1
|
Chen Z, Sang L, Qixi Z, Li X, Liu Y, Bai Z. Ultrasound-responsive nanoparticles for imaging and therapy of brain tumors. Mater Today Bio 2025; 32:101661. [PMID: 40206140 PMCID: PMC11979416 DOI: 10.1016/j.mtbio.2025.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Central nervous system (CNS) cancers, particularly glioblastoma (GBM), are associated with high mortality and disability rates. Despite aggressive surgical resection, radiotherapy, and chemotherapy, patient survival remains poor. The blood-brain barrier (BBB) significantly impedes therapeutic efficacy, making BBB penetration a critical focus of research. Focused ultrasound (FUS) combined with microbubbles (MBs) can transiently open the BBB through mechanisms such as cavitation, modulation of tight junction protein expression, and enhanced vesicular transport in endothelial cells. This review highlights precision delivery and personalized treatment strategies under ultrasound visualization, including precise control of ultrasound parameters and modulation of the immune microenvironment. We discuss the applications of ultrasound-responsive nanoparticles in brain tumor therapy, including enhanced radiotherapy, gene delivery, immunotherapy, and sonodynamic therapy (SDT), with a particular emphasis on piezoelectric catalytic immunotherapy. Finally, we provide insights into the clinical translation potential of ultrasound-responsive nanoparticles for personalized and precision treatment of brain tumors.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhai Qixi
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | | | | | | |
Collapse
|
2
|
Xu S, Ouyang Y, Qin Y, Chen D, Duan Z, Song D, Harries D, Xia F, Willner I, Huang F. Spatiotemporal dynamic and catalytically mediated reconfiguration of compartmentalized cyanuric acid/polyadenine DNA microdroplet condensates. Nat Commun 2025; 16:3352. [PMID: 40204808 PMCID: PMC11982331 DOI: 10.1038/s41467-025-58650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Native cells possess membrane-bound subcompartments, organelles, such as mitochondria and lysosomes, that intercommunicate and regulate cellular functions. Extensive efforts are directed to develop synthetic cells, or protocells, that replicate these structures and functions. Among these approaches, phase-separated coacervate microdroplets composed of polymers, polysaccharides, proteins, or nucleic acids are gaining interest as cell-mimicking systems. Particularly, compartmentalization of the synthetic protocell assemblies and the integration of functional constituents in the containments allowing signaling, programmed transfer of chemical agents, and spatiotemporal controlled catalytic transformations across the protocell subdomains, are challenging goals in developing artificial cells. Here, we report the assembly of compartmentalized, phase-separated cyanuric acid/polyadenine coacervate microdroplets. Hierarchical, co-centric compartmentalization is achieved through the dynamic and competitive spatiotemporal occupation of pre-engineered barcode domains within the polyadenine microdroplet framework by invading DNA strands. By encoding structural and functional information within these DNA-invaded compartments, the light-triggered, switchable reconfiguration of compartments, switchable catalytic reconfiguration of containments, and reversible aggregation/deaggregation of the compartmentalized microdroplets are demonstrated.
Collapse
Affiliation(s)
- Shijun Xu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yunlong Qin
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danlong Chen
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Zhijuan Duan
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Dongxing Song
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan, China.
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Fujian Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| |
Collapse
|
3
|
Mostarac D, Trapella M, Bertini L, Comez L, Paciaroni A, De Michele C. Polymeric Properties of Telomeric G-Quadruplex Multimers: Effects of Chemically Inert Crowders. Biomacromolecules 2025. [PMID: 40199738 DOI: 10.1021/acs.biomac.5c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
G-quadruplexes are noncanonical DNA structures rather ubiquitous in the human genome, which are thought to play a crucial role in the development of the majority of cancers. Here, we present a novel coarse-grained approach in modeling G-quadruplexes that accounts for their structural flexibility. We apply it to study the polymeric properties of G-quadruplex multimers, with and without crowder molecules, to mimic in vivo conditions. We find that, contrary to some suggestions found in the literature, long G-quadruplex multimers are rather flexible polymeric macromolecules, with a local persistence length comparable to monomer size, exhibiting a chain stiffness variation profile consistent with a real polymer in good solvent. Moreover, in a crowded environment (up to 10% volume fraction), we report that G-quadruplex multimers exhibit an increased propensity for coiling, with a corresponding decrease in the measured chain stiffness.
Collapse
Affiliation(s)
- Deniz Mostarac
- Department of Physics, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mattia Trapella
- Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy
| | - Luca Bertini
- Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy
| | - Lucia Comez
- CNR - Istituto Officina dei Materiali (IOM), 06123 Perugia, Italy
| | | | | |
Collapse
|
4
|
Wei S, Zhang X, Feng Y, Tao S, Qiu D, Yan X, Li G, Guittat L, Zhang W, Monchaud D, Mergny JL, Ju H, Zhou J. Ultra-Specific G-Quadruplex-Colistin Interaction for Efficient Transcriptome-Wide G4 Mapping. J Am Chem Soc 2025; 147:9962-9971. [PMID: 40047376 DOI: 10.1021/jacs.5c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
G-quadruplexes (G4s) are challenging targets for chemical biology interventions, notably because of their dynamic topological polymorphism. We found that the antibiotic small- molecule colistin (COL) interacts specifically with a single subtype of G4 structures, the so-called parallel G4s. This interaction triggers the aggregation of the G4/COL complexes in a structure-specific manner, which can thus be separated from the bulk solution by centrifugation. This unprecedented mode of affinity-precipitation was exploited here to design the COL-induced RNA G4 precipitation and sequencing (CoRP-seq) protocol, which allows for the assessment of the prevalence of RNA G4s in the transcriptome of human cells in a straightforward manner. CoRP-seq shines by its ultraspecificity, simplicity, and practical convenience, which thus advances G4 mapping further and addresses unmet needs in the field of G4omics.
Collapse
Affiliation(s)
- Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guangming Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lionel Guittat
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau 91120, France
- Université Sorbonne Paris Nord, UFR SMBH, Bobigny 93000, France
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Université Bourgogne Europe (UBE), Dijon 21078, France
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau 91120, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Bi S, Yang R, Ju H, Liu Y. Dynamic Nanostructure-Based DNA Logic Gates for Cancer Diagnosis and Therapy. Chembiochem 2025; 26:e202400754. [PMID: 39429047 DOI: 10.1002/cbic.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
DNA logic gates with dynamic nanostructures have made a profound impact on cancer diagnosis and treatment. Through programming the dynamic structure changes of DNA nanodevices, precise molecular recognition with signal amplification and smart therapeutic strategies have been reported. This enhances the specificity and sensitivity of cancer theranostics, and improves diagnosis precision and treatment outcomes. This review explores the basic components of dynamic DNA nanostructures and corresponding DNA logic gates, as well as their applications for cancer diagnosis and therapies. The dynamic DNA nanostructures would contribute to cancer early detection and personalized treatment.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruowen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Janeček M, Kührová P, Mlýnský V, Stadlbauer P, Otyepka M, Bussi G, Šponer J, Banáš P. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space. J Comput Chem 2025; 46:e27535. [PMID: 39653644 PMCID: PMC11628365 DOI: 10.1002/jcc.27535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
Collapse
Affiliation(s)
- Michal Janeček
- Department of Physical Chemistry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Petr Stadlbauer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSATriesteItaly
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| |
Collapse
|
7
|
Brightwell DF, Samanta K, Watts JA, Fay MW, Palma A. Sequence-controlled divergent supramolecular assembly of polyproline helices into metallo-peptide nanoparticles. NANOSCALE ADVANCES 2024; 7:94-98. [PMID: 39659764 PMCID: PMC11626207 DOI: 10.1039/d4na00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
The field of peptide based supramolecular biomaterials is fast evolving. These types of constructs have been shown to find applications in the fields of bioimaging, drug delivery and scaffolds for chemical reactions. However, the community typically focuses on the use of two specific classes of structured peptides: α-helices and β-sheets, clearly neglecting a unique peptide secondary structure: the polyproline helix. Herein, we report the first design, synthesis and characterization of polyproline based metallo-peptide nanoparticles. We demonstrate that rationally engineered polyproline helices can assemble in a divergent manner, into two types of nanoparticles. We also demonstrate that the primary sequence of the functionalised polyproline peptide is crucial to ensure a controlled assembly. This work clearly demonstrates that polyproline helices can be a powerful tool to achieve supramolecular assemblies of complex and responsive bioinspired nanomaterials.
Collapse
Affiliation(s)
- Dominic F Brightwell
- School of Chemistry and Forensic Science, Supramolecular and Interfacial Chemistry, Ingram Building, The University of Kent Canterbury CT2 7NZ Kent UK
| | - Kushal Samanta
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Julie A Watts
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 2RD UK
- School of Pharmacy, University of Nottingham Nottingham NG7 2RD UK
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 2RD UK
- Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Aniello Palma
- School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
8
|
Minasyan AS, Peacey M, Allen T, Nesterova IV. Sequence Context in DNA i-Motifs Can Nurture Very Stable and Persistent Kinetic Traps. Chembiochem 2024; 25:e202400647. [PMID: 39370401 DOI: 10.1002/cbic.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
I-motifs are non-canonical DNA structures with recognized biological significance and a proven utility in material engineering. Consequently, understanding and control of i-motif properties is essential to sustain progress across both disciplines. In this work, we systematically investigate how proximity to the most common form of DNA, a double-stranded duplex, influences the thermodynamic and kinetic properties of adjacent i-motifs. We demonstrate that double-stranded stems in i-motif loops promote kinetic trapping of very stable and persistent partially folded conformations. Further, we investigate pathways toward rational control over a folding topology makeup.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Merlin Peacey
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
9
|
Li X, Dubins DN, Völker J, Chalikian TV. G-Quadruplex Recognition by Tetraalkylammonium Ions: A New Paradigm for Discrimination between Parallel and Antiparallel G-Quadruplexes. J Phys Chem B 2024; 128:11144-11150. [PMID: 39480907 DOI: 10.1021/acs.jpcb.4c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
G-quadruplexes are an important class of noncanonical secondary structures of DNA that exist in the cell and are involved in the regulation of principal genomic events. Any regulatory role of a G-quadruplex in the genome is coupled with the attendant interconversions between the G-quadruplex and duplex states. Much effort has been invested in the quest for agents that can recognize individual G-quadruplexes and shift the associated duplex-G-quadruplex equilibria toward the G-quadruplex state. In this communication, we demonstrate that, notwithstanding their simplicity, tetraalkylammonium ions, [H(CH2)n]4N+, recognize and strongly stabilize the parallel c-MYC G-quadruplex, while not binding to the antiparallel human telomeric G-quadruplex or duplex DNA. The affinity of TAA+ ions for the c-MYC G-quadruplex correlates with the length of the aliphatic side chains. Our CD spectral data suggest that the binding of tetraalkylammonium ions is external, not resulting in structural changes in the host G-quadruplex. The observed discriminatory power identifies tetraalkylammonium salts as a starting point for developing topology-selective G-quadruplex-binding agents.
Collapse
Affiliation(s)
- Xuan Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
10
|
Xia J, Chen J, Zhou J, Cheng M, Zhuang X, Cai C, Ju H, Mergny JL, Zhou J. Antiparallel G-Quadruplex Formation Hinders Conversion to a Parallel Topology. J Phys Chem B 2024; 128:11077-11087. [PMID: 39498768 DOI: 10.1021/acs.jpcb.4c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
G-quadruplexes (G4s) are four-stranded structures formed by guanine-rich sequences. While their structures, properties, and applications have been extensively studied, an understanding of their folding processes remains limited. In this study, we investigated the folding of the sequence d[(G3T2)3G3] in potassium solutions, focusing on the impact of a folding intermediate on the overall folding process. Our results indicate that this sequence eventually folds into a parallel G4 structure, either directly or through an antiparallel conformation intermediate, suggesting the existence of a specific competitive folding process. Detailed kinetic analysis using stopped-flow techniques reveals that the antiparallel conformation forms much faster than the parallel one. This antiparallel G4 slowly converts to the thermodynamically favored parallel topology, thus slowing the overall folding rate. As a result, the formation of the parallel quadruplex via an antiparallel G4 intermediate is slower than the direct process, indicating that this antiparallel conformation negatively impacts the overall folding process in a temperature-dependent manner. Interestingly, sodium was shown to facilitate the conversion from antiparallel to parallel. These analyses highlight the complexity of the G4 folding process, which is crucial for most biological applications.
Collapse
Affiliation(s)
- Jianjun Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiahang Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingpan Cheng
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xinzhe Zhuang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengfeng Cai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau Cedex, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
12
|
Bertini L, Libera V, Catalini S, Schirò G, Orecchini A, Campanella R, Arciuolo V, Pagano B, Petrillo C, De Michele C, Comez L, Paciaroni A. Hindered intermolecular stacking of anti-parallel telomeric G-quadruplexes. J Chem Phys 2024; 161:105101. [PMID: 39248241 DOI: 10.1063/5.0225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Telomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology. We used small-angle x-ray scattering to investigate the end-to-end stacking of antiparallel telomeric G-quadruplexes formed by the sequence AG3(T2AG3)3. To represent the experimental data, we developed a highly efficient coarse-grained fitting tool, which successfully described the samples as an equilibrium mixture of monomeric and dimeric G4 species. Our findings indicate that the antiparallel topology prevents the formation of long multimeric structures under self-crowding conditions, unlike the hybrid/parallel structures formed by the same DNA sequence. This result supports the idea that the stacking of monomeric G-quadruplexes is strongly affected by the presence of diagonal loops.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Sara Catalini
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Renzo Campanella
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | | | - Lucia Comez
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
13
|
Liu W, Zhu BC, Liu LY, Xia XY, Jang J, Dickerhoff J, Yang D, Mao ZW. Solution structures and effects of a platinum compound successively bound MYC G-quadruplex. Nucleic Acids Res 2024; 52:9397-9406. [PMID: 39077944 PMCID: PMC11381319 DOI: 10.1093/nar/gkae649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
G-quadruplex (G4) structures play integral roles in modulating biological functions and can be regulated by small molecules. The MYC gene is critical during tumor initiation and malignant progression, in which G4 acts as an important modulation motif. Herein, we reported the MYC promoter G4 recognized by a platinum(II) compound Pt-phen. Two Pt-phen-MYC G4 complex structures in 5 mM K+ were determined by NMR. The Pt-phen first strongly binds the 3'-end of MYC G4 to form a 1:1 3'-end binding complex and then binds 5'-end to form a 2:1 complex with more Pt-phen. In the complexes, the Pt-phen molecules are well-defined and stack over four bases at the G-tetrad for a highly extensive π-π interaction, with the Pt atom aligning with the center of the G-tetrad. The flanking residues were observed to rearrange and cover on top of Pt-phen to stabilize the whole complex. We further demonstrated that Pt-phen targets G4 DNA in living cells and represses MYC gene expression in cancer cells. Our work elucidated the structural basis of ligand binding to MYC promoter G4. The platinum compound bound G4 includes multiple complexes formation, providing insights into the design of metal ligands targeting oncogene G4 DNA.
Collapse
Affiliation(s)
- Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bo-Chen Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao- Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jinho Jang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Dickerhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Chen KY, Zeng YL, Mao ZW, Liu W. Development of a high quantum yield probe for detection of mitochondrial G-quadruplexes in live cells based on fluorescence lifetime imaging microscopy. Bioorg Med Chem 2024; 111:117856. [PMID: 39074413 DOI: 10.1016/j.bmc.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.
Collapse
Affiliation(s)
- Kai-Yi Chen
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You-Liang Zeng
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Mao X, Chen Q, Wei S, Qiu D, Zhang X, Lei J, Mergny JL, Ju H, Zhou J. Bioinspired Dual Hemin-Bonded G-Quadruplex and Histidine-Functionalized Metal-Organic Framework for Sensitive Biosensing. Anal Chem 2024; 96:13371-13378. [PMID: 39116285 DOI: 10.1021/acs.analchem.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Qianqian Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Pal-aiseau Cedex 91128, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
16
|
Qiu D, He F, Liu Y, Zhou Z, Yang Y, Long Z, Chen Q, Chen D, Wei S, Mao X, Zhang X, Mergny J, Monchaud D, Ju H, Zhou J. A Cost-Effective Hemin-Based Artificial Enzyme Allows for Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402237. [PMID: 38924304 PMCID: PMC11348135 DOI: 10.1002/advs.202402237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP). It is found that this artificial system is not only as efficient as HRP to oxidize various substrates (with a turnover number kcat of 115 s-1) but also more practically convenient (displaying better thermal stability, recoverability, and editability) and more economically viable, with a catalytic cost amounting to <10% of that of HRP. The strategic interest of AA-heminzyme is further demonstrated for both industrial wastewater remediation and biomarker detection (notably glutathione, for which the cost is decreased by 98% as compared to commercial kits).
Collapse
Affiliation(s)
- Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Fangni He
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zhaoxi Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yuqin Yang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zhongwen Long
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Qianqian Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
- Laboratoire d'Optique et Biosciences (LOB)Ecole PolytechniqueCNRSINSERMInstitut Polytechnique de ParisPalaiseau91120France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFCDijon21078France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| |
Collapse
|
17
|
Wu Y, Wang GA, Yang Q, Li F. Native Characterization of Noncanonical Nucleic Acid Thermodynamics via Programmable Dynamic DNA Chemistry. J Am Chem Soc 2024; 146:18041-18049. [PMID: 38899479 DOI: 10.1021/jacs.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Folding thermodynamics, quantitatively described using parameters such as ΔGfold°, ΔHfold°, and ΔSfold°, is essential for characterizing the stability and functionality of noncanonical nucleic acid structures but remains difficult to measure at the molecular level. Leveraging the programmability of dynamic deoxyribonucleic acid (DNA) chemistry, we introduce a DNA-based molecular tool capable of performing a free energy shift assay (FESA) that directly characterizes the thermodynamics of noncanonical DNA structures in their native environments. FESA operates by the rational design of a reference DNA probe that is energetically equivalent to a target noncanonical nucleic acid structure in a series of toehold-exchange reactions, yet is structurally incapable of folding. As a result, a free energy shift (ΔΔGrxn°) is observed when plotting the reaction yield against the free energy of each toehold-exchange. We mathematically demonstrated that ΔGfold°, ΔHfold°, and ΔSfold° of the analyte can be calculated based on ΔΔGrxn°. After validating FESA using six DNA hairpins by comparing the measured ΔGfold°, ΔHfold°, and ΔSfold° values against predictions made by NUPACK software, we adapted FESA to characterize noncanonical nucleic acid structures, encompassing DNA triplexes, G-quadruplexes, and aptamers. This adaptation enabled the successful characterization of the folding thermodynamics for these complex structures under various experimental conditions. The successful development of FESA marks a paradigm shift and a technical advancement in characterizing the thermodynamics of noncanonical DNA structures through molecular tools. It also opens new avenues for probing fundamental chemical and biophysical questions through the lens of molecular engineering and dynamic DNA chemistry.
Collapse
Affiliation(s)
- Yuqin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qianfan Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
18
|
Zhou W, Wan W, Miao W, Bao Y, Liu Y, Jia G, Li C. K +-Specification with Flavone P0 Probe in a G-Quadruplex DNA. Anal Chem 2024; 96:10835-10840. [PMID: 38889097 DOI: 10.1021/acs.analchem.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.
Collapse
Affiliation(s)
- Wenqin Zhou
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wang Wan
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Bao
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Yu Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
19
|
Brázda V, Šislerová L, Cucchiarini A, Mergny JL. G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes. NAR Genom Bioinform 2024; 6:lqae060. [PMID: 38817800 PMCID: PMC11137754 DOI: 10.1093/nargab/lqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anne Cucchiarini
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
20
|
Amato J, Randazzo A, Pagano B. Chemistry and Biology of Noncanonical Nucleic Acid Structures: From Physicochemical Properties to Therapeutic Applications. Int J Mol Sci 2024; 25:4952. [PMID: 38732170 PMCID: PMC11084433 DOI: 10.3390/ijms25094952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this Special Issue is to highlight significant and new aspects concerning the chemistry and biology of noncanonical nucleic acid structures, with emphasis on their structure, stability, and conformational equilibria, as well as on the biological relevance of their interactions with proteins and ligands [...].
Collapse
Affiliation(s)
| | | | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (J.A.); (A.R.)
| |
Collapse
|
21
|
Matsuzaki K, Hayashi S, Nakanishi W. Origin of 17O NMR chemical shifts based on molecular orbital theory: paramagnetic terms of the pre-α, α and β effects from orbital-to-orbital transitions, along with the effects from vinyl, carbonyl and carboxyl groups. RSC Adv 2024; 14:14340-14356. [PMID: 38690112 PMCID: PMC11060305 DOI: 10.1039/d4ra00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
17O NMR chemical shifts (δ(O)) were analysed based on the molecular orbital (MO) theory, using the diamagnetic, paramagnetic and total absolute magnetic shielding tensors (σd(O), σp(O) and σt(O), respectively). O2- was selected as the standard for the analysis. An excellent relationship was observed between σd(O) and the charges on O for O6+, O4+, O2+, O0 and O2-. The data from H2O, HO+, HO- and H3O+ were on the correlation line. However, such relationship was not observed for the oxygen species, other than above. The pre-α, α and β effects were evaluated bases on σt(O), where the pre-α effect arises from the protonation to a lone pair orbital on O2-, for an example. The 30-40 ppm and 20-40 ppm (downfield shifts) were predicted for the pre-α and β effects, respectively, whereas the values for the α effect was very small in magnitude, where the effect from the hydrogen bond formation should be considered. Similarly, the carbonyl effect in H2C[double bond, length as m-dash]O and the carboxyl effects in H(HO)C[double bond, length as m-dash]O were evaluated from MeOH, together with H2C[double bond, length as m-dash]CHOH from CH3CH2OH. Very large downfield shifts of 752, 425 and 207 ppm were predicted for H2C[double bond, length as m-dash]O*, H(HO)C[double bond, length as m-dash]O* and H(HO*)C[double bond, length as m-dash]O, respectively, together with the 81 ppm downfield shift for H2C[double bond, length as m-dash]CHO*H. The origin of the effect were visualized based on the occupied-to-unoccupied orbital transitions. As a result, the origin of the 17O NMR chemical shifts (δ(17O)) can be more easily imaged and understand through the image of the effects. The results would help to understand the role of O in the specific position of a compound in question and the mechanisms to arise the shift values also for the experimental scientists. The aim of this study is to establish the plain rules founded in theory for δ(17O), containing the origin, which has been achieved through the treatments.
Collapse
Affiliation(s)
- Keigo Matsuzaki
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
| | - Satoko Hayashi
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
| | - Waro Nakanishi
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
| |
Collapse
|
22
|
Wang BL, Zeng P, Jiang C, Chen Y, Qu J, Song J. Aromatic Alcohol-Based pH-Sensitive Chromophore with a Unique Near-Infrared Dual-Band Solvatochromic Property and Its Application as a Ratiometric Fluorescent Sensor for G-Quadruplexes. Anal Chem 2024; 96:6186-6194. [PMID: 38594223 DOI: 10.1021/acs.analchem.3c05104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solvatochromes have gained great attention because of their unique roles in monitoring biomolecular location, interaction, and dynamics. Particularly, solvatochromes presenting both red-shifting excitation and dual-band switchable emission are in great demand yet significantly difficult to come true. In this article, we disclose an aromatic alcohol-based pH-sensitive chromophore NIR-HBT that not only presents red-shifting excitation and solvent-dependent dual-band emission but also shows high photostability and excellent brightness. To the best of our knowledge, this is the first solvatochrome to simultaneously display these optical properties. Especially, in contrast to the reported dual-band solvatochromes whose solvatochromism is achieved by affecting their excited state behaviors, the solvatochromism of NIR-HBT is realized by modulating its ground state proton dissociation, which is a new solvatochromic mechanism that has not been reported. Furthermore, based on the dual-band solvatochromism of NIR-HBT and its intrinsic binding ability to GQs, near-infrared ratiometric detection of GQs is achieved. These results indicate that NIR-HBT is an attractive solvatochrome that can be used to develop near-infrared ratiometric biosensors for biological research. More broadly, the discovered solvatochromic mechanism can also open new horizons for exploring the solvatochrome.
Collapse
Affiliation(s)
- Bo-Lin Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Pengju Zeng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chuang Jiang
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, P. R. China
| |
Collapse
|
23
|
Dobrovodsky D, Danhel A, Renciuk D, Mergny JL, Fojta M. N-methyl mesoporphyrin IX (NMM) as electrochemical probe for detection of guanine quadruplexes. Bioelectrochemistry 2024; 156:108611. [PMID: 37995502 DOI: 10.1016/j.bioelechem.2023.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
G-quadruplexes (G4) are stable alternative secondary structures of nucleic acids. With increasing understanding of their roles in biological processes and their application in bio- and nanotechnology, the exploration of novel methods for the analysis of these structures is becoming important. In this work, N-methyl mesoporphyrin IX (NMM) was used as a voltammetric probe for an easy electrochemical detection of G4s. Cyclic voltammetry on a hanging mercury drop electrode (HMDE) was used to detect NMM with a limit of detection (LOD) of 40 nM. Characteristic reduction signal of NMM was found to be substantially higher in the presence of G4 oligodeoxynucleotides (ODNs) than in the presence of single- or double-stranded ODNs and even ODNs susceptible to form G4s but in their unfolded, single-stranded forms. Gradual transition from unstructured single strand to G4, induced by increasing concentrations of the G4 stabilizing K+ ions, was detected by an electrochemical method for the first time. All obtained results were supported by circular dichroism spectroscopy. This work expands on the concept of electrochemical probes utilization in DNA secondary structure recognition and offers a proof of principle that can be potentially employed in the development of novel electroanalytical methods for nucleic acid structure studies.
Collapse
Affiliation(s)
- Daniel Dobrovodsky
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Ales Danhel
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Daniel Renciuk
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic.
| |
Collapse
|
24
|
Jurkowski M, Kogut M, Sappati S, Czub J. Why Are Left-Handed G-Quadruplexes Scarce? J Phys Chem Lett 2024; 15:3142-3148. [PMID: 38477716 PMCID: PMC10961827 DOI: 10.1021/acs.jpclett.3c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
G-quadruplexes (G4s) are nucleic acid structures crucial for the regulation of gene expression and genome maintenance. While they hold promise as nanodevice components, achieving desired G4 folds requires understanding the interplay between stability and structural properties, like helicity. Although right-handed G4 structures dominate the experimental data, the molecular basis for this preference over left-handed helicity is unclear. To address this, we employ all-atom molecular dynamics simulations and quantum chemical methods. Our results reveal that right-handed G4s exhibit greater thermodynamic and kinetic stability as a result of favorable sugar-phosphate backbone conformations in guanine tracts. Moreover, while hydrogen-bonding patterns influence helicity-specific G4 loop conformations, they minimally affect stability differences. We also elucidate the strong correlation between helicity and the strand progression direction, essential for G4 structures. These findings deepen our understanding of G4s, providing molecular-level insights into their structural and energetic preferences, which could inform the design of novel nanodevices.
Collapse
Affiliation(s)
- Michał Jurkowski
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Kogut
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Subrahmanyam Sappati
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
25
|
Víšková P, Ištvánková E, Ryneš J, Džatko Š, Loja T, Živković ML, Rigo R, El-Khoury R, Serrano-Chacón I, Damha MJ, González C, Mergny JL, Foldynová-Trantírková S, Trantírek L. In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells. Nat Commun 2024; 15:1992. [PMID: 38443388 PMCID: PMC10914786 DOI: 10.1038/s41467-024-46221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
Collapse
Affiliation(s)
- Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Šimon Džatko
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Centre for Advanced Materials Application, Slovak Academy of Sciences, 845 11, Bratislava, Slovakia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Riccardo Rigo
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131, Padova, Italy
| | - Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Israel Serrano-Chacón
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A0B8, Canada
| | - Carlos González
- Instituto de Química Física 'Blas Cabrera', CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Jean-Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic
- Laboratoire d'Optique & Biosciences, Institut Polytechnique de Paris, Inserm, CNRS, Ecole Polytechnique, Palaiseau, 91120, France
| | - Silvie Foldynová-Trantírková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Czech Academy of Sciences, Brno, 612 00, Czech Republic.
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
26
|
Pokorná P, Mlýnský V, Bussi G, Šponer J, Stadlbauer P. Molecular dynamics simulations reveal the parallel stranded d(GGGA) 3GGG DNA quadruplex folds via multiple paths from a coil-like ensemble. Int J Biol Macromol 2024; 261:129712. [PMID: 38286387 DOI: 10.1016/j.ijbiomac.2024.129712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that fold through complex processes. Characterization of the G4 folding landscape may help to elucidate biological roles of G4s but is challenging both experimentally and computationally. Here, we achieved complete folding of a three-quartet parallel DNA G4 with (GGGA)3GGG sequence using all-atom explicit-solvent enhanced-sampling molecular dynamics (MD) simulations. The simulations suggested early formation of guanine stacks in the G-tracts, which behave as semi-rigid blocks in the folding process. The folding continues via the formation of a collapsed compact coil-like ensemble. Structuring of the G4 from the coil then proceeds via various cross-like, hairpin, slip-stranded and two-quartet ensembles and can bypass the G-triplex structure. Folding of the parallel G4 does not appear to involve any salient intermediates and is a multi-pathway process. We also carried out an extended set of simulations of parallel G-hairpins. While parallel G-hairpins are extremely unstable when isolated, they are more stable inside the coil structure. On the methodology side, we show that the AMBER DNA force field predicts the folded G4 to be less stable than the unfolded ensemble, uncovering substantial force-field issues. Overall, we provide unique atomistic insights into the folding landscape of parallel-stranded G4 but also reveal limitations of current state-of-the-art MD techniques.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste 34136, Italy
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
| |
Collapse
|
27
|
Markovitsi D. Processes triggered in guanine quadruplexes by direct absorption of UV radiation: From fundamental studies toward optoelectronic biosensors. Photochem Photobiol 2024; 100:262-274. [PMID: 37365765 DOI: 10.1111/php.13826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Guanine quadruplexes (GQs) are four-stranded DNA/RNA structures exhibiting an important polymorphism. During the past two decades, their study by time-resolved spectroscopy, from femtoseconds to milliseconds, associated to computational methods, shed light on the primary processes occurring when they absorb UV radiation. Quite recently, their utilization in label-free and dye-free biosensors was explored by a few groups. In view of such developments, this review discusses the outcomes of the fundamental studies that could contribute to the design of future optoelectronic biosensors using fluorescence or charge carriers stemming directly from GQs, without mediation of other molecules, as it is the currently the case. It explains how the excited state relaxation influences both the fluorescence intensity and the efficiency of low-energy photoionization, occurring via a complex mechanism. The corresponding quantum yields, determined with excitation at 266/267 nm, fall in the range of (3.0-9.5) × 10-4 and (3.2-9.2) × 10-3 , respectively. These values, significantly higher than the corresponding values found for duplexes, depend strongly on certain structural factors (molecularity, metal cations, peripheral bases, number of tetrads …) which intervene in the relaxation process. Accordingly, these features can be tuned to optimize the desired signal.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- CNRS, Institut de Chimie Physique, UMR8000, Université Paris-Saclay, Orsay, France
| |
Collapse
|
28
|
Peng Z, Iwabuchi S, Izumi K, Takiguchi S, Yamaji M, Fujita S, Suzuki H, Kambara F, Fukasawa G, Cooney A, Di Michele L, Elani Y, Matsuura T, Kawano R. Lipid vesicle-based molecular robots. LAB ON A CHIP 2024; 24:996-1029. [PMID: 38239102 PMCID: PMC10898420 DOI: 10.1039/d3lc00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/28/2024]
Abstract
A molecular robot, which is a system comprised of one or more molecular machines and computers, can execute sophisticated tasks in many fields that span from nanomedicine to green nanotechnology. The core parts of molecular robots are fairly consistent from system to system and always include (i) a body to encapsulate molecular machines, (ii) sensors to capture signals, (iii) computers to make decisions, and (iv) actuators to perform tasks. This review aims to provide an overview of approaches and considerations to develop molecular robots. We first introduce the basic technologies required for constructing the core parts of molecular robots, describe the recent progress towards achieving higher functionality, and subsequently discuss the current challenges and outlook. We also highlight the applications of molecular robots in sensing biomarkers, signal communications with living cells, and conversion of energy. Although molecular robots are still in their infancy, they will unquestionably initiate massive change in biomedical and environmental technology in the not too distant future.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoji Iwabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Shoko Fujita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Harune Suzuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Fumika Kambara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| | - Genki Fukasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Aileen Cooney
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo185-8588, Japan.
| |
Collapse
|
29
|
Gao RT, Li SY, Liu BH, Chen Z, Liu N, Zhou L, Wu ZQ. One-pot asymmetric living copolymerization-induced chiral self-assemblies and circularly polarized luminescence. Chem Sci 2024; 15:2946-2953. [PMID: 38404389 PMCID: PMC10882484 DOI: 10.1039/d3sc06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024] Open
Abstract
Controlled synthesis of conjugated block polymers enables the optimization of their self-assembly and may lead to distinct optical properties and functionalities. Herein, we report a direct chain extension of one-handed helical poly(acyl methane) with 1-ethynyl-4-iodo-2,5-bis(octyloxy)benzene, affording well-defined π-conjugated poly(acyl methane)-b-poly(phenylene ethynylene) copolymers. Although the distinct monomers are polymerized via different mechanisms, the one-pot copolymerization follows a living polymerization manner, giving the desired optically active block copolymers with controllable molar mass and low distribution. The block copolymerization induced chiral self-assembly simultaneously due to the one-handed helicity of the poly(acyl methane) block, giving spherical nanoparticles, one-handed helices, and chiral micelles with controlled dimensions regarding the composition of the generated copolymers. Interestingly, the chiral assemblies exhibit clear circularly polarized luminescence with tunable handedness and a high dissymmetric factor.
Collapse
Affiliation(s)
- Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing-Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P.R. China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology Hefei 230009 China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
30
|
Gu L, Ding Y, Zhou Y, Zhang Y, Wang D, Liu J. Selective Hemin Binding by a Non-G-quadruplex Aptamer with Higher Affinity and Better Peroxidase-like Activity. Angew Chem Int Ed Engl 2024; 63:e202314450. [PMID: 38150561 DOI: 10.1002/anie.202314450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+ -dependent but K+ -independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.
Collapse
Affiliation(s)
- Lide Gu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yang Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
31
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
32
|
Nicolás Á, Quero JG, Barroso M, Gándara Z, Gude L. DNA Interactions and Biological Activity of 2,9-Disubstituted 1,10-Phenanthroline Thiosemicarbazone-Based Ligands and a 4-Phenylthiazole Derivative. BIOLOGY 2024; 13:60. [PMID: 38275736 PMCID: PMC10813753 DOI: 10.3390/biology13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Four 1,10-phenanthroline derivatives (1-4) were synthesized as potential telomeric DNA binders, three substituted in their chains with thiosemicarbazones (TSCs) and one 4-phenylthiazole derivative. The compounds were characterized using NMR, HRMS, FTIR-spectroscopy and combustion elemental analysis. Quadruplex and dsDNA interactions were preliminarily studied, especially for neutral derivative 1, using FRET-based DNA melting assays, equilibrium dialysis (both competitive and non-competitive), circular dichroism and viscosity titrations. The TSC derivatives bind and stabilize the telomeric Tel22 quadruplex more efficiently than dsDNA, with an estimated 24-fold selectivity determined through equilibrium dialysis for compound 1. In addition, cytotoxic activity against various tumor cells (PC-3, DU145, HeLa, MCF-7 and HT29) and two normal cell lines (HFF-1 and RWPE-1) was evaluated. Except for the 4-phenylthiazole derivative, which was inactive, the compounds showed moderate cytotoxic properties, with the salts displaying lower IC50 values (30-80 μM), compared to the neutral TSC, except in PC-3 cells (IC50 (1) = 18 μM). However, the neutral derivative was the only compound that exhibited a modest selectivity in the case of prostate cells (tumor PC-3 versus healthy RWPE-1). Cell cycle analysis and Annexin V/PI assays revealed that the compounds can produce cell death by apoptosis, an effect that has proven to be similar to that demonstrated by other known 1,10-phenanthroline G4 ligands endowed with antitumor properties, such as PhenDC3 and PhenQE8.
Collapse
Affiliation(s)
- Álvaro Nicolás
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Julia G. Quero
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
| | - Marta Barroso
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
| | - Zoila Gándara
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Lourdes Gude
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
33
|
Cao Y, Yi H, Ge K, Gao Y, Zhang Z, Feng H. Additively manufactured customized microhelix motors' bursting motion in mesoscopic tubes for vessel declogging. RSC Adv 2024; 14:2720-2726. [PMID: 38229709 PMCID: PMC10790737 DOI: 10.1039/d3ra07704g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Magnetic microhelix motors are widely employed in various applications such as cargo transportation, drug delivery, toxic substance declogging, and cell manipulation, due to their unique adaptive magnetic manipulation capabilities. In this work, high-precision stereoscopic additive manufacturing techniques were used to produce customized microhelices with varying structural parameters, including different pitch numbers (2-4 pitches), sizes (0.1-0.25 mm), and taper angles (172°-180°). Their motion performance in mesoscopic tubes was systematically investigated. The magnetic microhelix motors' speed increases when circle numbers and taper angles decrease, while circle diameters increase. The magnetic microhelix motors' speed could achieve a 1500% enhancement reaching 0.16 mm s-1 in a 0.3 mm tube, with a pitch number of 3, diameter of 0.2 mm, and taper angle of 172°. Furthermore, their vessel declogging capability is confirmed in in vitro experiments.
Collapse
Affiliation(s)
- Yang Cao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen) China +86755-86148426
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen) China
| | - Hongyu Yi
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen) China +86755-86148426
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen) China
| | - Kongyu Ge
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen) China +86755-86148426
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen) China
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen) China +86755-86148426
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen) China
| | - Zhenchao Zhang
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen) China +86755-86148426
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen) China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen) China +86755-86148426
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen) China
| |
Collapse
|
34
|
Marzano M, D'Errico S, Greco F, Falanga AP, Terracciano M, Di Prisco D, Piccialli G, Borbone N, Oliviero G. Polymorphism of G-quadruplexes formed by short oligonucleotides containing a 3'-3' inversion of polarity: From G:C:G:C tetrads to π-π stacked G-wires. Int J Biol Macromol 2023; 253:127062. [PMID: 37748594 DOI: 10.1016/j.ijbiomac.2023.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-wires are supramolecular DNA structures based on the G-quadruplex (G4) structural motif obtained by the self-assembly of interlocked slipped G-rich oligonucleotide (ON) strands, or by end-to-end stacking of G4 units. Despite the increasing interest towards G-wires due to their potential applications in DNA nanotechnologies, the self-assembly process to obtain G-wires having a predefined length and stability is still neither completely understood nor controlled. In our previous studies, we demonstrated that the d(5'CG2-3'-3'-G2C5') ON, characterized by the presence of a 3'-3'-inversion of polarity site self-assembles into a G-wire structure when annealed in the presence of K+ ions. Herein, by using CD, PAGE, HPLC size exclusion chromatography, and NMR investigations we studied the propensity of shorter analogues having sequences 5'CGn-3'-3'-GmC5' (with n = 1 and 1 ≤ m ≤ 3) to form the corresponding G-quadruplexes and stacked G-wires. The results revealed that the formation of G-wires starting from d(5'CGn-3'-3'-GmC5') ONs is possible only for the sequences having n and m > 1 in which both guanosines flanking the 5'-ending cytosines are not involved into the 3'-3' phosphodiester bond.
Collapse
Affiliation(s)
- Maria Marzano
- CESTEV, University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daria Di Prisco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
35
|
Zhou L, He K, Kang SM, Zhou XY, Zou H, Liu N, Wu ZQ. Photoswitchable Enantioselective and Helix-Sense Controlled Living Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310105. [PMID: 37957131 DOI: 10.1002/anie.202310105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
A pair of enantiomeric photoswitchable PdII catalysts, alkyne-PdII /LR-azo and alkyne-PdII /LS-azo , were prepared via the coordination of alkyne-PdII and azobenzene-modified phosphine ligands LR-azo and LS-azo . Owing to the cis-trans photoisomerization of the azobenzene moiety, alkyne-PdII /LR-azo and alkyne-PdII /LS-azo exhibited different polymerization activities, helix-sense selectivities, and enantioselectivities during the polymerization of isocyanide monomers under irradiation of different wavelength lights. Furthermore, the achiral isocyanide monomer A-1 could be polymerized efficiently using alkyne-PdII /LR-azo under dark condition in a living/controlled manner. Further, it generated single right-handed helical poly-A-1m (LR-azo ), confirmed by the circular dichroism spectra and atomic force microscopy images. However, the polymerization of A-1 almost could not be initiated under 420 nm light in identical conditions of dark condition. Moreover, the photoswitchable catalyst alkyne-PdII /LR-azo exhibited high enantioselectivity for the polymerization of the racemates of L-1 and D-1, respectively. D-1 was polymerized preferentially under dark condition with a D-1/L-1 rate ratio of 70, yielding single right-handed polyisocyanides. Additionally, reversible enantioselectivity was observed under 420 nm light using alkyne-PdII /LR-azo , and the calculated polymerization rate ratio of L-1/D-1 was 57 because of the isomerization of the azobenzene moiety of the catalyst. Furthermore, alkyne-PdII /LS-azo showed opposite enantioselectivity and helix-sense selectivity during the polymerization of the racemates of L-1 and D-1.
Collapse
Affiliation(s)
- Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Kai He
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Shu-Ming Kang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing-Yu Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
36
|
Largy E, Ranz M, Gabelica V. A General Framework to Interpret Hydrogen-Deuterium Exchange Native Mass Spectrometry of G-Quadruplex DNA. J Am Chem Soc 2023; 145:26843-26857. [PMID: 38044563 DOI: 10.1021/jacs.3c09365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
G-quadruplexes (G4s) are secondary structures formed by guanine-rich oligonucleotides involved in various biological processes. However, characterizing G4s is challenging, because of their structural polymorphism. Here, we establish how hydrogen-deuterium exchange native mass spectrometry (HDX/MS) can help to characterize the G4 structures and dynamics in solution. We correlated the time range of G4 exchange to the number of guanines involved in the inner and outer tetrads. We also established relationships among exchange rates, numbers of tetrads and bound cations, and stability. The use of HDX/native MS allows for the determination of tetrads formed and assessment of G4 stability at a constant temperature. A key finding is that stable G4s exchange through local fluctuations (EX2 exchange), whereas less stable G4s also undergo exchange through partial or complete unfolding (EX1 exchange). Deconvolution of the bimodal isotope distributions resulting from EX1 exchange provides valuable insight into the kinetics of folding and unfolding processes and allows one to detect and characterize transiently unfolded intermediates, even if scarcely populated. HDX/native MS thus represents a powerful tool for a more comprehensive exploration of the folding landscapes of G4s.
Collapse
Affiliation(s)
- Eric Largy
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Matthieu Ranz
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
37
|
Mehra K, Khurana S, Kukreti S, Kaushik M. Nanomaterials and DNA multistranded structures: a treasure hunt for targeting specific biomedical applications. J Biomol Struct Dyn 2023; 41:11324-11340. [PMID: 36546729 DOI: 10.1080/07391102.2022.2159878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The advent in nanoscience and nanotechnology has enabled the successful synthesis and characterization of different nanomaterials with unique electrical, optical, magnetic and catalytic activities. However, with respect to sensing applications, nanomaterials intrinsically lack target recognition ability to selectively bind with the analyte. DNA, an important genetic material carrying biopolymer is polymorphic in nature and shows structural polymorphism, forming secondary/multistranded structures like hairpin, cruciform, pseudoknot, duplex, triplex, G-quadruplex and i-motif. Studies reported so far have suggested that these polymorphic structures have been targeted specifically for the treatment or diagnosis of various diseases. DNA is widely used in conjugation with nanomaterials for the development of nanoarchitectures due to its rigidity, sequence programmability and specific molecular recognition, which makes this biomolecule a treasure for designing of DNA based frameworks. These two entities (DNA and nanomaterials) can be used in association with each other, as their alliance can result into creation of novel assay platforms for different purposes, ranging from imaging, sensing and diagnostics to targeted delivery. In this review, we have discussed about the recent reports on association of various mutistranded/ polymorphic forms of DNA with nanomaterials. Furthermore, different applications using this versatile DNA-nanomaterial assembly has also been elaborated at length. This review aims to target the interests of scientists from various interdisciplinary fields, including biologists, chemists and nanotechnologists, who wish to gain an understanding of nano-fabrications using a plethora of DNA polymorphic forms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Komal Mehra
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonia Khurana
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
38
|
Lin D, Ke Y, Chen H, Zhang Y, Tang X, Cui W, Li X, He Y, Wu L. Self-Assembly Nanostructure Induced by Regulation of G-Quadruplex DNA Topology via a Reduction-Sensitive Azobenzene Ligand on Cells. Biomacromolecules 2023; 24:5004-5017. [PMID: 37843895 DOI: 10.1021/acs.biomac.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The control of DNA assembly systems on cells has increasingly shown great importance for precisely targeted therapies. Here, we report a controllable DNA self-assembly system based on the regulation of G-quadruplex DNA topology by a reduction-sensitive azobenzene ligand. Specifically, three azobenzene multiamines are developed, and AzoDiTren is identified as the best G4 binder, which displays high affinity and specificity for G4 DNA. Moreover, the reduction-sensitive nature of the azobenzene scaffold allows AzoDiTren to induce a complete change of the G4 topology in a tissue-specific manner, even at high metal cation concentrations. On this basis, the AzoDiTren-induced G4 conformational switch achieves control of the self-assembly of G4-functionalized DNAs on cells. This strategy enables the regulation of G4 and DNA self-assembly by the bioreductant-responsive ligand.
Collapse
Affiliation(s)
- Dao Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqi Ke
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjia Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinlong Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
39
|
Wu T, Wang H, Tian R, Guo S, Liao Y, Liu J, Ding B. A DNA Origami-based Bactericide for Efficient Healing of Infected Wounds. Angew Chem Int Ed Engl 2023; 62:e202311698. [PMID: 37755438 DOI: 10.1002/anie.202311698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Bacteria infection is a significant obstacle in the clinical treatment of exposed wounds facing widespread pathogens. Herein, we report a DNA origami-based bactericide for efficient anti-infection therapy of infected wounds in vivo. In our design, abundant DNAzymes (G4/hemin) can be precisely organized on the DNA origami for controllable generation of reactive oxygen species (ROS) to break bacterial membranes. After the destruction of the membrane, broad-spectrum antibiotic levofloxacin (LEV, loaded in the DNA origami through interaction with DNA duplex) can be easily delivered into the bacteria for successful sterilization. With the incorporation of DNA aptamer targeting bacterial peptidoglycan, the DNA origami-based bactericide can achieve targeted and combined antibacterial therapy for efficiently promoting the healing of infected wounds. This tailored DNA origami-based nanoplatform provides a new strategy for the treatment of infectious diseases in vivo.
Collapse
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, 510091, Guangzhou, China
- School of Pharmaceutical Sciences, Hainan Medical University, 570228, Haikou, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuang Guo
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, 510091, Guangzhou, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, 510091, Guangzhou, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
40
|
Rao LS, Hao L, Liu LY, Zeng YL, Liang BB, Liu W, Mao ZW. Detection and tracking of cytoplasmic G-quadruplexes in live cells. Chem Commun (Camb) 2023; 59:13348-13351. [PMID: 37872783 DOI: 10.1039/d3cc03043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A TTPP probe was developed to distinguish G-quadruplexes (G4s) from other nucleic acid topologies through longer fluorescence lifetimes and higher quantum yields. In fluorescence lifetime imaging microscopy, TTPP enabled the visualization of cytoplasmic G4s in live cells, and showed the potential to detect cell apoptosis and ferroptosis by tracking cytoplasmic G4s.
Collapse
Affiliation(s)
- Lu-Si Rao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liang Hao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liu-Yi Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - You-Liang Zeng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bing-Bing Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
41
|
Mao X, Zhang X, Chao Z, Qiu D, Wei S, Luo R, Chen D, Zhang Y, Chen Y, Yang Y, Monchaud D, Ju H, Mergny JL, Lei J, Zhou J. A Versatile G-Quadruplex (G4)-Coated Upconverted Metal-Organic Framework for Hypoxic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300561. [PMID: 37402245 DOI: 10.1002/adhm.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G2 T)4 TG(TG2 )4 A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O2 ca. two-fold as compared to the parent AS1411 sequence. The AS1411-A/hemin complex (GH) is grafted on the surface and pores of a core-shell upconverted metal-organic framework (UMOF) to generate a UMGH nanoplatform. Compared with UMOF, UMGH exhibits enhanced colloidal stability, increased tumor cell targeting and improved O2 production (8.5-fold) in situ. When irradiated by near-infrared (NIR) light, the UMGH antitumor properties are bolstered by photodynamic therapy (PDT), thanks to its ability to convert O2 into singlet oxygen (1 O2 ). Combined with the antiproliferative activity of AS1411-A, this novel approach lays the foundation for a new type of G4-based nanomedicine.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, uB, Dijon, 21078, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
42
|
Fleming AM, Omaga CA, Burrows CJ. NEIL3 promoter G-quadruplex with oxidatively modified bases shows magnesium-dependent folding that stalls polymerase bypass. Biochimie 2023; 214:156-166. [PMID: 37437684 PMCID: PMC10592359 DOI: 10.1016/j.biochi.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Oxidative stress unleashes reactive species capable of oxidizing 2'-deoxyguanosine (G) nucleotides in G-rich sequences of the genome, such as the potential G-quadruplex forming sequencing (PQS) in the NEIL3 gene promoter. Oxidative modification of G yields 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) that can be further oxidized to hydantoin products. Herein, OG was synthesized into the NEIL3 PQS that was allowed to fold to a G-quadruplex (G4) in K+ ion solutions with varying amounts of Mg2+ in the physiological range. The Mg2+ dependency in the oxidatively modified NEIL3 G4 to stall a replicative DNA polymerase was evaluated. The polymerase was found to stall at the G4 or OG, as well as continue to full-length extension with dependency on the location of the modification and the concentration of Mg2+. To provide some clarity on these findings, OG or the hydantoins were synthesized in model NEIL3 G4 folding sequences at the positions of the polymerase study. The model G4 sequences were allowed to fold in K+ ion solutions with varying levels of Mg2+ to identify how the presence of the divalent metal impacted G4 folding depending on the location of the modification. The presence of Mg2+ either caused the transition of the NEIL3 G4 folds from an antiparallel to parallel orientation of the strands or had no impact. Structural models are proposed to understand the findings using the literature as a guide. The biological significance of the results is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Carla A Omaga
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-0850, USA.
| |
Collapse
|
43
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
44
|
Bchara L, Eritja R, Gargallo R, Benavente F. Rapid and Highly Efficient Separation of i-Motif DNA Species by CE-UV and Multivariate Curve Resolution. Anal Chem 2023; 95:15189-15198. [PMID: 37782260 PMCID: PMC10585953 DOI: 10.1021/acs.analchem.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The i-motif is a class of nonstandard DNA structure with potential biological implications. A novel capillary electrophoresis with an ultraviolet absorption spectrophotometric detection (CE-UV) method has been developed for the rapid analysis of the i-motif folding equilibrium as a function of pH and temperature. The electrophoretic analyses are performed in reverse polarity of the separation voltage with 32 cm long fused silica capillaries permanently coated with hydroxypropyl cellulose (HPC), after an appropriate conditioning procedure was used to achieve good repeatability. However, the electrophoretic separation between the folded and unfolded conformers of the studied cytosine-rich i-motif sequences (i.e., TT, Py39WT, and nmy01) is compromised, especially for Py39WT and nmy01, which result in completely overlapped peaks. Therefore, deconvolution with multivariate curve resolution-alternating least-squares (MCR-ALS) has been required for the efficient separation of the folded and unfolded species found at different concentration levels at pH 6.5 and between 12 and 40 °C, taking advantage of the small dissimilarities in the electrophoretic mobilities and UV spectra levels. MCR-ALS has also provided quantitative information that has been used to estimate melting temperatures (Tm), which are similar to those determined by UV and circular dichroism (CD) spectroscopies. The obtained results demonstrate that CE-UV assisted by MCR-ALS may become a very useful tool to get novel insight into the folding of i-motifs and other complex DNA structures.
Collapse
Affiliation(s)
- Laila Bchara
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Ramon Eritja
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
- Institute
for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
45
|
Escarcega RD, Patil AA, Moruno-Manchon JF, Urayama A, Marrelli SP, Kim N, Monchaud D, McCullough LD, Tsvetkov AS. Pirh2-dependent DNA damage in neurons induced by the G-quadruplex ligand pyridostatin. J Biol Chem 2023; 299:105157. [PMID: 37579947 PMCID: PMC10534229 DOI: 10.1016/j.jbc.2023.105157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Abhijeet A Patil
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jose F Moruno-Manchon
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Akihiko Urayama
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sean P Marrelli
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon, CNRS UMR6302, Dijon, France
| | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Andrey S Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
46
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
47
|
Hu W, Jing H, Fu W, Wang Z, Zhou J, Zhang N. Conversion to Trimolecular G-Quadruplex by Spontaneous Hoogsteen Pairing-Based Strand Displacement Reaction between Bimolecular G-Quadruplex and Double G-Rich Probes. J Am Chem Soc 2023; 145:18578-18590. [PMID: 37553999 DOI: 10.1021/jacs.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bimolecular or tetramolecular G-quadruplexes (GQs) are predominantly self-assembled by the same sequence-identical G-rich oligonucleotides and usually remain inert to the strand displacement reaction (SDR) with other short G-rich invading fragments of DNA or RNA. Appealingly, in this study, we demonstrate that a parallel homomeric bimolecular GQ target of Tub10 d(CAGGGAGGGT) as the starting reactant, although completely folded in K+ solution and sufficiently stable (melting temperature of 57.7 °C), can still spontaneously accept strand invasion by a pair of short G-rich invading probes of P1 d(TGGGA) near room temperature. The final SDR product is a novel parallel heteromeric trimolecular GQ (tri-GQ) of Tub10/2P1 reassembled between one Tub10 strand and two P1 strands. Here we present, to the best of our knowledge, the first NMR solution structure of such a discrete heteromeric tri-GQ and unveil a unique mode of two probes vs one target in mutual recognition among G-rich canonical DNA oligomers. As a model system, the short invading probe P1 can spontaneously trap G-rich target Tub10 from a Watson-Crick duplex completely hybridized between Tub10 and its fully complementary strand d(ACCCTCCCTG). The Tub10 sequence of d(CAGGGAGGGT) is a fragment from the G-rich promoter region of the human β2-tubulin gene. Our findings provide new insights into the Hoogsteen pairing-based SDR between a GQ target and double invading probes of short G-rich DNA fragments and are expected to grant access to increasingly complex architectures in GQ-based DNA nanotechnology.
Collapse
Affiliation(s)
- Wenxuan Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenqiang Fu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zengrong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
48
|
Dong J, Willner I. Transient Transcription Machineries Modulate Dynamic Functions of G-Quadruplexes: Temporal Regulation of Biocatalytic Circuits, Gene Replication and Transcription. Angew Chem Int Ed Engl 2023; 62:e202307898. [PMID: 37380611 DOI: 10.1002/anie.202307898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
49
|
Mizunuma M, Suzuki M, Kobayashi T, Hara Y, Kaneko A, Furukawa K, Chuman Y. Development of Mn 2+-Specific Biosensor Using G-Quadruplex-Based DNA. Int J Mol Sci 2023; 24:11556. [PMID: 37511324 PMCID: PMC10380348 DOI: 10.3390/ijms241411556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are used in various situations in living organisms and as a part of functional materials. Since the excessive intake of metal ions can cause health hazards and environmental pollution, the development of new molecules that can monitor metal ion concentrations with high sensitivity and selectivity is strongly desired. DNA can form various structures, and these structures and their properties have been used in a wide range of fields, including materials, sensors, and drugs. Guanine-rich sequences respond to metal ions and form G-quadruplex structures and G-wires, which are the self-assembling macromolecules of G-quadruplex structures. Therefore, guanine-rich DNA can be applied to a metal ion-detection sensor and functional materials. In this study, the IRDAptamer library originally designed based on G-quadruplex structures was used to screen for Mn2+, which is known to induce neurodegenerative diseases. Circular dichroism and fluorescence analysis using Thioflavin T showed that the identified IRDAptamer sequence designated MnG4C1 forms a non-canonical G-quadruplex structure in response to low concentrations of Mn2+. A serum resistance and thermostability analysis revealed that MnG4C1 acquired stability in a Mn2+-dependent manner. A Förster resonance energy transfer (FRET) system using fluorescent molecules attached to the termini of MnG4C1 showed that FRET was effectively induced based on Mn2+-dependent conformational changes, and the limit of detection (LOD) was 0.76 µM for Mn2+. These results suggested that MnG4C1 can be used as a novel DNA-based Mn2+-detecting molecule.
Collapse
Affiliation(s)
- Masataka Mizunuma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Mirai Suzuki
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Tamaki Kobayashi
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yuki Hara
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Atsushi Kaneko
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
50
|
Tariq N, Xu C, Wang J, Kume T, Macgregor RB. Enhancement of the thermal stability of G-quadruplex structures by urea. Biophys Chem 2023; 299:107043. [PMID: 37285661 DOI: 10.1016/j.bpc.2023.107043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The solute urea has been used extensively as a denaturant in protein folding studies; double-stranded nucleic acid structures are also destabilized by urea, but comparatively less than proteins. In previous research, the solute has been shown to strongly destabilize folded G-quadruplex DNA structures. This contribution demonstrates the stabilizing effect of urea on the G-quadruplex formed by the oligodeoxyribonucleotide (ODN), G3T (d[5'-GGGTGGGTGGGTGGG-3']), and related sequences in the presence of sodium or potassium cations. Stabilization is observed up to 7 M urea, which was the highest concentration we investigated. The folded structure of G3T has three G-tetrads and three loops that consist of single thymine residues. ODNs related to G3T, in which the thymine residues in the loop are substituted by adenosine residues, also exhibit enhanced stability in the presence of molar concentrations of urea. The circular dichroism (CD) spectra of these ODNs in the presence of urea are consistent with that of a G-quadruplex. As the urea concentration increases, the spectral intensities of the peaks and troughs change, while their positions change very little. The heat-induced transition from the folded to unfolded state, Tm, was measured by monitoring the change in the UV absorption as a function of temperature. G-quadruplex structures with loops containing single bases exhibited large increases in Tm with increasing urea concentrations. These data imply that the loop region play a significant role in the thermal stability of tetra-helical DNA structures in the presence of the solute urea.
Collapse
Affiliation(s)
- Nabeel Tariq
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Christine Xu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Jingtong Wang
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Takuma Kume
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.
| |
Collapse
|