1
|
Yang Z, Xing J, Xu Y, Wang J, Zhou P. Electrochemical Synthesis of β-Keto Sulfones from Enol Acetates and Sulfonyl Hydrazides. J Org Chem 2025; 90:4488-4494. [PMID: 40111460 DOI: 10.1021/acs.joc.4c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A novel and environmentally friendly strategy has been developed for the efficient electrochemical synthesis of β-keto sulfones. This method enables the synthesis of β-keto sulfones by reacting easily available sulfonylhydrazide with enol acetate under mild conditions, especially without the need for transition metal catalysts or oxidants, which can achieve high yields. The scope of this reaction was systematically explored with various sulfonyl hydrazides and enol acetates. The scale-up synthesis of β-keto sulfones was successfully accomplished using an electrochemical flow cell, demonstrating the industrial applicability of this approach. Moreover, the underlying reaction mechanism was further investigated through free radical scavenging experiments and cyclic voltammetry studies.
Collapse
Affiliation(s)
- Zhiqi Yang
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Jiaxin Xing
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Yingli Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Junjie Wang
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Zhou
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Rems E, Herceg A, Yordanova Apostolova D, Dominko R, Jovanovič P, Genorio B. Microfluidics for Electrochemical Energy Conversion and Storage: Prospects Toward Sustainable Ammonia Production. CHEM REC 2025; 25:e202400234. [PMID: 39905922 PMCID: PMC11991685 DOI: 10.1002/tcr.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Ammonia is a key chemical in the production of fertilizers, refrigeration and an emerging hydrogen-carrying fuel. However, the Haber-Bosch process, the industrial standard for centralized ammonia production, is energy-intensive and indirectly generates significant carbon dioxide emissions. Electrochemical nitrogen reduction offers a promising alternative for green ammonia production. Yet, current reaction rates remain well below economically feasible targets. This work examines the application of electrochemical microfluidics for the enhancement of the rates of electrochemical ammonia synthesis. The review is built on the introduction to electrochemical microfluidics, corresponding cell designs, and the main applications of microfluidics in electrochemical energy conversion/storage. Based on recent advances in electrochemical ammonia synthesis, with an emphasis on the critical role of robust experimental controls, electrochemical microfluidics represents a promising route to environmentally friendly, on-site and on-demand ammonia production. This review aims to bridge the knowledge gap between the disciplines of electrochemistry and microfluidics and promote interdisciplinary understanding and innovation in this transformative field.
Collapse
Affiliation(s)
- Ervin Rems
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Ana Herceg
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | | | - Robert Dominko
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
- Alistore-European Research InstituteCNRS FR 3104Hub de l'EnergieRue Baudelocque80039AmiensFrance
| | - Primož Jovanovič
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
| | - Bostjan Genorio
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| |
Collapse
|
3
|
Qi C, Laktsevich-Iskryk M, Mazzarella D. Navigating electrochemical oxidative functionalization of olefins: selected mechanistic and synthetic examples. Chem Commun (Camb) 2025; 61:4265-4278. [PMID: 39967497 DOI: 10.1039/d4cc06306f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The functionalization of olefins to form added-value compounds is a cornerstone of modern organic chemistry, promoting the synthesis of complex molecules from simple feedstock materials. In parallel, electrochemistry has emerged as a powerful and sustainable technique for enabling challenging transformations under mild conditions by generating reactive intermediates in a controlled manner. This review highlights recent advances in oxidative electrochemical methods for olefin functionalization, showcasing key developments that underscore the versatility of this approach. Using selected representative examples, we explore diverse mechanistic pathways, bond-forming strategies, and the integration of electrochemical techniques with catalytic systems. By providing a concise overview of this rapidly evolving field, we aim to inspire further innovation in electrochemical methodologies to expand the frontiers of olefin chemistry.
Collapse
Affiliation(s)
- Chun Qi
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Marharyta Laktsevich-Iskryk
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
4
|
Liu T, McMullin C, Taylor JE, Marken F. Paired Electrosynthesis at Interdigitated Microband Array Electrodes without Intentionally Added Electrolyte: C-C Coupling of Dicyanobenzenes with Methanol. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3014-3021. [PMID: 39968334 PMCID: PMC11833768 DOI: 10.1021/acs.jpcc.4c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
The formation of substituted benzyl alcohols from dicyanobenzenes and methanol (C-C coupling) is demonstrated as a model system for paired electrosynthesis and investigated at interdigitated microband array electrodes in a microreactor with/without intentionally added supporting electrolyte. A Pt-Pt microband array with 5 μm bands separated by 5 μm gaps is employed in a dimethyl sulfoxide (DMSO) solvent. Yields are optimized to approximately 50% at the point of 100% conversion. The mechanism is investigated by employing isotope labeling (CD3OD, CH3OD, d 6-DMSO, 13CH3OH). The methylene group (12C or 13C) is obtained with H2, D2, and DH substitution patterns, and a hypothesis for a corresponding mechanism is discussed aided with density functional theory (DFT) calculations. Implications for sustainable electrosynthesis at paired microband electrodes are discussed.
Collapse
Affiliation(s)
- Tingran Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Claire McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - James E. Taylor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
Buchholz J, Oehl EK, Hielscher MM, Kuhn SL, Schollmeyer D, Waldvogel SR. Electrochemical Dehydrogenative sp 2-Coupling Reaction of Naphthols Accessing a Polycyclic Naphthalenone Motif. Org Lett 2025; 27:25-29. [PMID: 39655743 PMCID: PMC11731377 DOI: 10.1021/acs.orglett.4c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
A novel polycyclic naphthalenone motif was obtained by electrochemical synthesis starting from naphthols. The process is solvent controlled, and the highly diastereoselective cyclization is due to a solvent cage. The direct, anodic dehydrogenative sp2-coupling was carried out by flow electrolysis. Ten derivatives containing this motif were synthesized in yields up to 88%, resulting in novel polycycles structurally similar to bioactive compounds like Daldionin, potentially exploring the bioactive profile.
Collapse
Affiliation(s)
- Julian Buchholz
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Elisabeth K. Oehl
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Maximilian M. Hielscher
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Simone L. Kuhn
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
- Karlsruhe
Institute of Technology, Institute of Biological and Chemical, Systems
− Functional Molecular Systems (IBCS − FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Vanluchene A, Horsten T, Bonneure E, Stevens CV. Electrochemical Trifluoromethylation of Enamides under Microflow Conditions. Org Process Res Dev 2024; 28:4018-4023. [PMID: 39569050 PMCID: PMC11575483 DOI: 10.1021/acs.oprd.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
The development of sustainable trifluoromethylations of enamides is of great interest to the pharmaceutical industry. Herein, we demonstrate a sustainable direct electrochemical trifluoromethylation method in a microflow cell, using Langlois reagent, without the need for a supporting electrolyte, oxidants, or any additive under mild conditions. This method can be applied to various substrates with a yield of up to 84%. Additionally, the batch process yielded significantly less (22%), highlighting the microflow cell's efficiency.
Collapse
Affiliation(s)
- Anna Vanluchene
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tomas Horsten
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Eli Bonneure
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Leclercq E, Chevet L, David N, Durandetti M, Chausset-Boissarie L. Synthesis of N-heterocyclic amides from imidazoheterocycles through convergent paired electrolysis. Org Biomol Chem 2024; 22:8730-8736. [PMID: 39390973 DOI: 10.1039/d4ob01115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An efficient ring opening of imidazoheterocycles induced by a direct C-H azidation resulting in an unusual formation of N-heterocyclic amides has been successfully developed through convergent paired electrolysis. A broad scope of pyridylbenzamides could be obtained in moderate to excellent yields under exogenous-oxidant, electrolyte- and metal-free electrochemical conditions. The methodology was transferred to continuous flow conditions resulting in notable improvements particularly in terms of cost-efficiency over traditional batch versions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laura Chevet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Nicolas David
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| |
Collapse
|
8
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
9
|
Sun GQ, Liao LL, Ran CK, Ye JH, Yu DG. Recent Advances in Electrochemical Carboxylation with CO 2. Acc Chem Res 2024; 57:2728-2745. [PMID: 39226463 DOI: 10.1021/acs.accounts.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ConspectusCarbon dioxide (CO2) is recognized as a greenhouse gas and a common waste product. Simultaneously, it serves as an advantageous and commercially available C1 building block to generate valuable chemicals. Particularly, carboxylation with CO2 is considered a significant method for the direct and sustainable production of important carboxylic acids. However, the utilization of CO2 is challenging owing to its thermodynamic stability and kinetic inertness. Recently, organic electrosynthesis has emerged as a promising approach that utilizes electrons or holes as environmentally friendly redox reagents to produce reactive intermediates in a controlled and selective manner. This technique holds great potential for the CO2 utilization.Since 2015, our group has been dedicated to exploring the utilization of CO2 in organic synthesis with a particular focus on electrochemical carboxylation. Despite the significant advancements made in this area, there are still many challenges, including the activation of inert substrates, regulation of selectivity, diversity in electrolysis modes, and activation strategies. Over the past 7 years, our team, with many great experts, has presented findings on electrochemical carboxylation with CO2 under mild conditions. In this context, we primarily highlight our contributions to selective electrocarboxylations, encompassing new reaction systems, selectivity control methods, and activation approaches.We commenced our research by establishing a Ni-catalyzed electrochemical carboxylation of unactivated aryl halides and alkyl bromides in conjunction with a useful paired anodic reaction. This approach eliminates the need for sacrificial anodes, rendering the carboxylation process sustainable. To further utilize the widely existing yet cost-effective alkyl chlorides, we have developed a deep electroreductive system to achieve carboxylation of unactivated alkyl chlorides and poly(vinyl chloride), allowing the direct modification and upgrading of waste polymers.Through precise adjustment of the electroreductive conditions, we successfully demonstrated the dicarboxylation of both strained carbocycles and acyclic polyarylethanes with CO2 via C-C bond cleavage. Furthermore, we have realized the dicarboxylative cyclization of unactivated skipped dienes to produce the valuable ring-tethered adipic acids through single-electron reduction of CO2 to the CO2 radical anion (CO2•-). In terms of the asymmetric carboxylation, Guo's and our groups have recently achieved the nickel-catalyzed enantioselective electroreductive carboxylation reaction using racemic propargylic carbonates and CO2, paving the way for the synthesis of enantioenriched propargylic carboxylic acids.In addition to the aforementioned advancements, Lin's and our groups have also developed new electrolysis modes to achieve regiodivergent C-H carboxylation of N-heteroarenes dictated by electrochemical reactors. The choice of reactors plays a crucial role in determining whether the hydrogen atom transfer (HAT) reagents are formed anodically, consequently influencing the carboxylation pathways of N-heteroarene radical anions in the distinct electrolyzed environments.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Luo J, Davenport MT, Ess DH, Liu TL. Nickel-Catalyzed Electrochemical Cross-Electrophile C(sp 2)-C(sp 3) Coupling via a Ni II Aryl Amido Intermediate. Angew Chem Int Ed Engl 2024; 63:e202407118. [PMID: 38849318 PMCID: PMC11585393 DOI: 10.1002/anie.202407118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp2)-C(sp3) bond construction, which is highly valuable in medicinal chemistry. Based on a key NiII aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a NiII aryl amido intermediate is formed in situ during the reaction process. The relatively slow oxidative addition is beneficial for enhancing the selectivity of the XEC reaction. The NiII aryl amido intermediate stabilizes the NiII-aryl species to prevent the aryl-aryl homo-coupling side reactions and acts as a catalyst to activate the alkyl bromide substrates. This electrosynthesis system provides a facile, practical, and scalable platform for the formation of (hetero)aryl-alkyl bonds using standard Ni catalysts under mild conditions. The mechanistic insights from this work could serve as a great foundation for future studies on Ni-catalyzed cross-couplings.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| |
Collapse
|
11
|
Krumbiegel C, Ly HK, Weidinger IM. Solvent-dependent reaction mechanisms in the electrooxidative coupling of phenols: insights by operando Raman spectroelectrochemistry. Chem Commun (Camb) 2024; 60:10346-10349. [PMID: 39221644 DOI: 10.1039/d4cc02721c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The electrochemical oxidative phenol coupling reaction is a sustainable method for accessing biphenolic compounds. Using the dimerization of sesamol as a model reaction, insights into the reaction mechanism were gained via operando Raman spectroscopy. By varying the solvent and electrodes, different reaction mechanisms were identified and correlated with the respective product yields.
Collapse
Affiliation(s)
- Christian Krumbiegel
- Institute for Electrochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Hoang Khoa Ly
- Institute for Electrochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Inez M Weidinger
- Institute for Electrochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| |
Collapse
|
12
|
Zhang G, Li Y, Zhao C, Gu J, Zhou G, Shi Y, Zhou Q, Xiao F, Fu WJ, Chen Q, Ji Q, Qu J, Liu H. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. NATURE NANOTECHNOLOGY 2024; 19:1130-1140. [PMID: 38724611 DOI: 10.1038/s41565-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/01/2024] [Indexed: 08/18/2024]
Abstract
Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.
Collapse
Affiliation(s)
- Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yongqi Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Chenxuan Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jiabao Gu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanfeng Shi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qi Zhou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Feng Xiao
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Wen-Jie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qingbai Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Liu T, Carneiro-Neto EB, Pereira E, Taylor JE, Fletcher PJ, Marken F. Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte. ACS MEASUREMENT SCIENCE AU 2024; 4:294-306. [PMID: 38910865 PMCID: PMC11191726 DOI: 10.1021/acsmeasuresciau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/25/2024]
Abstract
Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1'-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt-Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO4). An isotope effect is observed in CH3OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.
Collapse
Affiliation(s)
- Tingran Liu
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Evaldo Batista Carneiro-Neto
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- Department
of Chemistry, Federal University of São
Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - Ernesto Pereira
- Department
of Chemistry, Federal University of São
Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - James E. Taylor
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Philip J. Fletcher
- Materials
& Chemical Characterisation Facility, MC, University of Bath, Bath BA2 7AY, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
14
|
Wang WZ, Wang Q, He X, Shen YH, Zhai Z, Zhang R, Li Y, Ye KY. Electrochemical Continuous-Flow Scholl Reaction toward Polycyclic Aromatic Hydrocarbons. Org Lett 2024; 26:2243-2248. [PMID: 38456736 DOI: 10.1021/acs.orglett.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The preparation of polycyclic aromatic hydrocarbons (PAHs) by the Scholl reaction is typically performed by using superstoichiometric oxidants. Herein, we develop an electrochemical continuous-flow Scholl reaction to access PAHs that features a reduction in the use of supporting electrolytes and easy scale-up without changing the reaction conditions and setups. This reaction allows the synthesis of distorted PAHs containing three [5]helicene units that possess intriguing electronic and optical properties.
Collapse
Affiliation(s)
- Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiang Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Han Shen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi'ang Zhai
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruiying Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
15
|
Chen PY, Huang C, Jie LH, Guo B, Zhu S, Xu HC. Unlocking the Potential of Oxidative Asymmetric Catalysis with Continuous Flow Electrochemistry. J Am Chem Soc 2024; 146:7178-7184. [PMID: 38466344 DOI: 10.1021/jacs.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.
Collapse
Affiliation(s)
- Peng-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liang-Hua Jie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Bin Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shaobin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- NanoFCM INC., Building No. 5, Xinke Square, Xiamen 361006, People's Republic of China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
16
|
Drögemüller P, Stobbe T, Schröder U. Closing the Gap: Towards a Fully Continuous and Self-Regulated Kolbe Electrosynthesis. CHEMSUSCHEM 2024; 17:e202300973. [PMID: 37679942 DOI: 10.1002/cssc.202300973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
In this article, we address the transition of the Kolbe electrolysis of valeric acid (VA) to n-octane as an exemplary electrosynthesis process from a batch reaction to a continuous, self-regulated process. Based on a systematic assessment of chemical boundary conditions and sustainability aspects, we propose a continuous electrosynthesis including a simple product separation and electrolyte recirculation, as well as an online-pH-controlled VA feeding. We demonstrate how essential performance parameters such as product selectivity (S) and coulombic efficiency (CE) are significantly improved by the transition from batch to a continuous process. Thus, the continuous and pH-controlled electrolysis of a 1 M valeric acid, starting pH 6.0, allowed a constantly high selectivity of around 47 % and an average Coulomb efficiency about 52 % throughout the entire experimental duration. Under otherwise identical conditions, the conventional batch operation suffered from lower and strongly decreasing performance values (Sn-octane, 60min =10.4 %, Sn-octane, 240min =1.3 %; CEn-octane, 60min =7.1 %, CEn-octane, 240min =0.5 %). At the same time, electrolyte recirculation significantly reduces wastes and limits the use of electrolyte components.
Collapse
Affiliation(s)
- Patrick Drögemüller
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
- Cluster of Excellence SE2A-Sustainable and Energy-Efficient Aviation, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Stobbe
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Uwe Schröder
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
- Cluster of Excellence SE2A-Sustainable and Energy-Efficient Aviation, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
17
|
Lunghi E, Ronco P, Della Negra F, Trucchi B, Verzini M, Merli D, Casali E, Kappe CO, Cantillo D, Zanoni G. Electrifying Friedel-Crafts Intramolecular Alkylation toward 1,1-Disubstituted Tetrahydronaphthalenes. J Org Chem 2023; 88:16783-16789. [PMID: 38032548 PMCID: PMC10729024 DOI: 10.1021/acs.joc.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/13/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
In this work, we successfully employed electrochemical conditions to promote a Hofer-Moest, intramolecular Friedel-Crafts alkylation sequence. The reaction proceeds under mild conditions, employing carboxylic acids as starting materials. Notably, the electrochemical process performed in batch was adapted to a continuous flow electrolysis apparatus to provide a significant improvement. This catalyst-free, electrochemical approach produces an array of tetrahydronaphthalenes that could be used for API synthesis.
Collapse
Affiliation(s)
- Enrico Lunghi
- Department
of Chemistry, University of Pavia, Viale Taramelli, 27100 Pavia, Italy
| | - Pietro Ronco
- Department
of Chemistry, University of Pavia, Viale Taramelli, 27100 Pavia, Italy
| | | | | | | | - Daniele Merli
- Department
of Chemistry, University of Pavia, Viale Taramelli, 27100 Pavia, Italy
| | - Emanuele Casali
- Department
of Chemistry, University of Pavia, Viale Taramelli, 27100 Pavia, Italy
| | - C. Oliver Kappe
- Institute
of Chemistry, University of Graz, NAWI Graz, Graz 8010, Austria
- Center
for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - David Cantillo
- Institute
of Chemistry, University of Graz, NAWI Graz, Graz 8010, Austria
- Center
for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Giuseppe Zanoni
- Department
of Chemistry, University of Pavia, Viale Taramelli, 27100 Pavia, Italy
| |
Collapse
|
18
|
Fuchigami T. Spiers Memorial Lecture: Old but new organic electrosynthesis: history and recent remarkable developments. Faraday Discuss 2023; 247:9-33. [PMID: 37622750 DOI: 10.1039/d3fd00129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Organic electrosynthesis has a long history. However, this chemistry is still new. Recently, we have seen its second renaissance with organic electrosynthesis being considered a typical green chemistry process. Therefore, a number of novel electrosynthetic methodologies have recently been developed. However, there are still many problems to be solved from a green and sustainable viewpoint. After an explanation of the historical survey of organic electrosynthesis, this paper focuses on recent remarkable developments in new electrosynthetic methodologies, such as novel electrodes, recyclable nonvolatile electrolytic solvents and recyclable supporting electrolytes, as well as new types of electrolytic flow cells. Furthermore, novel types of organic electrosynthetic reactions will be mentioned.
Collapse
Affiliation(s)
- Toshio Fuchigami
- Department of Electronic Chemistry, Tokyo Institute of Technology, Japan.
| |
Collapse
|
19
|
Kleinhaus JT, Wolf J, Pellumbi K, Wickert L, Viswanathan SC, Junge Puring K, Siegmund D, Apfel UP. Developing electrochemical hydrogenation towards industrial application. Chem Soc Rev 2023; 52:7305-7332. [PMID: 37814786 DOI: 10.1039/d3cs00419h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.
Collapse
Affiliation(s)
- Julian T Kleinhaus
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Jonas Wolf
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Leon Wickert
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sangita C Viswanathan
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
20
|
Punchihewa BT, Minda V, Gutheil WG, Rafiee M. Electrosynthesis and Microanalysis in Thin Layer: An Electrochemical Pipette for Rapid Electrolysis and Mechanistic Study of Electrochemical Reactions. Angew Chem Int Ed Engl 2023; 62:e202312048. [PMID: 37669353 DOI: 10.1002/anie.202312048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI-mediated electrochemical C-H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real-time probing of the profiles of redox-active components of these rapid electrosynthesis reactions.
Collapse
Affiliation(s)
- Buwanila T Punchihewa
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MI 64110, USA
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MI 64108, USA
| | - William G Gutheil
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MI 64108, USA
| | - Mohammad Rafiee
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MI 64110, USA
| |
Collapse
|
21
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
22
|
Chen TS, Long H, Gao Y, Xu HC. Continuous Flow Electrochemistry Enables Practical and Site-Selective C-H Oxidation. Angew Chem Int Ed Engl 2023; 62:e202310138. [PMID: 37590086 DOI: 10.1002/anie.202310138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
The selective oxygenation of ubiquitous C(sp3 )-H bonds remains a highly sought-after method in both academia and the chemical industry for constructing functionalized organic molecules. However, it is extremely challenging to selectively oxidize a certain C(sp3 )-H bond to afford alcohols due to the presence of multiple C(sp3 )-H bonds with similar strength and steric environment in organic molecules, and the alcohol products being prone to further oxidation. Herein, we present a practical and cost-efficient electrochemical method for the highly selective monooxygenation of benzylic C(sp3 )-H bonds using continuous flow reactors. The electrochemical reactions produce trifluoroacetate esters that are resistant to further oxidation but undergo facile hydrolysis during aqueous workup to form benzylic alcohols. The method exhibits a broad scope and exceptional site selectivity and requires no catalysts or chemical oxidants. Furthermore, the electrochemical method demonstrates excellent scalability by producing 115 g of one of the alcohol products. The high site selectivity of the electrochemical method originates from its unique mechanism to cleave benzylic C(sp3 )-H bonds through sequential electron/proton transfer, rather than the commonly employed hydrogen atom transfer (HAT).
Collapse
Affiliation(s)
- Tian-Sheng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuxing Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
23
|
Zhou H, Ren Y, Yao B, Li Z, Xu M, Ma L, Kong X, Zheng L, Shao M, Duan H. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat Commun 2023; 14:5621. [PMID: 37699949 PMCID: PMC10497620 DOI: 10.1038/s41467-023-41497-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Electrooxidation of biomass platforms provides a sustainable route to produce valuable oxygenates, but the practical implementation is hampered by the severe carbon loss stemming from inherent instability of substrates and/or intermediates in alkaline electrolyte, especially under high concentration. Herein, based on the understanding of non-Faradaic degradation, we develop a single-pass continuous flow reactor (SPCFR) system with high ratio of electrode-area/electrolyte-volume, short duration time of substrates in the reactor, and separate feeding of substrate and alkaline solution, thus largely suppressing non-Faradaic degradation. By constructing a nine-stacked-modules SPCFR system, we achieve electrooxidation of glucose-to-formate and 5-hydroxymethylfurfural (HMF)-to-2,5-furandicarboxylic acid (FDCA) with high single-pass conversion efficiency (SPCE; 81.8% and 95.8%, respectively) and high selectivity (formate: 76.5%, FDCA: 96.9%) at high concentrations (formate: 562.8 mM, FDCA: 556.9 mM). Furthermore, we demonstrate continuous and kilogram-scale electrosynthesis of potassium diformate (0.7 kg) from wood and soybean oil, and FDCA (1.17 kg) from HMF. This work highlights the importance of understanding and suppressing non-Faradaic degradation, providing opportunities for scalable biomass upgrading using electrochemical technology.
Collapse
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingxin Yao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lina Ma
- Shandong Institute of Petroleum and Chemical Technology, Dongying, 257061, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
24
|
Sumii Y, Shibata N. Current State of Microflow Trifluoromethylation Reactions. CHEM REC 2023; 23:e202300117. [PMID: 37309300 DOI: 10.1002/tcr.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| |
Collapse
|
25
|
Nikl J, Hofman K, Mossazghi S, Möller IC, Mondeshki D, Weinelt F, Baumann FE, Waldvogel SR. Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen. Nat Commun 2023; 14:4565. [PMID: 37507379 PMCID: PMC10382549 DOI: 10.1038/s41467-023-40259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Direct functionalization of C(sp3)-H bonds allows rapid access to valuable products, starting from simple petrochemicals. However, the chemical transformation of non-activated methylene groups remains challenging for organic synthesis. Here, we report a general electrochemical method for the oxidation of C(sp3)-H and C(sp2)-H bonds, in which cyclic alkanes and (cyclic) olefins are converted into cycloaliphatic ketones as well as aliphatic (di)carboxylic acids. This resource-friendly method is based on nitrate salts in a dual role as anodic mediator and supporting electrolyte, which can be recovered and recycled. Reducing molecular oxygen as a cathodic counter reaction leads to efficient convergent use of both electrode reactions. By avoiding transition metals and chemical oxidizers, this protocol represents a sustainable oxo-functionalization method, leading to a valuable contribution for the sustainable conversion of petrochemical feedstocks into synthetically usable fine chemicals and commodities.
Collapse
Affiliation(s)
- Joachim Nikl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Kamil Hofman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Samuel Mossazghi
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Isabel C Möller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Mondeshki
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Frank Weinelt
- Evonik Operations GmbH, Paul-Baumann-Strasse 1, 45772, Marl, Germany
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
26
|
Lin Y, von Münchow T, Ackermann L. Cobaltaelectro-Catalyzed C-H Annulation with Allenes for Atropochiral and P-Stereogenic Compounds: Late-Stage Diversification and Continuous Flow Scale-Up. ACS Catal 2023; 13:9713-9723. [PMID: 38076330 PMCID: PMC10704562 DOI: 10.1021/acscatal.3c02072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 01/25/2024]
Abstract
The 3d metallaelectro-catalyzed C-H activation has been identified as an increasingly viable strategy to access valuable organic molecules in a resource-economic fashion under exceedingly mild reaction conditions. However, the development of enantioselective 3d metallaelectro-catalyzed C-H activation is very challenging and in its infancy. Here, we disclose the merger of cobaltaelectro-catalyzed C-H activation with asymmetric catalysis for the highly enantioselective annulation of allenes. A broad range of C-N axially chiral and P-stereogenic compounds were thereby obtained in good yields of up to 98% with high enantioselectivities of up to >99% ee. The practicality of this approach was demonstrated by the diversification of complex bioactive compounds and drug molecules as well as decagram scale enantioselective electrocatalysis in continuous flow.
Collapse
Affiliation(s)
- Ye Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tristan von Münchow
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh
(Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, Tammannstraße
2, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Bhati KS, Suwalka D, Verma VP, Jassal AK, Kumari N, Sharma S. Cell Voltage-Dependent Structural Dichotomy: Electrochemical C-H Acyloxylation and N-Acylation of 2 H-Indazoles. Org Lett 2023. [PMID: 37450634 DOI: 10.1021/acs.orglett.3c01649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A simple and efficient electrochemical method that utilizes modulation of the cell voltage to cause structural alterations in 2H-indazole is introduced. This method enables the C-3 acyloxylation of 2H-indazole and promotes the transfer of the acyl group from C-3 to N-1, allowing the N-acylation of 2H-indazoles. Additionally, the application of the μ-electro flow reactor was demonstrated, showcasing its effectiveness in achieving gram-scale production of 3x within a short residence time.
Collapse
Affiliation(s)
- Kuldeep Singh Bhati
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Dinesh Suwalka
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Niwai-Jodhpuriya Road, Vanasthali 304022, India
| | - Amanpreet Kaur Jassal
- Department of Chemistry, U.G.C. Centre of Advanced Studies in Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Neetu Kumari
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| |
Collapse
|
28
|
Li Y, Chang CC, Wang C, Wu WT, Wang CM, Tu HL. Microfluidic Biosensor Decorated with an Indium Phosphate Nanointerface for Attomolar Dopamine Detection. ACS Sens 2023; 8:2263-2270. [PMID: 37155824 DOI: 10.1021/acssensors.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing functional materials that directly integrate into miniaturized devices for sensing applications is essential for constructing the next-generation point-of-care system. Although crystalline structure materials such as metal organic frameworks are attractive materials exhibiting promising potential for biosensing, their integration into miniaturized devices is limited. Dopamine (DA) is a major neurotransmitter released by dopaminergic neurons and has huge implications in neurodegenerative diseases. Integrated microfluidic biosensors capable of sensitive monitoring of DA from mass-limited samples is thus of significant importance. In this study, we developed and systematically characterized a microfluidic biosensor functionalized with the hybrid material composed of indium phosphate and polyaniline nanointerfaces for DA detection. Under the flowing operation, this biosensor displays a linear dynamic sensing range going from 10-18 to 10-11 M and a limit of detection (LOD) value of 1.83 × 10-19 M. In addition to the high sensitivity, this microfluidic sensor showed good selectivity toward DA and high stability (>1000 cycles). Further, the reliability and practical utility of the microfluidic biosensor were demonstrated using the neuro-2A cells treated with the activator, promoter, and inhibiter. These promising results underscore the importance and potential of microfluidic biosensors integrated with hybrid materials as advanced biosensors systems.
Collapse
Affiliation(s)
- Ying Li
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chiao-Chun Chang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chu Wang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Ti Wu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Min Wang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- General Education Center, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
29
|
Zheng W, You S, Chen Z, Ding B, Huang Y, Ren N, Liu Y. Copper Nanowire Networks: An Effective Electrochemical Peroxymonosulfate Activator toward Nitrogenous Pollutant Abatement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37315045 DOI: 10.1021/acs.est.3c03201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we developed an electrochemical filtration system for effective and selective abatement of nitrogenous organic pollutants via peroxymonosulfate (PMS) activation. Highly conductive and porous copper nanowire (CuNW) networks were constructed to serve simultaneously as catalyst, electrode, and filtration media. In one demonstration of the CuNW network's capability, a single pass through a CuNW filter (τ < 2 s) degraded 94.8% of sulfamethoxazole (SMX) at an applied potential of -0.4 V vs SHE. The exposed {111} crystal plane of CuNW triggered atomic hydrogen (H*) generation on sites, which contributed to effective PMS reduction. Meanwhile, with the involvement of SMX, a Cu-N bond was formed by the interactions between the -NH2 group of SMX and the Cu sites of CuNW, accompanied by the redox cycling of Cu2+/Cu+, which was facilitated by the applied potential. The different charges of the active Cu sites made it easier to withdraw electrons and promote PMS oxidation. Theoretical calculations and experimental results were combined to suggest a mechanism for pollution abatement with CuNW networks. The results showed that system efficacy for the degradation of a wide array of nitrogenous pollutants was robust across a broad range of solution pH and complex aqueous matrices. The flow-through operation of the CuNW filter outperformed conventional batch electrochemistry due to convection-enhanced mass transport. This study provides a new strategy for environmental remediation by integrating state-of-the-art material science, advanced oxidation processes, and microfiltration technology.
Collapse
Affiliation(s)
- Wentian Zheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
30
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
31
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
32
|
An eco-friendly and very low catalyst loading continuous condensation of primary amines and 1,3 Di carbonyl compounds: Synthesis of enaminones and enaminoesters by microreactor technology. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
33
|
Monbaliu JCM, Legros J. Will the next generation of chemical plants be in miniaturized flow reactors? LAB ON A CHIP 2023; 23:1349-1357. [PMID: 36278262 DOI: 10.1039/d2lc00796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For decades, a production paradigm based on centralized, stepwise, large scale processes has dominated the chemical industry horizon. While effective to meet an ever increasing demand for high value-added chemicals, the so-called macroscopic batch reactors are also associated with inherent weaknesses and threats; some of the most obvious ones were tragically illustrated over the past decades with major industrial disasters and impactful disruptions of advanced chemical supplies. The COVID pandemic has further emphasized that a change in paradigm was necessary to sustain chemical production with an increased safety, reliable supply chains and adaptable productivities. More than a decade of research and technology development has led to alternative and effective chemical processes relying on miniaturised flow reactors (a.k.a. micro and mesofluidic reactors). Such miniaturised reactors bear the potential to solve safety concerns and to improve the reliability of chemical supply chains. Will they initiate a new paradigm for a more localized, safe and reliable chemical production?
Collapse
Affiliation(s)
- Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium.
| | - Julien Legros
- COBRA Laboratory, CNRS, UNIROUEN, INSA Rouen, Normandie Université, 76000 Rouen, France.
| |
Collapse
|
34
|
Liu Y, Zhou P, Xu Y, Yang Z, Wang D. Electrochemically driven [4+2] benzannulation: synthesis of polycyclic (hetero)aromatic compounds. Chem Commun (Camb) 2023; 59:1681-1684. [PMID: 36692059 DOI: 10.1039/d2cc06552e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A green and economical electrochemical protocol has been developed to synthesize polycyclic (hetero)aromatic compounds by the [4+2] benzannulation of biaryldiazonium salts with alkynes. This protocol features a broad substrate scope. Instead of requiring diazonium reagents, these reactions can begin from anilines and can be carried out in one pot. Moreover, the readily accessible scale-up synthesis achieved by using an electrochemical flow cell demonstrates the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Yunlong Liu
- Key Laboratory of Textile Fiber and Products/Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Pengcheng Zhou
- Key Laboratory of Textile Fiber and Products/Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Yingli Xu
- Key Laboratory of Textile Fiber and Products/Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Zhiqi Yang
- Key Laboratory of Textile Fiber and Products/Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products/Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China.
| |
Collapse
|
35
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
36
|
Sato E, Tachiwaki G, Fujii M, Mitsudo K, Washio T, Takizawa S, Suga S. Electrochemical Carbon-Ferrier Rearrangement Using a Microflow Reactor and Machine Learning-Assisted Exploration of Suitable Conditions. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eisuke Sato
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Gaku Tachiwaki
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Artificial Intelligence Research Center, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Synthetic Organic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
37
|
García-Lacuna J, Baumann M. Inline purification in continuous flow synthesis – opportunities and challenges. Beilstein J Org Chem 2022. [DOI: 10.3762/bjoc.18.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Continuous flow technology has become the method of choice for many academic and industrial researchers when developing new routes to chemical compounds of interest. With this technology maturing over the last decades, robust and oftentimes automated processes are now commonly exploited to generate fine chemical building blocks. The integration of effective inline analysis and purification tools is thereby frequently exploited to achieve effective and reliable flow processes. This perspective article summarizes recent applications of different inline purification techniques such as chromatography, extractions, and crystallization from academic and industrial laboratories. A discussion of the advantages and drawbacks of these tools is provided as a guide to aid researchers in selecting the most appropriate approach for future applications. It is hoped that this perspective contributes to new developments in this field in the context of process and cost efficiency, sustainability and industrial uptake of new flow chemistry tools developed in academia.
Collapse
|
38
|
Zahrt AF, Mo Y, Nandiwale KY, Shprints R, Heid E, Jensen KF. Machine-Learning-Guided Discovery of Electrochemical Reactions. J Am Chem Soc 2022; 144:22599-22610. [PMID: 36459170 DOI: 10.1021/jacs.2c08997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The molecular structures synthesizable by organic chemists dictate the molecular functions they can create. The invention and development of chemical reactions are thus critical for chemists to access new and desirable functional molecules in all disciplines of organic chemistry. This work seeks to expedite the exploration of emerging areas of organic chemistry by devising a machine-learning-guided workflow for reaction discovery. Specifically, this study uses machine learning to predict competent electrochemical reactions. To this end, we first develop a molecular representation that enables the production of general models with limited training data. Next, we employ automated experimentation to test a large number of electrochemical reactions. These reactions are categorized as competent or incompetent mixtures, and a classification model was trained to predict reaction competency. This model is used to screen 38,865 potential reactions in silico, and the predictions are used to identify a number of reactions of synthetic or mechanistic interest, 80% of which are found to be competent. Additionally, we provide the predictions for the 38,865-member set in the hope of accelerating the development of this field. We envision that adopting a workflow such as this could enable the rapid development of many fields of chemistry.
Collapse
Affiliation(s)
- Andrew F Zahrt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02142, United States
| | - Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02142, United States.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Kakasaheb Y Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02142, United States
| | - Ron Shprints
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02142, United States
| | - Esther Heid
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02142, United States.,Institute of Materials Chemistry, TU Wien, Vienna1060, Austria
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02142, United States
| |
Collapse
|
39
|
Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFuel cell reactors can be tailored to simultaneously cogenerate value-added chemicals and electrical energy while releasing negligible CO2 emissions or other pollution; moreover, some of these reactors can even “breathe in” poisonous gas as feedstock. Such clean cogeneration favorably offsets the fast depletion of fossil fuel resources and eases growing environmental concerns. These unique reactors inherit advantages from fuel cells: a high energy conversion efficiency and high selectivity. Compared with similar energy conversion devices with sandwich structures, fuel cell reactors have successfully “hit three birds with one stone” by generating power, producing chemicals, and maintaining eco-friendliness. In this review, we provide a systematic summary on the state of the art regarding fuel cell reactors and key components, as well as the typical cogeneration reactions accomplished in these reactors. Most strategies fall short in reaching a win–win situation that meets production demand while concurrently addressing environmental issues. The use of fuel cells (FCs) as reactors to simultaneously produce value-added chemicals and electrical power without environmental pollution has emerged as a promising direction. The FC reactor has been well recognized due to its “one stone hitting three birds” merit, namely, efficient chemical production, electrical power generation, and environmental friendliness. Fuel cell reactors for cogeneration provide multidisciplinary perspectives on clean chemical production, effective energy utilization, and even pollutant treatment, with far-reaching implications for the wider scientific community and society. The scope of this review focuses on unique reactors that can convert low-value reactants and/or industrial wastes to value-added chemicals while simultaneously cogenerating electrical power in an environmentally friendly manner.
Graphical Abstract
A schematic diagram for the concept of fuel cell reactors for cogeneration of electrical energy and value-added chemicals
Collapse
|
40
|
Masui H, Fuse S. Micro-Flow <i>N</i>-Acylation Using Highly Electrophilic Acyl Ammonium Cations for Peptide and Urethane-Protected <i>N</i>-Carboxyanhydride Syntheses. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Zhang Q, Bai X, Li Y, Zhang X, Tian D, Jiang L. Ultrastable Super-Hydrophobic Surface with an Ordered Scaly Structure for Decompression and Guiding Liquid Manipulation. ACS NANO 2022; 16:16843-16852. [PMID: 36222751 DOI: 10.1021/acsnano.2c06749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Directional droplet manipulation is very crucial in microfluidics, intelligent liquid management, etc. However, excessive liquid pressure tends to destroy the solid-gas-liquid (SAL) composite interface, creating a highly adhesive surface, which is not conducive to liquid transport. Herein, we propose a strategy to enhance the surface durability, in which the surface cannot withstand liquid pressure only by "blocking" but must instead guide liquid transport for "decompression". Learning from the water resistance of water strider legs and the drag reduction of shark skin, we present a continuous integrated system to obtain an ultrastable super-hydrophobic surface with a highly ordered scaly structure via a liquid flow-induced alignment method for lossless unidirectional liquid transport. The nonwetting scaly structure can both buffer liquid pressure and drive droplet motion to further reduce the vertical pressure of the liquid. Moreover, droplets can be manipulated unidirectionally using a voice. This work could aid in manufacturing scalable anisotropic micro-nanostructure surfaces, which inspires efforts in realizing lossless continuous liquid control on demand and related microfluidic applications.
Collapse
Affiliation(s)
- Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- School of Physics, Beihang University, Beijing100191, P. R. China
| | - Xiuhui Bai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100191, P. R. China
| |
Collapse
|
42
|
Baumgarten N, Etzold BJM, Magomajew J, Ziogas A. Scalable Microreactor Concept for the Continuous Kolbe Electrolysis of Carboxylic Acids Using Aqueous Electrolyte. ChemistryOpen 2022; 11:e202200171. [PMID: 36200517 PMCID: PMC9535501 DOI: 10.1002/open.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The Kolbe electrolysis is a promising reaction to combine the usage of electrons as reagents and the application of renewable generated carboxylic acids as raw materials producing value added chemicals. Within this study, the electrolysis was conducted in a specially developed concept electrochemical microreactor and draws the particular attention to continuous operation and reuse of the aqueous electrolyte as well as of the dissolved unreacted feedstock. The electrolysis was conducted in alkaline aqueous solution using n-octanoic acid as model substance. Platinized titanium as anode material in an undivided cell setup was shown to give Kolbe selectivity above 90 %. During the technically relevant conditions of current densities up to 0.6 A cm-2 and overall electrolysis times of up to 3 h, a high electrode stability was observed. Finally, a proof-of-concept continuous operation and the numbering up potential of the ECMR could be demonstrated.
Collapse
Affiliation(s)
- Nils Baumgarten
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAalrich-Weiss-Straße 864287DarmstadtGermany
| | - Bastian J. M. Etzold
- Technical University of DarmstadtDepartment of ChemistryErnst-Berl-Institut für Technische und Makromolekulare ChemieAalrich-Weiss-Straße 864287DarmstadtGermany
| | - Juri Magomajew
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| | - Athanassios Ziogas
- Division Chemistry – Sustainable Chemical SynthesesFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
43
|
Lee D, Love A, Mansouri Z, Waldron Clarke TH, Harrowven DC, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George MW. High-Productivity Single-Pass Electrochemical Birch Reduction of Naphthalenes in a Continuous Flow Electrochemical Taylor Vortex Reactor. Org Process Res Dev 2022; 26:2674-2684. [PMID: 36158467 PMCID: PMC9486933 DOI: 10.1021/acs.oprd.2c00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/29/2022]
Abstract
We report the development of a single-pass electrochemical Birch reduction carried out in a small footprint electrochemical Taylor vortex reactor with projected productivities of >80 g day-1 (based on 32.2 mmol h-1), using a modified version of our previously reported reactor [Org. Process Res. Dev. 2021, 25, 7, 1619-1627], consisting of a static outer electrode and a rapidly rotating cylindrical inner electrode. In this study, we used an aluminum tube as the sacrificial outer electrode and stainless steel as the rotating inner electrode. We have established the viability of using a sacrificial aluminum anode for the electrochemical reduction of naphthalene, and by varying the current, we can switch between high selectivity (>90%) for either the single ring reduction or double ring reduction with >80 g day-1 projected productivity for either product. The concentration of LiBr in solution changes the fluid dynamics of the reaction mixture investigated by computational fluid dynamics, and this affects equilibration time, monitored using Fourier transform infrared spectroscopy. We show that the concentrations of electrolyte (LiBr) and proton source (dimethylurea) can be reduced while maintaining high reaction efficiency. We also report the reduction of 1-aminonaphthalene, which has been used as a precursor to the API Ropinirole. We find that our methodology produces the corresponding dihydronaphthalene with excellent selectivity and 88% isolated yield in an uninterrupted run of >8 h with a projected productivity of >100 g day-1.
Collapse
Affiliation(s)
- Darren
S. Lee
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ashley Love
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Zakaria Mansouri
- Department
of Mechanical and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Toby H. Waldron Clarke
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David C. Harrowven
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Richard Jefferson-Loveday
- Department
of Mechanical and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen J. Pickering
- Department
of Mechanical and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Martyn Poliakoff
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
44
|
Grillo G, Cintas P, Colia M, Calcio Gaudino E, Cravotto G. Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.966451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Industrial organic synthesis is time and energy consuming, and generates substantial waste. Traditional conductive heating and mixing in batch reactors is no longer competitive with continuous-flow synthetic methods and enabling technologies that can strongly promote reaction kinetics. These advances lead to faster and simplified downstream processes with easier workup, purification and process scale-up. In the current Industry 4.0 revolution, new advances that are based on cyber-physical systems and artificial intelligence will be able to optimize and invigorate synthetic processes by connecting cascade reactors with continuous in-line monitoring and even predict solutions in case of unforeseen events. Alternative energy sources, such as dielectric and ohmic heating, ultrasound, hydrodynamic cavitation, reactive extruders and plasma have revolutionized standard procedures. So-called hybrid or hyphenated techniques, where the combination of two different energy sources often generates synergistic effects, are also worthy of mention. Herein, we report our consolidated experience of all of these alternative techniques.
Collapse
|
45
|
Folgueiras‐Amador AA, Teuten AE, Salam‐Perez M, Pearce JE, Denuault G, Pletcher D, Parsons PJ, Harrowven DC, Brown RCD. Cathodic Radical Cyclisation of Aryl Halides Using a Strongly-Reducing Catalytic Mediator in Flow. Angew Chem Int Ed Engl 2022; 61:e202203694. [PMID: 35790060 PMCID: PMC9543573 DOI: 10.1002/anie.202203694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/13/2022]
Abstract
Electro-reductive radical cyclisation of aryl halides affords the corresponding hetero- and carbo-cycles in an undivided flow reactor equipped with steel and carbon electrodes using an organic mediator. A dissolving metal anode is not needed, and the mediator can be employed in a sub-stoichiometric amount (0.05 equiv), increasing the practical utility of cathodic radical cyclisation. The methodology is applied to O-, N-, and C-tethers, yielding tricyclic fused and spiro systems. In the absence of mediator, the major pathway is hydrogenolysis of the C-X bond, a 2 e- process occurring at the cathode. Predominance of the radical pathway in presence of a strongly reducing mediator (M) is consistent with homogeneous electron-transfer in a reaction layer detached from the cathode surface, where the flux of M.- leaving the electrode is such that little aryl halide reaches the cathode.
Collapse
Affiliation(s)
| | | | - Mateo Salam‐Perez
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - James E. Pearce
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Guy Denuault
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Derek Pletcher
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Philip J. Parsons
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - David C. Harrowven
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
46
|
Lin K, Lan J, Zhu T. Electrosynthesis of β‐Acyloxy‐γ‐Selenyl Amine via Migratory Oxyselenation of N‐Acyl Allylamine. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Wang Y, Li L, Fu N. Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Arndt S, Rücker R, Stenglein A, Waldvogel SR. Reactor Design for the Direct Electrosynthesis of Periodate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Richard Rücker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
49
|
Rocco D, Folgueiras-Amador AA, Brown RCD, Feroci M. First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell. Beilstein J Org Chem 2022; 18:979-990. [PMID: 35965857 PMCID: PMC9359202 DOI: 10.3762/bjoc.18.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
In this paper we present the first electrochemical generation of NHC carried out in a divided flow cell. The flow cell operated in the recycle mode. The need for a divided cell derived from the anodic electroactivity of the electrogenerated carbene. In order to have NHC accumulation in the catholyte, the Nafion membrane (cell separator) was pretreated with an alkaline solution. The formation of NHC was quantified as its reaction product with elemental sulfur. The NHC was successfully used as organocatalyst in two classical umpolung reactions of cinnamaldehyde: its cyclodimerization and its oxidative esterification.
Collapse
Affiliation(s)
- Daniele Rocco
- Department of Ingegneria Meccanica ed Aerospaziale, Sapienza University, via Eudossiana, 18, 00184, Rome, Italy
| | | | - Richard C D Brown
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Marta Feroci
- Department of Scienze di Base e Applicate per l’Ingegneria, Sapienza University, via del Castro Laurenziano, 7, 00161, Rome, Italy
| |
Collapse
|
50
|
Takumi M, Sakaue H, Shibasaki D, Nagaki A. Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. Chem Commun (Camb) 2022; 58:8344-8347. [PMID: 35797717 DOI: 10.1039/d2cc02344j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flash (extremely fast) electrochemical generation of unstable arylbis(arylthio)sulfonium triflates [ArS(ArSSAr)]+ [OTf]- that are unsuitable for accumulation in batch processes was achieved within 10 s in a divided-type flow electrochemcial reactor, enabling one-flow access to vinyl triflates, short-lived oxocarbenium triflates and glycosyl triflates.
Collapse
Affiliation(s)
- Masahiro Takumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hodaka Sakaue
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Daiki Shibasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|