing and desirable in the field of asymmetric synthesis. Furthermore, the catalytic enantioselective synthesis of inherently chiral calix[n]arenes with high enantiopurity has long been a challenging endeavor. Herein, we report an enantioselective cobalt-catalyzed C-H activation/annulation for the efficient construction of inherently chiral calix[4]arenes bearing multiple C-N axially chiral element. By employing the benzamide tethered calix[4]arene as the substrate, the C-H annulation with alkynes can be successfully accomplished, leading to the generation of multiple stereogenic elements. A wide range of calix[4]arenes and alkynes are found to be well compatible, and exhibit good yields, high enantioselectivity and excellent diastereoselectivity. Notably, the gram-scale reaction, catalytic application, synthetic transformations, and chiral recognition further showcase the potential applications of this protocol.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Cong Du
- School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, China
| | - Dandan Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Liu SJ, Zhao Q, Liu XC, Gamble AB, Huang W, Yang QQ, Han B. Bioactive atropisomers: Unraveling design strategies and synthetic routes for drug discovery. Med Res Rev 2024; 44:1971-2014. [PMID: 38515232 DOI: 10.1002/med.22037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Atropisomerism, an expression of axial chirality caused by limited bond rotation, is a prominent aspect within the field of medicinal chemistry. It has been shown that atropisomers of a wide range of compounds, including established FDA-approved drugs and experimental molecules, display markedly different biological activities. The time-dependent reversal of chirality in atropisomers poses complexity and obstacles in the process of drug discovery and development. Nonetheless, recent progress in understanding atropisomerism and enhanced characterization methods have greatly assisted medicinal chemists in the effective development of atropisomeric drug molecules. This article provides a comprehensive review of their special design thoughts, synthetic routes, and biological activities, serving as a reference for the synthesis and biological evaluation of bioactive atropisomers in the future.
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Chen Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Wei Z, Zhao Y, Wang T, Li J, Yuan W, Wei L, Yang X. Bridged Biaryl Atropisomers by Organocatalyzed Kinetic Asymmetric Alcoholysis. Org Lett 2024; 26:7110-7115. [PMID: 39150722 DOI: 10.1021/acs.orglett.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We disclose herein an asymmetric synthesis of axially chiral oxazepine-containing bridged biaryls via CPA-catalyzed kinetic asymmetric alcoholysis. Control experiments showed that this CPA-catalyzed alcoholysis was reversible, and lowering the reaction temperature could almost suppress the reversible reaction, thus providing a series of axially chiral oxazepine-containing bridged biaryl compounds in good to excellent enantioselectivities. The gram-scale reactions and facile derivatizations of the enantioenriched products demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wei Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
28
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
29
|
Kitagawa O. Structural Chemistry of C-N Axially Chiral Compounds. J Org Chem 2024; 89:11089-11099. [PMID: 39087953 DOI: 10.1021/acs.joc.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In the last several years, atropisomers owing to the rotational restriction around a C-N single bond (C-N axially chiral compounds) have attracted significant attention in the field of synthetic organic chemistry. In particular, the highly enantioselective synthesis of various C-N axially chiral compounds and their application to asymmetric reactions have been reported by many groups. On the other hand, studies on the structural chemistry of C-N axially chiral compounds have attracted scant attention in comparison with synthetic studies. For over 25 years, our group has explored asymmetric synthesis of C-N axially chiral compounds and their synthetic application. In the course of these synthetic studies, we found several notable structural properties in relation to the C-N bond rotation and an association of enantiomers (the relationship between the rotational stability and the structure or electronic effect, the chirality-dependent halogen bond, and the self-disproportionation of enantiomers). Furthermore, on the basis of these structural properties, the development of acid-mediated molecular rotors and the synthesis of isotopic atropisomers possessing high stereochemical purity and rotational stability were achieved. Through this Perspective, I wish to make the chemistry community aware that C-N axially chiral compounds are attractive molecules from the viewpoints of both synthetic organic chemistry and structural chemistry.
Collapse
Affiliation(s)
- Osamu Kitagawa
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| |
Collapse
|
30
|
Hughes RR, Battistoni LD, Ciesla MJ, Bolton T, Asher PM, Irizarry G, de Jesus Antonio Martinez A, Baker KM, Mulcahy SP. Asymmetric Synthesis of an Atropisomeric β-Carboline via Regioselective Intermolecular Rh(I)-Catalyzed [2 + 2 + 2] Cyclotrimerization. Tetrahedron Lett 2024; 146:155187. [PMID: 39100891 PMCID: PMC11293437 DOI: 10.1016/j.tetlet.2024.155187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The rational design of atropisomeric small molecules is becoming increasingly common in chemical synthesis as a result of the unique advantages this property provides in drug discovery, asymmetric catalysis, and chiroptical activity. In this study, we designed a synthesis of a configurationally stable β-carboline in six steps. Our synthesis made use of an innovative Grignard addition/elimination reaction that formed an yne-ynamide precursor that then reacted with ethyl cyanoformate in a rhodium(I)-catalyzed [2+2+2] cyclotrimerization reaction to give the atropisomeric β-carboline in excellent yield, good enantioselectivity, and excellent regioselectivity. Extensive optimization of this transformation is described. Racemization kinetics experiments were also conducted on the individual atropisomers and their absolute configurations were determined by circular dichroism.
Collapse
Affiliation(s)
- Riley R Hughes
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| | | | - Matthew J Ciesla
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| | - Te'jandrio Bolton
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| | - Patrick M Asher
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| | - Giancarlo Irizarry
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| | | | - Kristen M Baker
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| | - Seann P Mulcahy
- Providence College, 1 Cunningham Square, Providence, Rhode Island, USA 02918
| |
Collapse
|
31
|
Woldegiorgis AG, Mustafai A, Muhammad FY, Farooqi R, Tolesa LD, Aimun K. Stereoselective Synthesis of Axially Chiral Allenes and Styrenes via Chiral Phosphoric Acid Catalysis: An Overview. ACS OMEGA 2024; 9:33351-33364. [PMID: 39130561 PMCID: PMC11307311 DOI: 10.1021/acsomega.4c04206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Chiral allenes and styrenes are essential components in fields like medicinal chemistry, materials science, and organic synthesis. They serve a crucial role as chiral ligands and catalysts in asymmetric synthesis. Over the past decade, there has been a significant advancement in the development of practical methods utilizing organocatalytic strategies for the synthesis of chiral allenes and styrenes. It is noteworthy that despite extensive studies on the formation of allenes and styrenes, existing reviews on their construction confined to a specific organocatalysis, called chiral phosphoric acid catalysis, are less documented. This review aims to explore different conceptual approaches based on the electrophilic species involved in the reaction to produce stereoselective chiral allenes and styrenes, providing insights into recent advancements in the field. Emphasis is placed on works published since 2017, with detailed discussions on reaction mechanisms and examples from recent literature.
Collapse
Affiliation(s)
| | - Aleena Mustafai
- Bahauddin
Zakariya University, Institute of Chemical
Sciences, Multan 60800, Pakistan
| | - Faisal Yasin Muhammad
- Government
College University Faisalabad, Department of Chemistry, P.O. Box: 38000, Faisalabad 38040, Pakistan
| | - Rehmatullah Farooqi
- Bahauddin
Zakariya University, Institute of Chemical
Sciences, Multan 60800, Pakistan
| | - Leta Deressa Tolesa
- Adama
Science and Technology University, School of Applied Natural Science, P.O. Box: 1888, Adama 1000, Ethiopia
| | - Khadija Aimun
- Government
College University Faisalabad, Department of Chemistry, P.O. Box: 38000, Faisalabad 38040, Pakistan
| |
Collapse
|
32
|
Ansari S, Knipe PC. Atropisomeric Foldamers. Chempluschem 2024; 89:e202400218. [PMID: 38683695 DOI: 10.1002/cplu.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
This concept article explores the emerging role of atropisomerism in foldamer chemistry, a field focussed on oligomers that adopt well-defined conformations through non-covalent interactions. Atropisomerism introduces a novel dimension to foldamer design by restricting rotational freedom around single bonds to dictate molecular shape with precision. Despite the prevalence of atropisomeric bonds in organic synthesis, their application within foldamers remains underexplored. Here, we discuss key developments in both backbone and sidechain atropisomerism, and suggest future directions for atropisomeric foldamers in the context of a recent surge in atropselective synthetic methods. We propose that judicious use of atropisomerism may serve as a transformative tool in the construction of shape-defined macromolecules.
Collapse
Affiliation(s)
- Saima Ansari
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
33
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
34
|
Wang TT, Cao J, Li X. Synthesis of N-N Axially Chiral Pyrrolyl-oxoisoindolin via Isothiourea-Catalyzed Acylative Dynamic Kinetic Resolution. Org Lett 2024; 26:6179-6184. [PMID: 39023300 DOI: 10.1021/acs.orglett.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of methods for the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Here, we disclose a method for the construction of N-N axially chiral pyrrolyl-oxoisoindolins along with central chirality via the isothiourea (ITU)-catalyzed acylative dynamic kinetic resolution (DKR). Axial chirality was introduced into the acylative DKR of hemiaminals for the first time. This protocol features mild conditions with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tong-Tong Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
35
|
Naghim A, Rodriguez J, Chuzel O, Chouraqui G, Bonne D. Enantioselective Synthesis of Heteroatom-Linked Non-Biaryl Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202407767. [PMID: 38748462 DOI: 10.1002/anie.202407767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Atropisomers hold significant fascination, not only for their prevalence in natural compounds but also for their biological importance and wide-ranging applications as chiral materials, ligands, and organocatalysts. While biaryl and heterobiaryl atropisomers are commonly studied, the enantioselective synthesis of less abundant heteroatom-linked non-biaryl atropisomers presents a formidable challenge in modern organic synthesis. Unlike classical atropisomers, these molecules allow rotation around two bonds, resulting in low barriers to enantiomerization through concerted bond rotations. In recent years the discovery of new configurationally stable rare non-biaryl scaffolds such as aryl amines, aryl ethers and aryl sulfones as well as innovative methodologies to control their configuration have been disclosed in the literature and constitute the topic of this minireview.
Collapse
Affiliation(s)
- Abdelati Naghim
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| |
Collapse
|
36
|
Zheng DS, Zhao F, Gu Q, You SL. Rh(III)-catalyzed atroposelective C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents. Chem Commun (Camb) 2024; 60:6753-6756. [PMID: 38863330 DOI: 10.1039/d4cc01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An efficient Rh(III)-catalyzed enantioselective C-H alkynylation of isoquinolines is disclosed. The C-H alkynylation of 1-aryl isoquinolines with hypervalent iodine-alkyne reagents proceeded in DMA at room temperature in the presence of 2.5 mol% chiral SCpRh(III) complex along with 20 mol% AgSbF6, providing axially chiral alkynylated 1-aryl isoquinolines in excellent yields (up to 93%) and enantioselectivity (up to 95% ee). The diverse transformations of the product further enhance the potential utility of this reaction.
Collapse
Affiliation(s)
- Dong-Song Zheng
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
37
|
Hou J, Hao W, Chen Y, Wang Z, Yao W. Phosphine-Catalyzed Stereospecific and Enantioselective Desymmetrizative [3+2] Cycloaddition of MBH Carbonates and N-(2- tert-Butylphenyl)maleimides. J Org Chem 2024; 89:9068-9077. [PMID: 38822804 DOI: 10.1021/acs.joc.4c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Herein, we report an l-valine-derived amide phosphine-catalyzed [3+2] cyclization of MBH carbonates and N-(2-tert-butylphenyl)maleimides via asymmetric desymmetrization. Bicyclic N-aryl succinimide derivatives bearing three continuous chiral centers with a remote C-N atropisomeric chirality were constructed stereospecifically and enantioselectively. A wide variety of MBH carbonates could be employed in this process to deliver highly optically pure succinimide derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
38
|
Sun Y, Yang T, Wang Q, Shi L, Song MP, Niu JL. Atroposelective N-N Axes Synthesis via Electrochemical Cobalt Catalysis. Org Lett 2024; 26:5063-5068. [PMID: 38864356 DOI: 10.1021/acs.orglett.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Here, we disclosed an unprecedented cobalt electrocatalyzed atroposelective C-H activation and annulation for the efficient construction of diversely functionalized N-N axes in an undivided cell. A broad range of allene substrates and benzamides bearing different functionalities are compatible with generating axially chiral products with good yields and excellent enantioselectivities (up to 92% yield and 99% ee). A series of synthetic applications and control experiments were also performed, which further expanded the practicality of this strategy.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Taixin Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuling Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Zafar A, Iqbal MA, Iram G, Shoukat US, Jamil F, Saleem M, Yousif M, Abidin ZU, Asad M. Advances in organocatalyzed synthesis of organic compounds. RSC Adv 2024; 14:20365-20389. [PMID: 38919284 PMCID: PMC11197984 DOI: 10.1039/d4ra03046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ghazala Iram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Faisal Jamil
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Saleem
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab Lahore Pakistan
| | - Muhammad Yousif
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zain Ul Abidin
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
40
|
Jin L, Li Y, Mao Y, He XB, Lu Z, Zhang Q, Shi BF. Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C-N axially chiral scaffolds. Nat Commun 2024; 15:4908. [PMID: 38851721 PMCID: PMC11162495 DOI: 10.1038/s41467-024-48582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
C - N axially chiral compounds have recently attracted significant interest among synthetic chemistry community due to their widespread application in pharmaceuticals, advanced materials and organic synthesis. Although the emerging asymmetric Catellani reaction offers great opportunity for their modular and efficient preparation, the only operative chiral NBE strategy to date requires using half stoichiometric amount of chiral NBE and 2,6-disubstituted bromoarenes as electrophiles. We herein report an efficient assembly of C-N axially chiral scaffolds through a distinct chiral ligand strategy. The crucial chiral source, a biimidazoline (BiIM) chiral dinitrogen ligand, is used in relatively low loading and permits the use of less bulky bromoarenes. The method also features the use of feedstock plain NBE, high reactivity, good enantioselectivity, ease of operation and scale-up. Applications in the preparation of chiral optoelectronic material candidates featuring two C-N chiral axes and a chiral ligand for asymmetric C-H activation have also been demonstrated.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ya Li
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yihui Mao
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiao-Bao He
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Li X, Kong L, Yin S, Zhou H, Lin A, Yao H, Gao S. Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309706. [PMID: 38602437 PMCID: PMC11199998 DOI: 10.1002/advs.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lingyu Kong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shuxin Yin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
42
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
43
|
Sun Y, Sun L, Zhang S, Zhang Z, Wang T. Synthesis of C-N Axially Chiral N-Arylbenzo[ g]indoles via a Central-to-Axial Chirality Conversion Strategy. Org Lett 2024. [PMID: 38780223 DOI: 10.1021/acs.orglett.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gold-catalyzed cascade cyclization of diynes for the synthesis of previously unexplored C-N axially chiral N-arylbenzo[g]indoles was described. The transformation was achieved via a central-to-axial chirality conversion strategy. The chiral conversion exhibited high efficiency. Besides single C-N chiral axis, N-arylbenzo[g]indoles bearing both C-N and C-C chiral axes were also afforded. The title compound derived monophosphine ligand was prepared and was evaluated in Pd-catalyzed asymmetric allylic substitutions, showing excellent chiral induction ability.
Collapse
Affiliation(s)
- Yuan Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Lingzhi Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Shaoting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Avenue, Xi'an, 710119 Shaanxi Province, China
| |
Collapse
|
44
|
Zhou YQ, He KC, Zheng WH, Lv JF, He SM, Yu N, Yang YB, Liu LY, Jiang K, Wei Y. 1,5-Hydrogen atom transfer of α-iminyl radical cations: a new platform for relay annulation for pyridine derivatives and axially chiral heterobiaryls. Chem Sci 2024; 15:7502-7514. [PMID: 38784726 PMCID: PMC11110145 DOI: 10.1039/d4sc01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The exploitation of new reactive species and novel transformation modes for their synthetic applications have significantly promoted the development of synthetic organic methodology, drug discovery, and advanced functional materials. α-Iminyl radical cations, a class of distonic ions, exhibit great synthetic potential for the synthesis of valuable molecules. For their generation, radical conjugate addition to α,β-unsaturated iminium ions represents a concise yet highly challenging route, because the in situ generated species are short-lived and highly reactive and they have a high tendency to cause radical elimination (β-scission) to regenerate the more stable iminium ions. Herein, we report a new transformation mode of the α-iminyl radical cation, that is to say, 1,5-hydrogen atom transfer (1,5-HAT). Such a strategy can generate a species bearing multiple reactive sites, which serves as a platform to realize (asymmetric) relay annulations. The present iron/secondary amine synergistic catalysis causes a modular assembly of a broad spectrum of new structurally fused pyridines including axially chiral heterobiaryls, and exhibits good functional group tolerance. A series of mechanistic experiments support the α-iminyl radical cation-induced 1,5-HAT, and the formation of several radical species in the relay annulations. Various synthetic transformations of the reaction products demonstrate the usefulness of this relay annulation protocol for the synthesis of significant molecules.
Collapse
Affiliation(s)
- Yu-Qiang Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kui-Cheng He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei-Hao Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jing-Fang Lv
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Shi-Mei He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ning Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yun-Bo Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Lv-Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
45
|
Sakagami T, Matsui R, Aoyama S, Niijima E, Richards GJ, Hori A, Kitagawa O. Regio- and Stereoselective α-Allylation with Enolates Prepared from N-C Axially Chiral Thiolactam and Lactam. J Org Chem 2024; 89:7312-7319. [PMID: 38683734 DOI: 10.1021/acs.joc.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The reaction of allyl bromide derivatives with the enolate prepared from enantioenriched N-C axially chiral N-(2,5-di-tert-butylphenyl)-3,4-dihydroquinolin-2-one (lactam) and -thione (thiolactam) proceeded in a completely regio- and stereoselective manner to afford SN2 and SN2'-like products, respectively. Furthermore, through the conversion of thiolactam to lactam, the regiodivergent and stereoselective synthesis of N-C axially chiral lactams bearing a chiral tertiary α-carbon was achieved.
Collapse
Affiliation(s)
- Tatsunori Sakagami
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Ryosuke Matsui
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Shohei Aoyama
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Erina Niijima
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Gary J Richards
- Department of Applied Chemistry, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Akiko Hori
- Department of Applied Chemistry, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Osamu Kitagawa
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
46
|
Đorđević Zlatković MR, Radulović NS, Dangalov M, Vassilev NG. Conformation Analysis and Stereodynamics of Symmetrically ortho-Disubstituted Carvacrol Derivatives. Molecules 2024; 29:1962. [PMID: 38731453 PMCID: PMC11085911 DOI: 10.3390/molecules29091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The design and synthesis of analogs of natural products can be a valuable source of medicinal preparations for the pharmaceutical industry. In the present study, the structural elucidation of eleven derivatives of 2,4-dihalogeno substituted synthetic analogues of the natural compound carvacrol was carried out by means of NMR experiments, and of another thirteen by DFT calculations. By selective NOE experiments and the irradiation of CH signals of the isopropyl group, individual conformers were assigned as syn and anti. By comparing GIAO/B3LYP/6-311++G(d,p)-calculated and experimentally measured vicinal 3JCH spin-spin constants, this assignment was confirmed. An unusual relationship is reported for proton-carbon vicinal couplings: 3JCH (180°) < 3JCH (0°). The conformational mobility of carvacrols was studied by 2D EXSY spectra. The application of homonuclear decoupling technique (HOBS) to these spectra simplifies the spectra, improves resolution without reducing the sensitivity, and allows a systematic examination of the rotational barrier of all compounds via their CH signals of the isopropyl group in a wider temperature interval. The rate constants of the isopropyl rotation between syn and anti conformers were determined and the corresponding energy barriers (14-17 kcal/mol) were calculated. DFT calculations of the energy barriers in carvacrol derivatives allowed the determination of the steric origin of the restricted isopropyl rotation. The barrier height depends on the size of the 2- and 4-position substituents, and is independent of the derivatization of the OH group.
Collapse
Affiliation(s)
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
47
|
Fan P, Li L, Qian D. Catalytic asymmetric construction of helicenes via transformation of biaryls. Org Biomol Chem 2024; 22:3186-3197. [PMID: 38591656 DOI: 10.1039/d4ob00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This review showcases a systematic overview of the available tools for the catalytic asymmetric transformation of biaryl substrates toward the construction of challenging enantioenriched helicenes and the conceptual aspects associated with each type of transformation. Depending on the properties of the biaryl and the nature of the process, several methodologies have been developed, including olefin metathesis, hydroarylation of alkynes, C-X (X = C, O, N) coupling, and C-H functionalization. Pioneering studies and an array of representative reactions are discussed to underscore the potential of these synthetic protocols.
Collapse
Affiliation(s)
- Peiling Fan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Lun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P.R. China.
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P.R. China
| |
Collapse
|
48
|
Qian C, Huang J, Huang T, Song L, Sun J, Li P. Organocatalytic enantioselective synthesis of C sp2-N atropisomers via formal C sp2-O bond amination. Chem Sci 2024; 15:3893-3900. [PMID: 38487218 PMCID: PMC10935709 DOI: 10.1039/d3sc06707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
Compared with well-developed construction of Csp2-Csp2 atropisomers, the synthesis of Csp2-N atropisomers remains in its infancy, which is recognized as both appealing and challenging. Herein, we achieved the first organocatalyzed asymmetric synthesis of Csp2-N atropisomers by formal Csp2-O amination. With the aid of a suitable acid, 3-alkynyl-3-hydroxyisoindolinones reacted smoothly with 1-methylnaphthalen-2-ols to afford a wide range of atropisomers by selective formation of the Csp2-N axis. Particularly, both the kinetic (Z)-products and the thermodynamic (E)-products could be selectively formed. Furthermore, the rarely used combination of two chiral Brønsted acid catalysts achieved excellent enantiocontrol, which is intriguing and unusual in organocatalysis. Based on control experiments and DFT calculations, a cascade dehydration/addition/rearrangement process was proposed. More importantly, this work provided a new plat-form for direct atroposelective construction of the chiral Csp2-N axis.
Collapse
Affiliation(s)
- Chenxiao Qian
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Jing Huang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Tingting Huang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong SAR China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
49
|
Hou XX, Wei D. Mechanism and Origin of Stereoselectivity for the NHC-Catalyzed Desymmetrization Reaction for the Synthesis of Axially Chiral Biaryl Aldehydes. J Org Chem 2024; 89:3133-3142. [PMID: 38359780 DOI: 10.1021/acs.joc.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organocatalytic desymmetrization reaction is a powerful tool for constructing axial chirality, but the theoretical study on the origin of stereoselectivity still lags behind even now. In this work, the N-heterocyclic carbene (NHC)-catalyzed desymmetrization reaction of biaryl frameworks for the synthesis of axially chiral aldehydes has been selected and theoretically investigated by using density functional theory (DFT). The fundamental pathway involves several steps, i.e., desymmetrization, formation of Breslow oxidation, esterification, and NHC regeneration. The desymmetrization and formation of Breslow processes have been identified as stereoselectivity-determining and rate-determining steps. Further weak interaction analyses proved that the C-H···O hydrogen bond and C-H···π interactions are responsible for the stability of the key stereoselective desymmetrization transition states. This research contributes to understanding the nature of NHC-catalyzed desymmetrization reactions for the synthesis of axially chiral compounds.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
50
|
Hore S, Singh A, Singh RP. Asymmetric 1,2-diaxial synthesis of bi-(hetero)aryl benzofulvene atropisomers via transient directing group-assisted dehydrogenative coupling. Chem Commun (Camb) 2024; 60:2524-2527. [PMID: 38328816 DOI: 10.1039/d3cc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The efficient cross-dehydrogenative coupling of electronically rich and sterically congested benzofulvene with bi-(hetero)aryl moieties to construct an axially chiral benzofulvene core remains a formidable task. In this study, we describe a highly efficient and practical palladium-catalyzed approach for atroposelective bi-(hetero)aryl benzofulvene synthesis, achieving excellent enantioselectivity with moderate yields. This protocol offers a remarkable opportunity for the direct regio- and enantioselective conversion of C-H bonds of benzofulvene to C-C bonds. Furthermore, the protocol permits the incorporation of benzofulvene with a 4-phenyl coumarin core, enabling access to a novel class of axially chiral coumarins.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|