1
|
Sun YW, Tan HT, Sun SN, Li BJ. Iridium-Catalyzed Asymmetric β-Selective Hydroamination of Enamides for the Synthesis of 1,2-Diamines. Angew Chem Int Ed Engl 2025:e202507200. [PMID: 40302454 DOI: 10.1002/anie.202507200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
An iridium-catalyzed highly enantioselective hydroamination of electron-rich alkenes has been developed. The coordination assistance of the amide group to the metal center effectively overrides the inherent electronic preference of N─H addition to an enamide, delivering unconventional β-selectivity. Phthalimide is utilized as a readily removable amination agent. This methodology enables direct access to enantio-enriched 1,2-diamines from readily available materials with 100% atom economy, exclusive regioselectivity, and excellent enantioselectivity (up to 99% ee).
Collapse
Affiliation(s)
- Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao-Tian Tan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sheng-Nan Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Lin EZ, Zhao W, Shi JK, Sun YW, Xiong X, Qi X, Sun X, Li BJ. Construction of Nonadjacent Stereocenters Through Iridium-Catalyzed Desymmetric Hydroheteroarylation of Cyclopentenes. Angew Chem Int Ed Engl 2025:e202501641. [PMID: 40240307 DOI: 10.1002/anie.202501641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Transition metal-catalyzed direct addition of (hetero)aryl C─H bond to an alkene provides an expedited route to construct benzylic stereocenter from readily available arene and alkene feedstocks with complete atom-economy. However, creation of more than one stereocenter through enantioselective C─H (hetero)arylation remains a challenging goal. Here we report an iridium-catalyzed desymmetric hydroheteroarylation of cyclopentenes to construct 1,3-nonadjacent stereocenters. A series of heteroaryl C─H bonds were cleaved site-selectively and added regio- and enantioselectively to an unactivated alkene containing an amide coordinating group, delivering valuable enantioenriched cyclopentane scaffolds containing 1,3-tertiary-tertiary or 1,3-quaternary-tertiary stereocenters with exclusive diastereoselectivity and excellent enantioselectivity.
Collapse
Affiliation(s)
- En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Kai Shi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianrui Xiong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xin Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Mondal A, Fu GC. Photoinduced, Copper-Catalyzed Enantioconvergent Synthesis of β-Aminoalcohol Derivatives. J Am Chem Soc 2025; 147:10859-10863. [PMID: 40126211 PMCID: PMC12057720 DOI: 10.1021/jacs.5c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In view of the frequent occurrence of carbon-nitrogen bonds in organic compounds, the development of powerful new methods for the construction of such bonds is expected to greatly impact many of the fields that utilize organic molecules. While the substitution of an alkyl electrophile by a nitrogen nucleophile is a seemingly straightforward approach to generating a carbon-nitrogen bond, in practice classical substitution pathways have very substantial limitations in the case of unactivated secondary and tertiary alkyl electrophiles. Recent reports that transition metals can catalyze certain substitution reactions of such electrophiles are therefore of considerable significance; however, virtually no methods have been developed wherein absolute stereochemistry is controlled together with carbon-nitrogen bond formation. Herein, we address this dual challenge of reactivity and enantioselectivity, describing a photoinduced, copper-catalyzed enantioconvergent synthesis of β-aminoalcohol derivatives via the coupling of anilines with racemic, unactivated β-haloethers. We apply this method to a catalytic asymmetric synthesis of metolachlor, and we report an array of mechanistic studies that are consistent with the reaction pathway that we propose.
Collapse
Affiliation(s)
- Arup Mondal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C. Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Lu HX, Lu SL, Li BJ. Amide-Directed Highly Enantioselective Hydrogenation of Diverse Acyclic Multisubstituted Alkenes Under Mild Conditions. Angew Chem Int Ed Engl 2025; 64:e202422698. [PMID: 39778032 DOI: 10.1002/anie.202422698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions. The coordination assistance of the amide group to the metal center generates a highly active catalyst that effectively overcomes the low reactivity of substrates and precisely controls the stereoselectivity. The generality of this catalyst system is exemplified by its efficacy across at least three types of alkenes including β,γ-unsaturated amides, α,β-unsaturated amides, and enamides.
Collapse
Affiliation(s)
- Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shou-Lin Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Sun YW, Sun X, Tan HT, Li BJ. Synthesis of γ-Amino Amides by Iridium-Catalyzed Enantioselective Hydroamination of Internal Alkenes Directed by an Amide. Angew Chem Int Ed Engl 2025; 64:e202422944. [PMID: 39681522 DOI: 10.1002/anie.202422944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Catalytic regio- and enantioselective hydroamination of less activated internal alkenes presents a challenge to synthetic chemists due to their low reactivity and the difficulty in simultaneously controlling regio- and enantioselectivities. Here, we report an iridium-catalyzed enantioselective hydroamination of internal alkenes directed by an amide. The amide group on the alkene effectively directs the catalyst to overcome the low reactivity and control the regioselectivity and the enantiotopic face selection. Phthalimide serves as the amination agent, which could be readily removed to afford a primary amine. This coordination assistance enables hydroamination to occur selectively at the remote position with up to 97 % ee, delivering valuable enantio-enriched γ-amino acid derivatives that are otherwise challenging to access.
Collapse
Affiliation(s)
- Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao-Tian Tan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Chen MW, Ding YX, Zhou YG. Directing Group Enabled Ruthenium-Catalyzed Asymmetric Hydrogenation of Naphthalenes and Related Carbocyclic Aromatics. Org Lett 2025. [PMID: 39888674 DOI: 10.1021/acs.orglett.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Among the aromatic carbocyclic rings, the highly regio- and enantioselective hydrogenation of nonsymmetrical naphthalenes has remained a long-standing challenge in asymmetric catalysis. Herein, we reporte an amide-directed asymmetric hydrogenation of nonsymmetrical naphthalenes with a ruthenium catalyst with up to 99% ee. This strategy was also successfully applied in the asymmetric hydrogenation of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Mu-Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yi-Xuan Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Liu S, Zhang D, Gong Y, Ma L, Li L, Chen W. π-π stacking assisted regioselectivity regulation in palladium-catalyzed cyclization reactions: a theoretical study. RSC Adv 2024; 14:38285-38292. [PMID: 39634724 PMCID: PMC11615657 DOI: 10.1039/d4ra06552b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
The regulation of regioselectivity is an objective often pursued by organic chemists, and the comprehension of its mechanisms is crucial for devising efficient synthetic pathways. In this report, we conducted theoretical calculations to explore the regioselectivity regulatory mechanisms of two palladium-catalyzed cyclization reactions. In these cyclization reactions, manipulating the structural differences in the reaction substrates leads to the formation of distinct products. A detailed reaction mechanism and reactivity profile for this reaction were revealed. Furthermore, a π-π stacking assisted regioselectivity regulatory mechanism was proven by distortion-interaction energy analysis and noncovalent interaction calculations. The calculated results presented herein provide a theoretical guide for further experimental investigations of regioselectivity regulation.
Collapse
Affiliation(s)
- Song Liu
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
| | - Dianmin Zhang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Yue Gong
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Lianli Ma
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Li Li
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| | - Wei Chen
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences Yongchuan 402160 PR China
| |
Collapse
|
8
|
Koshizuka M, Takahashi N, Shimada N. Organoboron catalysis for direct amide/peptide bond formation. Chem Commun (Camb) 2024; 60:11202-11222. [PMID: 39196535 DOI: 10.1039/d4cc02994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Amides and peptides are ubiquitous functional groups found in several natural and artificial materials, and they are essential for the advancement of life and material sciences. In particular, their relevance in clinical medicine and drug discovery has increased in recent years. Dehydrative condensation of readily available carboxylic acids with amines is the most "direct" method for amide synthesis; however, this methodology generally requires a stoichiometric amount of condensation agent (coupling reagent). Catalytic direct dehydrative amidation has become an "ideal" methodology for synthesizing amides from the perspective of green chemistry, with water as the only byproduct in principle, high atom efficiency, environmentally friendly, energy saving, and safety. Conversely, organoboron compounds, such as boronic acids, which are widely used in various industries as coupling reagents for Suzuki-Miyaura cross-coupling reactions or pharmaceutical structures, are environmentally friendly molecules that have low toxicity and are easy to handle. Based on the chemical properties of organoboron compounds, they have potential Lewis acidity and the ability to form reversible covalent bonds with dehydration, making them attractive as catalysts. This review explores studies on the development of direct dehydrative amide/peptide bond formation reactions from carboxylic acids using organoboron catalysis, classifying them based on chemical bonding and catalysis over approximately 25 years, from the early developmental days to 2023.
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
9
|
Hodson NJ, Takano S, Fanourakis A, Phipps RJ. Enantioselective Nitrene Transfer to Hydrocinnamyl Alcohols and Allylic Alcohols Enabled by Systematic Exploration of the Structure of Ion-Paired Rhodium Catalysts. J Am Chem Soc 2024; 146:22629-22641. [PMID: 39083568 PMCID: PMC11328136 DOI: 10.1021/jacs.4c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This work describes highly enantioselective nitrene transfer to hydrocinnamyl alcohols (benzylic C-H amination) and allylic alcohols (aziridination) using ion-paired Rh (II,II) complexes based on anionic variants of Du Bois' esp ligand that are associated with cinchona alkaloid-derived chiral cations. Directed by a substrate hydroxyl group, our previous work with these complexes had not been able to achieve high enantioselectivity on these most useful short-chain compounds, and we overcame this challenge through a combination of catalyst design and modified conditions. A hypothesis that modulation of the linker between the anionic sulfonate group and the central arene spacer might provide a better fit for shorter chain length substrates led to the development of a new biaryl-containing scaffold, which has allowed a broad scope for both substrate classes to be realized for the first time. Furthermore, we describe a systematic structural "knockout" study on the cinchona alkaloid-derived chiral cation to elucidate which features are crucial for high enantioinduction. De novo synthesis of modified scaffolds led to the surprising finding that for high ee the quinoline nitrogen of the alkaloid is crucial, although its location within the heterocycle could be varied, even leading to a superior catalyst. The free hydroxyl is also crucial and should possess the naturally occurring diastereomeric configuration of the alkaloid. These findings underline the privileged nature of the cinchona alkaloid scaffold and provide insight into how these cations might be used in other catalysis contexts.
Collapse
Affiliation(s)
- Nicholas J Hodson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Shotaro Takano
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Lu HX, Wang C, Gao TT, Lin EZ, Lu SL, Hong X, Li BJ. Rhodium-Catalyzed Highly Enantioselective Hydroboration of Acyclic Tetrasubstituted Alkenes Directed by an Amide. J Am Chem Soc 2024; 146:16194-16202. [PMID: 38832699 DOI: 10.1021/jacs.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity. The generality of the catalyst system is exemplified by its efficacy across various tetrasubstituted alkenes with diverse steric and electronic properties.
Collapse
Affiliation(s)
- Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shou-Lin Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Zhang Z, Li X, Song Q, Li Y, Tian X, Ali S, Yao Y, Li P, Wang Z, Zheng H. Asymmetric Total Synthesis of (+)-Chuanxiongnolide L1 via a Stereoselective Oxidative Dearomatization/Diels-Alder Strategy. Org Lett 2024; 26:2928-2933. [PMID: 38551465 DOI: 10.1021/acs.orglett.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The first asymmetric total synthesis of chuanxiongnolide L1 was achieved in 16 steps and 1.9% overall yield by employing a bioinspired chiral auxiliary strategy. The key steps involving asymmetric oxidative dearomatization of chiral amino ether and subsequent asymmetric Diels-Alder reaction of the resulting masked chiral ortho-benzoquinone were adopted.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Qingyan Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuerong Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiqing Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Sajjad Ali
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuan Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengshen Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
12
|
Paterson KJ, Dahiya A, Williams BD, Phipps RJ. Tertiary Amides as Directing Groups for Enantioselective C-H Amination using Ion-Paired Rhodium Complexes. Angew Chem Int Ed Engl 2024; 63:e202317489. [PMID: 38348742 DOI: 10.1002/anie.202317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 03/01/2024]
Abstract
Enantioselective C-H amination at a benzylic methylene is a vital disconnection towards chiral benzylamines. Here we disclose that butyric and valeric acid-derived tertiary amides can undergo highly enantioselective benzylic amination using an achiral anionic Rh complex that is ion-paired with a Cinchona alkaloid-derived chiral cation. A broad scope of compounds can be aminated encompassing numerous arene substitutions, amides, and two different chain lengths. Excellent tolerance of ortho substituents was observed, which has not been achieved before in asymmetric intermolecular C-H amination with Rh. We speculate that the tertiary amide group of the substrate engages in hydrogen bonding interactions directly with the chiral cation, enabling a high level of organisation at the transition state for C-H amination. This is in contrast with our previous work where a substrate bearing a hydrogen bond donor was required. Control experiments led to the discovery that methyl ethers also function as proficient directing groups under the optimised conditions, potentially also acting as hydrogen bond acceptors. This finding has the promise to dramatically expand the applicability of our ion-paired chiral catalysts.
Collapse
Affiliation(s)
- Kieran J Paterson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Amit Dahiya
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Benjamin D Williams
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Sun X, Gao PC, Sun YW, Li BJ. Amide-Directed, Rhodium-Catalyzed Regio- and Enantioselective Hydroacylation of Internal Alkenes with Unfunctionalized Aldehydes. J Am Chem Soc 2024; 146:723-732. [PMID: 38116993 DOI: 10.1021/jacs.3c10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Despite the current progress achieved in asymmetric hydroacylations, highly enantioselective catalytic addition of unfunctionalized aldehydes to internal alkenes remains an unsolved challenge. Here, using a coordination-assisted strategy, we developed a rhodium-catalyzed regio- and enantioselective addition of unfunctionalized aldehydes to internal alkenes such as enamides and β,γ-unsaturated amides. Valuable α-amino ketones and 1,4-dicarbonyl compounds were directly obtained with high enantioselectivity from readily available materials.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng-Chao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Gupta A, Rahaman A, Bhadra S. Bioinspired Functionalization of Carbonyl Compounds Enabled by Metal Chelated Bifunctional Ligands. Chemistry 2024; 30:e202302812. [PMID: 37807759 DOI: 10.1002/chem.202302812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
In Nature, enzymatic reactions proceed through exceptionally ordered transition states giving rise to extraordinary levels of stereoselection. In those reactions, the active site of the enzyme plays crucial roles - through one position, it holds the substrate in the proximity to the reaction epicentre that facilitates both the reactivity and stereoselectivity of the chemical process. Inspired by this natural phenomenon, synthetic chemists have designed bifunctional ligands that not only coordinate to a metal centre but also preassociate with an organic substrate, for example aldehyde and ketone, and exerts stereodirecting influence to accelerate the attack of the incoming reacting partner from a particular enantiotopic face. The chief goal of the current review is to give an overview of the recently developed approaches enabled by privileged bio-inspired bifunctional ligands that not only bind to the metal catalyst but also activates carbonyl substrates via organocatalysis, thereby easing in the new bond forming step. As carbonyl α-functionalizations are dominated by enamine and enolate chemistry, the current review primarily focusses on enamine- and enolate-metal catalysis by bifunctional ligands. Thus, developments based on traditional cooperative catalysis occurring through two directly coupled but independent catalytic cycles of an organocatalyst and a metal catalyst are not covered.
Collapse
Affiliation(s)
- Aniket Gupta
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, GB Marg, 364002, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
- Current address: School of Chemistry, The University of Birmingham, B15 2TT, Birmingham, UK
| | - Ajijur Rahaman
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, GB Marg, 364002, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, GB Marg, 364002, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
15
|
Li Z, Wang M, Yang Y, Liang Y, Chen X, Zhao Y, Houk KN, Shi Z. Atroposelective hydroarylation of biaryl phosphines directed by phosphorus centres. Nat Commun 2023; 14:8509. [PMID: 38129395 PMCID: PMC10739911 DOI: 10.1038/s41467-023-44202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Prized for their ability to generate chemical complexity rapidly, catalytic carbon-hydrogen (C-H) activation and functionalization reactions have enabled a paradigm shift in the standard logic of synthetic chemistry. Directing group strategies have been used extensively in C-H activation reactions to control regio- and enantioselectivity with transition metal catalysts. However, current methods rely heavily on coordination with nitrogen and/or oxygen atoms in molecules and have therefore been found to exhibit limited generality in asymmetric syntheses. Here, we report enantioselective C-H activation with unsaturated hydrocarbons directed by phosphorus centres to rapidly construct libraries of axially chiral phosphines through dynamic kinetic resolution. High reactivity and enantioselectivity are derived from modular assembly of an iridium catalyst with an endogenous phosphorus atom and an exogenous chiral phosphorus ligand, as confirmed by detailed experimental and computational studies. This reaction mode significantly expands the pool of enantiomerically enriched functional phosphines, some of which have shown excellent efficiency for asymmetric catalysis.
Collapse
Affiliation(s)
- Zexian Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhuangzhi Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China.
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
16
|
Seog DJH, van Kien N, Ryoo JJ. Amino alcohol-derived chiral stationary phases. Chirality 2023; 35:739-752. [PMID: 37144722 DOI: 10.1002/chir.23574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
An updated minireview of chiral stationary phases (CSPs) based on amino alcohols is presented. In this minireview, we focused on amino alcohols as starting materials in preparation of chiral catalysts for asymmetric organic synthesis and CSPs for chiral separations. Among the various CSPs, we summarized the important developments and applications of the amino alcohol-based Pirkle-type CSPs, ligand exchange CSPs, α-amino acid-derived amino alcohol CSPs, and symmetric CSPs from their first appearance to the present day to propose ideas for the development of new CSPs with improved performance.
Collapse
Affiliation(s)
- David Jin Han Seog
- Department of Chemistry Education, Kyungpook National University, Daegu, South Korea
| | - Nguyen van Kien
- Department of Chemistry Education, Kyungpook National University, Daegu, South Korea
| | - Jae Jeong Ryoo
- Department of Chemistry Education, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Liang Y, Huang H, Huang N, Liao L, Zhao X. Catalytic Enantioselective Construction of Chiral γ-Azido Nitriles through Nitrile Group-Promoted Electrophilic Reaction of Alkenes. Org Lett 2023; 25:6757-6762. [PMID: 37656917 DOI: 10.1021/acs.orglett.3c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
An efficient approach for the construction of enantioenriched γ-azido nitriles through the chiral sulfide-catalyzed asymmetric electrophilic thioazidation of allylic nitriles is disclosed. A wide range of electron-deficient and -rich aryl, heterocyclic aryl, and alkyl substituents are suitable on the substrates of allylic nitriles. The regio-, enantio-, and diastereoselectivities of the reactions are excellent. As versatile platform molecules, the obtained chiral γ-azido nitriles can be easily converted into high-value-added chiral molecules that are not easily accessed by other methods. Control experiments revealed that the allylic nitrile group is important for control of the reactivity and enantioselectivity of the reaction leading to a broad substrate scope.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Nan Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
18
|
Vicens A, Vicens L, Olivo G, Lanzalunga O, Di Stefano S, Costas M. Site-selective methylene C-H oxidation of an alkyl diamine enabled by supramolecular recognition using a bioinspired manganese catalyst. Faraday Discuss 2023; 244:51-61. [PMID: 37185809 DOI: 10.1039/d2fd00177b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Site-selective oxidation of aliphatic C-H bonds is a powerful synthetic tool because it enables rapid build-up of product complexity and diversity from simple precursors. Besides the poor reactivity of alkyl C-H bonds, the main challenge in this reaction consists in differentiating between the multiple similar sites present in most organic molecules. Herein, a manganese oxidation catalyst equipped with two 18-benzo-6-crown ether receptors has been employed in the oxidation of the long chain tetradecane-1,14-diamine. 1H-NMR studies evidence simultaneous binding of the two protonated amine moieties to the crown ether receptors. This recognition has been used to pursue site-selective oxidation of a methylenic site, using hydrogen peroxide as oxidant in the presence of carboxylic acids as co-ligands. Excellent site-selectivity towards the central methylenic sites (C6 and C7) is observed, overcoming selectivity parameters derived from polar deactivation by simple amine protonation and selectivity observed in the oxidation of related monoprotonated amines.
Collapse
Affiliation(s)
- Arnau Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| |
Collapse
|
19
|
Hikawa R, Shimogaki M, Kano T. Construction of three contiguous stereocenters through amine-catalyzed asymmetric aldol reactions. Chem Commun (Camb) 2023. [PMID: 37334826 DOI: 10.1039/d3cc01606d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Three contiguous stereocenters were constructed by an amino acid-catalyzed asymmetric aldol reaction of α-siloxyketones with racemizable α-haloaldehydes via dynamic kinetic resolution. One-pot catalytic asymmetric synthesis of the highly functionalized products could also be accomplished by the α-bromination of simple aldehydes and the subsequent asymmetric aldol reaction.
Collapse
Affiliation(s)
- Ryoga Hikawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Mio Shimogaki
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
20
|
Fanourakis A, Hodson NJ, Lit AR, Phipps RJ. Substrate-Directed Enantioselective Aziridination of Alkenyl Alcohols Controlled by a Chiral Cation. J Am Chem Soc 2023; 145:7516-7527. [PMID: 36961353 PMCID: PMC10080694 DOI: 10.1021/jacs.3c00693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Alkene aziridination is a highly versatile transformation for the construction of chiral nitrogen-containing compounds. Inspired by the success of analogous substrate-directed epoxidations, we report an enantioselective aziridination of alkenyl alcohols, which enables asymmetric nitrene transfer to alkenes with varied substitution patterns, including those not covered by the current protocols. We believe that our method is effective because it is substrate-directed, exploiting a network of attractive non-covalent interactions between the substrate, an achiral dianionic rhodium(II,II) tetracarboxylate dimer, and its two associated cinchona alkaloid-derived cations. It is these cations that provide a defined chiral pocket in which the aziridination can occur. In addition to a thorough evaluation of compatible alkene classes, we advance a practical mnemonic to predict reaction outcome and disclose a range of post-functionalization protocols that highlight the unique synthetic potential of the enantioenriched aziridine-alcohol products.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nicholas J. Hodson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arthur R. Lit
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert J. Phipps
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
21
|
Janardan Pawar T, Bonilla‐Landa I, Reyes‐Luna A, Barrera‐Méndez. F, Javier Enríquez‐Medrano F, Enrique Díaz‐de‐León‐Gómez R, Luis Olivares‐Romero J. Chiral Hydroxamic Acid Ligands in Asymmetric Synthesis: The Evolution of Metal‐Catalyzed Oxidation Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202300555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | - Israel Bonilla‐Landa
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | - Alfonso Reyes‐Luna
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | - Felipe Barrera‐Méndez.
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
- Catedrático CONACyT en el Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| | | | - Ramón Enrique Díaz‐de‐León‐Gómez
- Research Center in Applied Chemistry (CIQA) Enrique Reyna Hermosillo, No. 140. Col. San José de los Cerritos Saltillo, 25294 México
| | - José Luis Olivares‐Romero
- Red de Estudios Moleculares Avanzados Clúster Científico y Tecnológico BioMimic Campus III. Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351 91073 Xalapa Veracruz México
| |
Collapse
|
22
|
Jung Y, Yoo SY, Jin Y, You J, Han S, Yu J, Park Y, Cho SH. Iridium-Catalyzed Chemo-, Diastereo-, and Enantioselective Allyl-Allyl Coupling: Accessing All Four Stereoisomers of (E)-1-Boryl-Substituted 1,5-Dienes by Chirality Pairing. Angew Chem Int Ed Engl 2023; 62:e202218794. [PMID: 36718077 DOI: 10.1002/anie.202218794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the β-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.
Collapse
Affiliation(s)
- Yongsuk Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| |
Collapse
|
23
|
Zhang WR, Zhang WW, Li H, Li BJ. Amide-Directed, Rhodium-Catalyzed Enantioselective Hydrosilylation of Unactivated Internal Alkenes. Org Lett 2023; 25:1667-1672. [PMID: 36892303 DOI: 10.1021/acs.orglett.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Despite the recent advances made in the area of asymmetric hydrosilylation, metal-catalyzed enantioselective hydrosilylation of unactivated internal alkenes remains a challenge. Here, we report a rhodium-catalyzed enantioselective hydrosilylation of unactivated internal alkenes bearing a polar group. The coordination assistance by an amide group enables the hydrosilylation to occur with high regio- and enantioselectivity.
Collapse
Affiliation(s)
- Wen-Ran Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.,Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Zhao W, Li BJ. Directing Group Repositioning Strategy Enabled Site- and Enantioselective Addition of Heteroaromatic C-H Bonds to Acyclic Internal Alkenes. J Am Chem Soc 2023; 145:6861-6870. [PMID: 36917558 DOI: 10.1021/jacs.3c00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Despite the notable advances achieved in the Murai-type hydroarylations, highly enantioselective catalytic addition of native (hetero)arenes to internal alkenes remains a prominent challenge. Herein, we report a directing group repositioning strategy, which enables the iridium-catalyzed enantioselective addition of heteroarenes including furan, benzofuran, and thiophene to internal enamides. The C-H bond at the C2 position of the heteroarene is site-selectively cleaved and added regioselectively to the β-position of an enamide, affording a valuable β-heteroaryl amide with high enantioselectivity. Mechanistic studies indicate that the rate and the enantioselectivity are determined by separate elementary steps.
Collapse
Affiliation(s)
- Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Bauri S, Ramachandran A, Rit A. Base-catalyzed Effective C2-Amidation of Azolium Salts Using Isocyanates under Mild Conditions. Chem Asian J 2023; 18:e202201301. [PMID: 36846935 DOI: 10.1002/asia.202201301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Indexed: 03/01/2023]
Abstract
An unprecedented base-catalyzed hydroarylation of isocyanates with azolium salts was developed, which follows a simple reaction pathway and provided facile access to diverse C2-amidated azolium salts under mild conditions. Importantly, this methodology can also be applied for the successive C2-amidation of a bisimidazolium salt with two different isocyanates to provide the corresponding unsymmetrically substituted bisamide derivatives. Notably, the obtained amidated salts can also serve as a prominent carbene surrogate for the synthesis of metal-NHC complexes.
Collapse
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arya Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
26
|
Zhao W, Lu HX, Zhang WW, Li BJ. Coordination Assistance: A Powerful Strategy for Metal-Catalyzed Regio- and Enantioselective Hydroalkynylation of Internal Alkenes. Acc Chem Res 2023; 56:308-321. [PMID: 36628651 DOI: 10.1021/acs.accounts.2c00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ConspectusAlkenes are versatile compounds that are readily available on a large scale from industry or through organic synthesis. The widespread occurrence of alkenes provides the continuous impetus for the development of catalytic asymmetric alkene hydrofunctionalizations, which enables expeditious construction of complex chiral molecules from readily available starting materials. Catalytic asymmetric hydrofunctionalization of internal alkenes presents a notable challenge, due to their low reactivity, many potential side reactions, and the simultaneous control of the regio-, diastereo-, and enantioselectivities.Dehydroamino acids and enamides are among the first substrates that provide notable enantioselectivities in catalytic asymmetric hydrogenation. The crucial importance of an amide coordinating group is established by a series of classical mechanistic studies. This initial success greatly stimulated further development for catalytic hydrogenation and hydrofunctionalization. Building on these pioneering works in asymmetric hydrogenation as well as related hydrofunctionalizations, we have adopted coordination assistance as a powerful tool to address the challenges associated with the asymmetric hydrofunctionalization of internal alkenes. Using a functional group on the alkene substrate as a native coordinating group, a two-point binding mode of the substrate to the metal center effectively enhances the reactivity and facilitates the control of regio-, diastereo- and enantioselectivities. Through this strategy, we have developed a number of alkene hydrofunctionalization methods with excellent regio-, diastereo-, and enantiocontrols.In this Account, we summarize the recent advance in our lab using coordination assistance as a key element to achieve regio- and enantioselective hydroalkynylation of internal alkenes. First, we describe our early work aimed at controlling the regio- and enantioselectivity of hydroalkynylation using disubstituted enamide as the substrate. Both α- and β-alkynylation were achieved by channeling the reaction pathway into a Chalk-Harrod or modified Chalk-Harrod mechanism. Next, we discuss the further development of catalysts to achieve regiodivergent and enantioselective hydroalkynylation of trisubstituted enamide to access vicinal stereocenters and quaternary carbon stereocenters. We also discuss the hydroalkynylation of α,β-unsaturated amides to achieve unconventional site-selectivity through a combination of alkene isomerization and regioselective hydroalkynylation. This provides the basis for the construction of a remote quaternary carbon stereocenter through catalytic hydroalkynylation of trisubstituted β,γ-unsaturated amides. We further show that this controlling principle is applicable to terminal alkene with a coordinating group as well. A ligand-controlled mechanism shift is discussed for the enantioselective alkynylation at the terminal and internal position of 1,1,-disubstituted alkenes. Finally, we briefly mention the application of coordination assistance to other hydrofunctionalizations such as hydroboration and hydrosilylation, where previously inaccessible reactivity and selectivity were achieved. Collectively, these catalytic methods demonstrate the power of coordination assistance for enantioselective hydrofunctionalizations. We anticipate that this strategy will create a platform to enable diverse enantioselective alkene transformations.
Collapse
Affiliation(s)
- Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| |
Collapse
|
27
|
Zhang WW, Li BJ. Enantioselective Hydrosilylation of β,β-Disubstituted Enamides to Construct α-Aminosilanes with Vicinal Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202214534. [PMID: 36344453 DOI: 10.1002/anie.202214534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Despite the advances in the area of catalytic alkene hydrosilylation, the enantioselective hydrosilylation of alkenes bearing a heteroatom substituent is scarce. Here we report a rhodium-catalyzed hydrosilylation of β,β-disubstituted enamides to directly afford valuable α-aminosilanes in a highly regio-, diastereo-, and enantioselective manner. Stereodivergent synthesis could be achieved by regulating substrate geometry and ligand configuration to generate all the possible stereoisomers in high enantio-purity.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Cohen A, Siddaraju Y, Marek I. Directed Diastereoselective Cyclopropanation and Epoxidation of Alkenyl Cyclopropyl Carbinol Derivatives. Org Lett 2022; 24:8322-8325. [PMID: 36354275 PMCID: PMC9743385 DOI: 10.1021/acs.orglett.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the directed diastereoselective Simmons-Smith cyclopropanation and vanadium-catalyzed epoxidation reactions of alkenyl cyclopropyl carbinol derivatives. The reaction furnished densely substituted stereodefined bicyclopropanes and cyclopropyl oxiranes as a single diastereomer in each case. The remarkable selectivity is obtained thanks to the rigidity of the cyclopropyl core, allowing diastereoselective reactions on the alkenyl moiety. This emphasizes the uniqueness of the cyclopropyl ring as a central platform in stereoselective synthesis.
Collapse
|
29
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX⋅LiX (X=Cl, Br). Angew Chem Int Ed Engl 2022; 61:e202210491. [PMID: 35943036 PMCID: PMC9826189 DOI: 10.1002/anie.202210491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/11/2023]
Abstract
A new method for regioselective zincations of challenging N-heterocyclic substrates such as pyrimidines and pyridazine was reported using bimetallic bases TMPZnX⋅LiX (TMP=2,2,6,6-tetramethylpiperidyl; X=Cl, Br). Reactions occurred under mild conditions (25-70 °C, using 1.75 equivalents of base without additives), furnishing 2-zincated pyrimidines and 3-zincated pyridazine, which were then trapped with a variety of electrophiles. Contrasting with other s-block metalating systems, which lack selectivity in their reactions even when operating at low temperatures, these mixed Li/Zn bases enabled unprecedented regioselectivities that cannot be replicated by either LiTMP nor Zn(TMP)2 on their own. Spectroscopic and structural interrogations of organometallic intermediates involved in these reactions have shed light on the complex constitution of reaction mixtures and the origins of their special reactivities.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alisa S. Sunagatullina
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Leonie J. Bole
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Pasquale Mastropierro
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Simon Graßl
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Henrik R. Wilke
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Edouard Godineau
- Forschung & Entwicklung SteinSyngenta Crop Protection AGSchaffhauserstrasse 1014332SteinSwitzerland
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Paul Knochel
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
30
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX·LiX (X = Cl, Br). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Leonie J. Bole
- Universität Bern: Universitat Bern Department für Chemie und Biochemie SWITZERLAND
| | | | - Simon Graßl
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Henrik R. Wilke
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Edouard Godineau
- Syngenta Crop Protection AG Forschung & Entwicklung Stein SWITZERLAND
| | - Eva Hevia
- Universität Bern: Universitat Bern Chemie und Biochemie SWITZERLAND
| | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
31
|
Gupta A, Saha A, Rahaman A, Kumar J, Suresh E, Ganguly B, Bhadra S. Cooperativity between the Substrate and Ligand in Palladium-Catalyzed Allylic Alkylation Using 1-Aryl-1-propynes. J Org Chem 2022; 87:10366-10371. [DOI: 10.1021/acs.joc.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aniket Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anusuya Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajijur Rahaman
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jogendra Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eringathodi Suresh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bishwajit Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukalyan Bhadra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
32
|
Mechanistic Details of the Sharpless Epoxidation of Allylic Alcohols—A Combined URVA and Local Mode Study. Catalysts 2022. [DOI: 10.3390/catal12070789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, we investigated the catalytic effects of a Sharpless dimeric titanium (IV)–tartrate–diester catalyst on the epoxidation of allylalcohol with methyl–hydroperoxide considering four different orientations of the reacting species coordinated at the titanium atom (reactions R1–R4) as well as a model for the non-catalyzed reaction (reaction R0). As major analysis tools, we applied the URVA (Unified Reaction Valley Approach) and LMA (Local Mode Analysis), both being based on vibrational spectroscopy and complemented by a QTAIM analysis of the electron density calculated at the DFT level of theory. The energetics of each reaction were recalculated at the DLPNO-CCSD(T) level of theory. The URVA curvature profiles identified the important chemical events of all five reactions as peroxide OO bond cleavage taking place before the TS (i.e., accounting for the energy barrier) and epoxide CO bond formation together with rehybridization of the carbon atoms of the targeted CC double bond after the TS. The energy decomposition into reaction phase contribution phases showed that the major effect of the catalyst is the weakening of the OO bond to be broken and replacement of OH bond breakage in the non-catalyzed reaction by an energetically more favorable TiO bond breakage. LMA performed at all stationary points rounded up the investigation (i) quantifying OO bond weakening of the oxidizing peroxide upon coordination at the metal atom, (ii) showing that a more synchronous formation of the new CO epoxide bonds correlates with smaller bond strength differences between these bonds, and (iii) elucidating the different roles of the three TiO bonds formed between catalyst and reactants and their interplay as orchestrated by the Sharpless catalyst. We hope that this article will inspire the computational community to use URVA complemented with LMA in the future as an efficient mechanistic tool for the optimization and fine-tuning of current Sharpless catalysts and for the design new of catalysts for epoxidation reactions.
Collapse
|
33
|
Li J, He D, Wang B, Xiong W, Qi C, Jiang H. Palladium-catalyzed Lewis acid-regulated cascade annulation of alkynes with unactivated alkenes to access diverse α-methylene-γ-lactones. Org Chem Front 2022. [DOI: 10.1039/d2qo01500e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A palladium-catalyzed Lewis acid-regulated cascade annulation of alkynes with unactivated alkenes for the preparation of alkyl substituted α-methylene-γ-lactones with excellent Z/E selectivities was accomplished.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Dan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Bowen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
34
|
Cohen Y, Marek I. Directed Regioselective Carbometallation of 1,2-Dialkyl-Substituted Cyclopropenes. Angew Chem Int Ed Engl 2021; 60:26368-26372. [PMID: 34617656 DOI: 10.1002/anie.202111382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 01/05/2023]
Abstract
A regio- and diastereoselective copper-catalyzed carbomagnesiation of 1,2-dialkylated cyclopropenes is reported. The regioselectivity is controlled by a subtle tethered Lewis basic moiety. The chelating moieties allow the differentiation between two electronically tantamount organometallic intermediates. Further functionalization grants access to polysubstituted stereodefined cyclopropanes bearing up to five alkyl groups.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
35
|
Cohen Y, Marek I. Directed Regioselective Carbometallation of 1,2‐Dialkyl‐Substituted Cyclopropenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Technion City Haifa 3200009 Israel
| |
Collapse
|
36
|
Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Functionalization of C(sp3)-H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Kang T, Kim N, Cheng PT, Zhang H, Foo K, Engle KM. Nickel-Catalyzed 1,2-Carboamination of Alkenyl Alcohols. J Am Chem Soc 2021; 143:13962-13970. [PMID: 34415748 DOI: 10.1021/jacs.1c07112] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An alcohol-directed, nickel-catalyzed three-component umpolung carboamination of unactivated alkenes with aryl/alkenylboronic esters and electrophilic aminating reagents is reported. This transformation is enabled by specifically tailored O-(2,6-dimethoxybenzoyl)hydroxylamine electrophiles that suppress competitive processes, including undesired β-hydride elimination and transesterification between the alcohol substrate and electrophile. The reaction delivers the desired 1,2-carboaminated products with generally high regio- and syn-diastereoselectivity and exhibits a broad scope of coupling partners and alkenes, including complex natural products. Various mechanistic experiments and analysis of the stereochemical outcome with a cyclic alkene substrate, as confirmed by X-ray crystallographic analysis, support alcohol-directed syn-insertion of an organonickel(I) species.
Collapse
Affiliation(s)
- Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nana Kim
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter T Cheng
- Discovery Chemistry, Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Hao Zhang
- Discovery Chemistry, Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Klement Foo
- Discovery Chemistry, Bristol Myers Squibb Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Keary M Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Tian S, Wang C, Xia J, Wan J, Liu Y. Transition Metal‐Free, Free‐Radical Sulfenylation of the α‐C(
sp
3
)−H Bond in Arylacetamides and Its Application Toward 2‐Thiomethyl Benzoxazoles Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shanghui Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jianhui Xia
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| |
Collapse
|
39
|
Muramatsu W, Hattori T, Yamamoto H. Amide bond formation: beyond the dilemma between activation and racemisation. Chem Commun (Camb) 2021; 57:6346-6359. [PMID: 34121110 DOI: 10.1039/d1cc01795k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of methods for amide bond formation without recourse to typical condensation reagents has become an emerging research area and has been actively explored in the past quarter century. Inspired by the structure of vitamin B12, we have developed a metal-templated macrolactamisation that generates a new wave towards classical macrolactam synthesis. Further, distinct from the extensively used methods with condensation reagents or catalysts based on catalyst/reagent control our metal-catalysed methods based on substrate control can effectively address long-standing challenges such as racemisation in the field of peptide chemistry. In addition, the substrate-controlled strategy demonstrates the feasibility of "remote" peptide bond-forming reaction catalysed by a metal-ligand complex. Moreover, an originally designed hydrosilane/aminosilane system can avoid not only racemisation but also unnecessary waste production. This feature article documents our discovery and application of our original approaches in amide bond formation.
Collapse
Affiliation(s)
- Wataru Muramatsu
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| | - Tomohiro Hattori
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
40
|
Moock D, Wagener T, Hu T, Gallagher T, Glorius F. Enantio- and Diastereoselective, Complete Hydrogenation of Benzofurans by Cascade Catalysis. Angew Chem Int Ed Engl 2021; 60:13677-13681. [PMID: 33844391 PMCID: PMC8251578 DOI: 10.1002/anie.202103910] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/13/2022]
Abstract
We report an enantio- and diastereoselective, complete hydrogenation of multiply substituted benzofurans in a one-pot cascade catalysis. The developed protocol facilitates the controlled installation of up to six new defined stereocenters and produces architecturally complex octahydrobenzofurans, prevalent in many bioactive molecules. A unique match of a chiral homogeneous ruthenium-N-heterocyclic carbene complex and an in situ activated rhodium catalyst from a complex precursor act in sequence to enable the presented process.
Collapse
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tobias Wagener
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tianjiao Hu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Timothy Gallagher
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
41
|
Wagner CJ, Salisbury EA, Schoonover EJ, VanderRoest JP, Johnson JB. Pyridine-directed carbon–carbon single bond activation: Rhodium-catalyzed decarbonylation of aryl and heteroaromatic ketones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Moock D, Wagener T, Hu T, Gallagher T, Glorius F. Enantio‐ und diastereoselektive, vollständige Hydrierung von Benzofuranen mittels Kaskadenkatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Moock
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Wagener
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tianjiao Hu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Timothy Gallagher
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
43
|
2,2-Dimethyl-3-[(4-methylphenyl)sulfonyl]-2,3-dihydro-1,3,2-benzoxazasilole: synthesis, properties, and structure. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Kuriyama Y, Sasano Y, Hoshino Y, Uesugi SI, Yamaichi A, Iwabuchi Y. Highly Regioselective 5-endo-tet Cyclization of 3,4-Epoxy Amines into 3-Hydroxypyrrolidines Catalyzed by La(OTf) 3. Chemistry 2021; 27:1961-1965. [PMID: 33191563 DOI: 10.1002/chem.202004455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Indexed: 11/08/2022]
Abstract
Highly regioselective intramolecular aminolysis of 3,4-epoxy amines has been achieved. Key features of this reaction are (1) chemoselective activation of epoxides in the presence of unprotected aliphatic amines in the same molecules by a La(OTf)3 catalyst and (2) excellent regioselectivity for anti-Baldwin 5-endo-tet cyclization. This reaction affords 3-hydroxy-2-alkylpyrrolidines stereospecifically in high yields. DFT calculations revealed that the regioselectivity might be attributed to distortion energies of epoxy amine substrates. The use of this reaction was demonstrated by the first enantioselective synthesis of an antispasmodic agent prifinium bromide.
Collapse
Affiliation(s)
- Yuse Kuriyama
- Department of Organic Chemistry, Graduate School of, Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Sasano
- Department of Organic Chemistry, Graduate School of, Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshihiko Hoshino
- Department of Organic Chemistry, Graduate School of, Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shun-Ichiro Uesugi
- Department of Organic Chemistry, Graduate School of, Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Aoto Yamaichi
- Department of Organic Chemistry, Graduate School of, Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of, Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
45
|
Fang R, Zhou L, Kirillov AM, Yang L. DFT Study on Zr-Catalyzed Alkene Hydroaminoalkylation: Origin of Regioselectivity, Diastereoselectivity, and Influence of Substrate. Org Lett 2021; 23:583-587. [PMID: 33404246 DOI: 10.1021/acs.orglett.0c04119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A DFT study was carried out to investigate a zirconium-catalyzed hydroaminoalkylation of alkenes with N-silylated benzylamine. A global reactivity index (GRI) analysis showed that that substrates act as electrophiles while the active zirconaaziridine behaves as a nucleophile. Furthermore, the distortion/interaction analysis unveiled the role of the distortion and interaction energies in controlling the regioselectivity and diastereoselectivity when different alkene substrates are used. These results provide an in-depth analysis on how the substrate type influences the product selectivity.
Collapse
Affiliation(s)
- Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Lin Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., Moscow 117198, Russian Federation
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
46
|
Yang F, Ding D, Wang C. Nickel-Catalyzed Directed Cross-Electrophile Coupling of Phenolic Esters with Alkyl Bromides. Org Lett 2020; 22:9203-9209. [PMID: 33210932 DOI: 10.1021/acs.orglett.0c03342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, we demonstrate the successful use of robust phenolic esters as an electrophilic acyl source in the reaction with diverse primary and secondary unactivated alkyl bromides. The cleavage of the relatively inert C-O bond is facilitated by the neighboring coordinating hydroxyl or sulfonamide moiety. By circumventing the use of pregenerated organometallics, this method allows efficient preparation of a variety of o-hydroxyl and tosyl-protected o-amino aryl ketones with high compatibility with a wide range of functionalities.
Collapse
Affiliation(s)
- Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
47
|
Shimada N, Takahashi N, Ohse N, Koshizuka M, Makino K. Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids. Chem Commun (Camb) 2020; 56:13145-13148. [PMID: 33007055 DOI: 10.1039/d0cc05630h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first successful example of the direct synthesis of Weinreb amides using catalytic hydroxy-directed dehydrative amidation of carboxylic acids using the diboronic acid anhydride catalyst is described. The methodology is applicable to the concise syntheses of eight α-hydroxyketone natural products, namely, sattabacin, 4-hydroxy sattabacin, kurasoins A and B, soraphinols A and B, and circumcins B and C.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | | | |
Collapse
|
48
|
Koshizuka M, Makino K, Shimada N. Diboronic Acid Anhydride-Catalyzed Direct Peptide Bond Formation Enabled by Hydroxy-Directed Dehydrative Condensation. Org Lett 2020; 22:8658-8664. [PMID: 33044828 DOI: 10.1021/acs.orglett.0c03252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the catalytic direct peptide bond formations via dehydrative condensation of β-hydroxy-α-amino acids, affording the serine, threonine, or β-hydroxyvaline-derived peptides in high to excellent yields with high functional group tolerance, minimum epimerization, and excellent chemoselectivity. The key to the success of these atom-economical transformations is the use of diboronic acid anhydride catalyst for the hydroxy-directed reactions.
Collapse
Affiliation(s)
- Masayoshi Koshizuka
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
49
|
Uraguchi D, Kimura Y, Ueoka F, Ooi T. Urea as a Redox-Active Directing Group under Asymmetric Photocatalysis of Iridium-Chiral Borate Ion Pairs. J Am Chem Soc 2020; 142:19462-19467. [DOI: 10.1021/jacs.0c09468] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daisuke Uraguchi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yuto Kimura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Fumito Ueoka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
50
|
Hubbell AK, Coates GW. Nucleophilic Transformations of Lewis Acid-Activated Disubstituted Epoxides with Catalyst-Controlled Regioselectivity. J Org Chem 2020; 85:13391-13414. [PMID: 33076663 DOI: 10.1021/acs.joc.0c01691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to their inherent ring strain and electrophilicity, epoxides are highly attractive building blocks for fundamental organic reactions. However, controlling the regioselectivity of disubstituted epoxide transformations is often particularly challenging. Most Lewis acid-mediated processes take advantage of intrinsic steric or electronic substrate bias to influence the site of nucleophilic attack. Therefore, the scope of many of these systems is frequently quite limited. Recent efforts to generate catalysts that can overcome substrate bias have expanded the synthetic utility of these well-known reactions. In this Perspective, we highlight various regioselective transformations of disubstituted epoxides, emphasizing those that have inspired the production of challenging, catalyst-controlled processes.
Collapse
Affiliation(s)
- Aran K Hubbell
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|