1
|
Motoki K, Mori H. Electronic insights into the role of nuclear quantum effects in proton transfer reactions of nucleobase pairs. Phys Chem Chem Phys 2025; 27:8898-8902. [PMID: 40205992 DOI: 10.1039/d5cp00698h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Double proton transfer in nucleobase pairs leads to point mutations in nucleic acids. A series of constrained nuclear-electronic orbital calculations combined with natural bond orbital and non-covalent interaction analyses, and kinetic studies have quantitatively revealed the importance of nuclear quantum effects (NQEs) in the reaction. Compared with the classical treatment of the nuclei, the probability of forming the tautomeric isomers of Cytosine-Guanine, when explicitly accounting for NQEs, increased by a factor of 8.0. This outcome can be attributed to enhancing the interaction between the orbitals at the reactive site due to NQEs, which increased the number of electrons occupying the antibonding orbitals.
Collapse
Affiliation(s)
- Kohei Motoki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
| | - Hirotoshi Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Malbon CL, Hammes-Schiffer S. Nuclear-Electronic Orbital Multireference Configuration Interaction for Ground and Excited Vibronic States and Fundamental Insights into Multicomponent Basis Sets. J Chem Theory Comput 2025; 21:3968-3980. [PMID: 40172071 DOI: 10.1021/acs.jctc.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The nuclear-electronic orbital (NEO) approach incorporates nuclear quantum effects into quantum chemistry calculations by treating specified nuclei quantum mechanically, equivalently to the electrons. Within the NEO framework, excited states are vibronic states representing electronic and nuclear vibrational excitations. The NEO multireference configuration interaction (MRCI) method presented herein provides accurate ground and excited vibronic states. The electronic and nuclear orbitals are optimized with a NEO multiconfigurational self-consistent field (NEO-MCSCF) procedure, thereby including both static and dynamic correlation and allowing the description of double and higher excitations. The accuracy of the NEO-MRCI method is illustrated by computing the ground state protonic densities and excitation energies of the vibronic states for four molecular systems with the hydrogen nucleus treated quantum mechanically. In addition, revised conventional electronic basis sets adapted for quantized nuclei are developed and shown to be essential for achieving this level of accuracy. The NEO-MRCI approach, as well as the strategy for revising electronic basis sets, will play a critical role in multicomponent quantum chemistry.
Collapse
Affiliation(s)
- Christopher L Malbon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Xu X. Modeling electronic absorption spectra with nuclear quantum effects in constrained nuclear-electronic orbital framework. J Chem Phys 2025; 162:154106. [PMID: 40231874 DOI: 10.1063/5.0254111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/30/2025] [Indexed: 04/16/2025] Open
Abstract
Electronic absorption spectra serve as versatile and powerful tools in experiments. Accurate theoretical simulation of electronic absorption spectra is challenging because multiple factors such as environmental effects and nuclear quantum effects contribute to spectrum lineshapes. This work proposes a protocol to model electronic absorption spectra in the constrained nuclear-electronic orbital framework. Solvent effects, temperature effects, and particularly nuclear quantum effects can be taken into consideration in this unified framework. This protocol is applied to investigate the electronic absorption spectrum of the pyridine molecule in water. Nuclear quantum effects are found to induce a broadening and red shift of the absorption spectrum of pyridine.
Collapse
Affiliation(s)
- Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
4
|
Hasecke L, Breitenbach M, Gimferrer M, Oswald R, Mata RA. Addressing Anharmonic Effects with Density-Fitted Multicomponent Density Functional Theory. J Phys Chem A 2025; 129:3560-3566. [PMID: 40193096 PMCID: PMC12010317 DOI: 10.1021/acs.jpca.5c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
In this contribution we present the first local density-fitted multicomponent density functional theory implementation and assess its use for the calculation of anharmonic zero-point energies. Four challenging cases of molecular aggregates are reviewed: deprotonated formic acid trimer, diphenyl ether-tert-butyl alcohol conformers, anisole/methanol and anisole/2-naphtol dimers. These are all cases where a mismatch between the low-temperature computationally predicted minimum and the experimentally determined structure was observed. Through the use of nuclear-electronic orbital energies in the thermodynamic correction, the correct energetic ordering is recovered. For the smallest system, we compare our results to vibrational perturbation theory anharmonically corrected zero-point energy, with perfect agreement for the lower-lying conformers. The performance of the newly developed code and the density fitting errors are also analyzed. Overall, the new implementation shows a very good scaling with system size and the density fitting approximations exhibit a negligible impact.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Maximilian Breitenbach
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Martí Gimferrer
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Rainer Oswald
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Hammes-Schiffer S. Explaining Kinetic Isotope Effects in Proton-Coupled Electron Transfer Reactions. Acc Chem Res 2025; 58:1335-1344. [PMID: 40184268 PMCID: PMC12001285 DOI: 10.1021/acs.accounts.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
ConspectusProton-coupled electron transfer (PCET) is essential for a wide range of chemical and biological processes. Understanding the mechanism of PCET reactions is important for controlling and tuning these processes. The kinetic isotope effect (KIE), defined as the ratio of the rate constants for hydrogen and deuterium transfer, is used to probe PCET mechanisms experimentally but is often challenging to interpret. Herein, a theoretical framework is described for interpreting KIEs of concerted PCET reactions. The first step is to classify the reaction in terms of vibronic and electron-proton nonadiabaticities, which reflect the relative time scales of the electrons, protons, and environment. The second step is to select the appropriate rate constant expression based on this classification. The third step is to compute the input quantities with computational methods.Vibronically adiabatic PCET reactions occur on the electronic and vibrational ground state and can be described within the transition state theory framework. The nuclear-electronic orbital (NEO) method, which treats specified protons quantum mechanically on the same level as the electrons, can be used to generate the electron-proton vibronic free energy surface for hydrogen and deuterium and to compute the corresponding free energy barriers. Such reactions typically exhibit moderate KIEs that arise from zero-point energy and shallow tunneling effects.Vibronically nonadiabatic PCET reactions involve excited electron-proton vibronic states and can be described with a golden rule formalism corresponding to nonadiabatic transitions between pairs of reactant and product vibronic states. Such reactions can exhibit KIEs ranging from unity, or even slightly less than unity, to more than 500. These KIEs can be explained in terms of multiple, competing reaction pathways corresponding to electron and proton tunneling between different pairs of vibronic states. The tunneling probability is determined by the vibronic coupling, which can be computed using a general expression but often is proportional to the overlap between the reactant and product proton vibrational wave functions. In this regime, the KIE is influenced by the vibronic couplings, the proton donor-acceptor equilibrium distance and motion, and contributions from excited vibronic states.Three illustrative examples of vibronically nonadiabatic PCET are discussed. The unusually large KIEs in soybean lipoxygenase of ∼80 for the wild-type enzyme and ∼700 for a double mutant are explained in terms of a large equilibrium proton donor-acceptor distance and nonoptimal orientation, leading to a small overlap between vibrational wave functions and therefore a large difference in hydrogen and deuterium tunneling probabilities. The KIEs for benzimidazole-phenol molecules ranging from unity to moderate are explained in terms of the dominance of different pairs of vibronic states with different vibrational wave function overlaps. The potential-dependent KIE observed for proton discharge from triethylammonium acid to a gold surface in acetonitrile is explained in terms of different pairs of vibronic states contributing for hydrogen and deuterium, with the reaction channels exhibiting different dependencies on the applied potential. These examples show that the KIE can vary widely, depending on which pairs of vibronic states dominate and their corresponding vibronic couplings. This work has broad implications for the interpretation of experimentally measured KIEs of PCET reactions.
Collapse
Affiliation(s)
- Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| |
Collapse
|
6
|
Li TE, Li X, Hammes-Schiffer S. Energy conservation in real-time nuclear-electronic orbital Ehrenfest dynamics. J Chem Phys 2025; 162:144106. [PMID: 40197592 DOI: 10.1063/5.0255984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Real-time nuclear-electronic orbital Ehrenfest (RT-NEO-Ehrenfest) dynamics methods provide a first-principles approach for describing nonadiabatic molecular processes with nuclear quantum effects. For an efficient description of proton transfer within RT-NEO-Ehrenfest dynamics, the basis function center associated with the quantum proton can be allowed to move classically. This traveling proton basis (TPB) approach effectively captures proton quantum dynamics, although its energy conservation behavior is not yet fully satisfactory. Two recently proposed TPB approaches, in principle, conserve the extended energy, which includes both the system energy and the kinetic energy associated with the proton basis function center. Herein, a thermostatted TPB approach is proposed to improve the conservation of the system energy, excluding the kinetic energy associated with the proton basis function center. In this approach, the quantum proton dynamics are modulated by dynamically rescaling the proton momentum operator to maintain the system energy conservation. With the excited-state intramolecular proton transfer of o-hydroxybenzaldehyde as an example, this approach is shown to significantly improve the system energy conservation while preserving the accuracy of the quantum proton dynamics as achieved in the original TPB approach.
Collapse
Affiliation(s)
- Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
7
|
Liu Y, Shen S, Prezhdo OV, Long R, Fang WH. Nuclear Quantum Effects Accelerate Hot Carrier Relaxation but Slow Down Recombination in Metal Halide Perovskites. J Am Chem Soc 2025; 147:11543-11554. [PMID: 40106363 DOI: 10.1021/jacs.5c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Inorganic semiconductors are composed of heavy elements whose vibrational motions are well described by classical mechanics. Heavy elements, such as Pb and I, support charge carriers in metal halide perovskites. Nevertheless, the soft structure and strong coupling between the organic and inorganic components create conditions in which nuclear quantum effects (NQEs) can play important roles. By combining ab initio, ring-polymer, and nonadiabatic molecular dynamics approaches with time-domain density functional theory, we demonstrate how NQEs influence structural and electronic properties and electron-vibrational dynamics in hybrid organic-inorganic (MAPbI3) and all-inorganic (CsPbI3) perovskites. Quantum zero-point fluctuations enhance structural disorder, reduce the band gap, and accelerate elastic electron-vibrational scattering responsible for coherence loss. NQEs have opposite influences on intraband carrier relaxation and interband recombination. These inelastic scattering events are governed by the product of the overlap-like electron-phonon matrix element and atomic velocity. NQEs reduce the overlap and increases the velocity. The intraband carrier relaxation involves many states. Reduction of overlap between some states is offset by other pathways, while an increased velocity makes intraband relaxation faster. Electron-hole overlap in band-edge states plays a key role in the recombination, and its reduction by NQEs-enhanced disorder makes the recombination slower. This phenomenon is seen with both MAPbI3 and CsPbI3 and is much more pronounced when a light organic component is present. This study offers a detailed understanding of the role of NQEs in the carrier relaxation processes of perovskites, offering important theoretical insights into hot carriers and carrier recombination that govern the performance of solar cells and other optoelectronic devices.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Shiying Shen
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Khan RU, Tonner-Zech R. Optimizing Computational Parameters for Nuclear Electronic Orbital Density Functional Theory: A Benchmark Study on Proton Affinities. J Comput Chem 2025; 46:e70082. [PMID: 40099631 PMCID: PMC11915487 DOI: 10.1002/jcc.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
This study benchmarks the nuclear electronic orbital density functional theory (NEO-DFT) method for a set of molecules that is larger than in previous studies. The focus is on proton affinity predictions to assess the influences of computational parameters. NEO-DFT incorporates nuclear quantum effects for protons involved in protonation processes. Using a test set of 72 molecules with experimental proton affinities as reference, we evaluated various exchange-correlation functionals, finding that B3LYP-based functionals deliver the most accurate results. Among the tested functionals, CAM-B3LYP performs the best with an MAD value of 6.2 kJ/mol with respect to experimental data. In NEO-DFT, electron-proton correlation (epc) functionals were assessed, with LDA-type epc17-2 yielding comparable results to the GGA-type epc19 functional. Compared to traditional DFT (MAD value of 31.6 kJ/mol), which treats nuclei classically, NEO-DFT provides enhanced accuracy for proton affinities when electron-proton correlation is included. Regarding basis sets, the def2-QZVP electronic basis set achieved the highest accuracy with an MAD value of 5.0 kJ/mol, though at a higher computational cost compared to def2-TZVP and def2-SVP, while nuclear basis sets showed minimal impact on proton affinity accuracy and no consistent trend. Overall, this study demonstrates NEO-DFT's efficacy in addressing nuclear quantum effects for proton affinity predictions, providing guidance on optimal parameter selection for future NEO-DFT applications.
Collapse
Affiliation(s)
- Raza Ullah Khan
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Leipzig, Germany
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Leipzig, Germany
| |
Collapse
|
9
|
Chen Z, Zheng J, Truhlar DG, Yang Y. Constrained Nuclear-Electronic Orbital Transition State Theory Using Energy Surfaces with Nuclear Quantum Effects. J Chem Theory Comput 2025; 21:590-604. [PMID: 39772546 DOI: 10.1021/acs.jctc.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions. CNEO-TST is similar to conventional TST except that it employs constrained minimized energy surfaces to include zero-point energy and shallow tunneling effects in the effective potential. We find that the new theory predicts reaction rates quite accurately at room temperature. The effective potential surface must be generated by CNEO theory rather than by ordinary electronic structure theory, but because of the favorable computational scaling of CNEO-DFT, the cost is economical even for large systems. Our results show that dynamics calculations with this approach achieve accuracy comparable to variational TST with a semiclassical multidimensional tunneling transmission coefficient at and above room temperature. Therefore, CNEO-TST can be a useful tool for rate prediction, even for reactions involving highly quantal motion, such as many chemical and biochemical reactions involving transfers of hydrogen atoms, protons, or hydride ions.
Collapse
Affiliation(s)
- Zehua Chen
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jingjing Zheng
- Gaussian, Inc., Wallingford, Connecticut 06492, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Garner SM, Upadhyay S, Li X, Hammes-Schiffer S. Time-resolved vibronic spectra with nuclear-electronic orbital time-dependent configuration interaction. J Chem Phys 2025; 162:044108. [PMID: 39878421 DOI: 10.1063/5.0243394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/04/2025] [Indexed: 01/31/2025] Open
Abstract
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing. A strategy is presented for calculating time-resolved vibrational and electronic absorption spectra from any initial condition. Although this strategy is general for any TDCI implementation, utilizing the NEO framework allows for the explicit inclusion of quantized nuclei, as illustrated through the calculation of vibrationally hot spectra. Time-resolved spectra produced by either vibrational or electronic Rabi oscillations capture ground-state absorption, stimulated emission, and excited-state absorption between vibronic states. This methodology provides the foundation for fully ab initio simulations of multidimensional spectroscopic experiments.
Collapse
Affiliation(s)
- Scott M Garner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Shiv Upadhyay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
11
|
Holzer C, Franzke YJ. A General and Transferable Local Hybrid Functional for Electronic Structure Theory and Many-Fermion Approaches. J Chem Theory Comput 2025; 21:202-217. [PMID: 39704224 DOI: 10.1021/acs.jctc.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Density functional theory has become the workhorse of quantum physics, chemistry, and materials science. Within these fields, a broad range of applications needs to be covered. These applications range from solids to molecular systems, from organic to inorganic chemistry, or even from electrons to other Fermions, such as protons or muons. This is emphasized by the plethora of density functional approximations that have been developed for various cases. In this work, two new local hybrid exchange-correlation density functionals are constructed from first-principles, promoting generality and transferability. We show that constraint satisfaction can be achieved even for admixtures with full exact exchange, without sacrificing accuracy. The performance of the new functionals CHYF-PBE and CHYF-B95 is assessed for thermochemical properties, excitation energies, Mössbauer isomer shifts, NMR spin-spin coupling constants, NMR shieldings and shifts, magnetizabilities, and EPR hyperfine coupling constants. Here, the new density functional shows excellent performance throughout all tests and is numerically robust only requiring small grids for converged results. Additionally, both functionals can easily be generalized to arbitrary Fermions as shown for electron-proton correlation energies. Therefore, we outline that density functionals generated in this way are general purpose tools for quantum mechanical studies.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| |
Collapse
|
12
|
Moncada F, Reyes A, Pettersson LGM. Restoring rotational symmetry of multicomponent wavefunctions with nuclear orbitals. J Chem Phys 2025; 162:024110. [PMID: 39774887 DOI: 10.1063/5.0244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, we present a non-orthogonal configuration interaction (NOCI) approach to address the rotational corrections in multicomponent quantum chemistry calculations where hydrogen nuclei and electrons are described with orbitals under Hartree-Fock (HF) and density functional theory (DFT) frameworks. The rotational corrections are required in systems such as diatomic (HX) and nonlinear triatomic molecules (HXY), where localized broken-symmetry nuclear orbitals have a lower energy than delocalized orbitals with the correct symmetry. By restoring rotational symmetry with the proposed NOCI approach, we demonstrate significant improvements in proton binding energy predictions at the HF level, with average rotational corrections of 0.46 eV for HX and 0.23 eV for HXY molecules. For computing rotational excitation energies, our results indicate that HF kinetic energy corrections are consistently accurate, while discrepancies arise in total energy predictions, primarily from an incomplete treatment of dynamical correlation effects. Rotational energy corrections in multicomponent DFT calculations, using the epc17-2 proton-electron correlation functional, lead to an overestimation of proton binding energies. This is as a result of double-counting of proton-electron correlation effects in the off-diagonal NOCI terms. As a correction, we propose a scaling scheme that effectively adjusts the proton-electron correlation contributions, bringing our results into close agreement with reference CCSD(T) data. The scaled rotational corrections, on average, increase the epc17-2 proton binding energy predictions by 0.055 eV for HX and 0.025 eV for HXY and yield average deviations of 1.0 cm-1 for rotational transitions.
Collapse
Affiliation(s)
- Félix Moncada
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30#45-03, Bogotá, Colombia
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Yang Y, Zhang Y, Yang Y, Xu X. Assessment of electron-proton correlation functionals for vibrational spectra of shared-proton systems by constrained nuclear-electronic orbital density functional theory. J Chem Phys 2024; 161:244103. [PMID: 39713995 DOI: 10.1063/5.0243086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Proton transfer plays a crucial role in various chemical and biological processes. A major theoretical challenge in simulating proton transfer arises from the quantum nature of the proton. The constrained nuclear-electronic orbital (CNEO) framework was recently developed to efficiently and accurately account for nuclear quantum effects, particularly quantum nuclear delocalization effects, in quantum chemistry calculations and molecular dynamics simulations. In this paper, we systematically investigate challenging proton transfer modes in a series of shared-proton systems using CNEO density functional theory (CNEO-DFT), focusing on evaluating existing electron-proton correlation functionals. Our results show that CNEO-DFT accurately describes proton transfer vibrational modes and significantly outperforms conventional DFT. The inclusion of the epc17-2 electron-proton correlation functional in CNEO-DFT produces similar performance to that without electron-proton correlations, while the epc17-1 functional yields less accurate results, comparable with conventional DFT. These findings hold true for both asymmetrical and symmetrical shared-proton systems. Therefore, until a more accurate electron-proton correlation functional is developed, we currently recommend performing vibrational spectrum calculations using CNEO-DFT without electron-proton correlation functionals.
Collapse
Affiliation(s)
- Yuzhuo Yang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yuzhe Zhang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yang Yang
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
14
|
Chow M, Reinhardt CR, Hammes-Schiffer S. Nuclear Quantum Effects in Quantum Mechanical/Molecular Mechanical Free Energy Simulations of Ribonucleotide Reductase. J Am Chem Soc 2024; 146:33258-33264. [PMID: 39566052 PMCID: PMC11625381 DOI: 10.1021/jacs.4c13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The enzyme ribonucleotide reductase plays a critical role in DNA synthesis and repair. Its mechanism requires long-range radical transfer through a series of proton-coupled electron transfer (PCET) steps. Nuclear quantum effects such as zero-point energy, proton delocalization, and hydrogen tunneling are known to be important in PCET. We present a strategy for efficiently incorporating nuclear quantum effects into multidimensional free energy surfaces and real-time dynamical simulations for condensed-phase systems such as enzymes. This strategy is based on the nuclear-electronic orbital (NEO) method, which treats specified protons quantum mechanically on the same level as the electrons. NEO density functional theory (NEO-DFT) is combined with the quantum mechanical/molecular mechanical finite temperature string method with umbrella sampling via a simple reweighting procedure. Application of this strategy to PCET between two tyrosines, Y731 and Y730, in ribonucleotide reductase illustrates that nuclear quantum effects could either raise or lower the free energy barrier, leading to a range of possible kinetic isotope effects. Real-time time-dependent DFT (RT-NEO-TDDFT) simulations highlight nuclear-electronic quantum dynamics. These approaches enable the incorporation of nuclear quantum effects into a wide range of chemically and biologically important processes.
Collapse
Affiliation(s)
- Mathew Chow
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Hasecke L, Mata RA. Local Electronic Correlation in Multicomponent Møller-Plesset Perturbation Theory. J Chem Theory Comput 2024; 20:9928-9938. [PMID: 39514695 PMCID: PMC11603598 DOI: 10.1021/acs.jctc.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
We present in this contribution the first application of local correlation in the context of multicomponent methods. Multicomponent approaches allow for the targeted simulation of electrons together with other Fermions (most commonly protons) as quantum particles. These methods have become increasingly popular over the last years, particularly for the description of nuclear quantum effects (in strong hydrogen bonds, proton tunneling, and many more). However, most implementations are still based on canonical formulations of wave function theory, which we know for decades to be computationally inefficient for capturing dynamical correlation effects. Local correlation approaches, particularly with the use of pair natural orbitals (PNOs), enable asymptotically linear scaling of computational costs with very little impact on the overall accuracy. In this context, the efficient use of density fitting approximations in the integral calculation proves essential. We start by discussing our implementation of density-fitted NEO-MP2 and NEO-PNO-LMP2, upgrading the electronic correlation treatment up to PNO local coupled cluster level of theory. Several challenging examples are provided to benchmark the method in terms of accuracy as well as computational cost scaling. Following appropriate protocols, anharmonic corrections to localized X-H stretches can be applied routinely with little computational overhead.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Xu J, Zhou R, Li TE, Hammes-Schiffer S, Kanai Y. Lagrangian formulation of nuclear-electronic orbital Ehrenfest dynamics with real-time TDDFT for extended periodic systems. J Chem Phys 2024; 161:194109. [PMID: 39560084 DOI: 10.1063/5.0230570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
We present a Lagrangian-based implementation of Ehrenfest dynamics with nuclear-electronic orbital (NEO) theory and real-time time-dependent density functional theory for extended periodic systems. In addition to a quantum dynamical treatment of electrons and selected protons, this approach allows for the classical movement of all other nuclei to be taken into account in simulations of condensed matter systems. Furthermore, we introduce a Lagrangian formulation for the traveling proton basis approach and propose new schemes to enhance its application for extended periodic systems. Validation and proof-of-principle applications are performed on electronically excited proton transfer in the o-hydroxybenzaldehyde molecule with explicit solvating water molecules. These simulations demonstrate the importance of solvation dynamics and a quantum treatment of transferring protons. This work broadens the applicability of the NEO Ehrenfest dynamics approach for studying complex heterogeneous systems in the condensed phase.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
17
|
Dickinson JA, Hammes-Schiffer S. Nonadiabatic Hydrogen Tunneling Dynamics for Multiple Proton Transfer Processes with Generalized Nuclear-Electronic Orbital Multistate Density Functional Theory. J Chem Theory Comput 2024. [PMID: 39259939 DOI: 10.1021/acs.jctc.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Proton transfer and hydrogen tunneling play key roles in many processes of chemical and biological importance. The generalized nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method was developed in order to capture hydrogen tunneling effects in systems involving the transfer and tunneling of one or more protons. The generalized NEO-MSDFT method treats the transferring protons quantum mechanically on the same level as the electrons and obtains the delocalized vibronic states associated with hydrogen tunneling by mixing localized NEO-DFT states in a nonorthogonal configuration interaction scheme. Herein, we present the derivation and implementation of analytical gradients for the generalized NEO-MSDFT vibronic state energies and the nonadiabatic coupling vectors between these vibronic states. We use this methodology to perform adiabatic and nonadiabatic dynamics simulations of the double proton transfer reactions in the formic acid dimer and the heterodimer of formamidine and formic acid. The generalized NEO-MSDFT method is shown to capture the strongly coupled synchronous or asynchronous tunneling of the two protons in these processes. Inclusion of vibronically nonadiabatic effects is found to significantly impact the double proton transfer dynamics. This work lays the foundation for a variety of nonadiabatic dynamics simulations of multiple proton transfer systems, such as proton relays and hydrogen-bonding networks.
Collapse
Affiliation(s)
- Joseph A Dickinson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
19
|
Berquist E, Dumi A, Upadhyay S, Abarbanel OD, Cho M, Gaur S, Cano Gil VH, Hutchison GR, Lee OS, Rosen AS, Schamnad S, Schneider FSS, Steinmann C, Stolyarchuk M, Vandezande JE, Zak W, Langner KM. cclib 2.0: An updated architecture for interoperable computational chemistry. J Chem Phys 2024; 161:042501. [PMID: 39051837 DOI: 10.1063/5.0216778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Interoperability in computational chemistry is elusive, impeded by the independent development of software packages and idiosyncratic nature of their output files. The cclib library was introduced in 2006 as an attempt to improve this situation by providing a consistent interface to the results of various quantum chemistry programs. The shared API across programs enabled by cclib has allowed users to focus on results as opposed to output and to combine data from multiple programs or develop generic downstream tools. Initial development, however, did not anticipate the rapid progress of computational capabilities, novel methods, and new programs; nor did it foresee the growing need for customizability. Here, we recount this history and present cclib 2, focused on extensibility and modularity. We also introduce recent design pivots-the formalization of cclib's intermediate data representation as a tree-based structure, a new combinator-based parser organization, and parsed chemical properties as extensible objects.
Collapse
Affiliation(s)
- Eric Berquist
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Amanda Dumi
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Shiv Upadhyay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Omri D Abarbanel
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Minsik Cho
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Sagar Gaur
- MarkovML 23, Geary St. Suite 600, San Francisco, California 94108, USA
- International Institute of Information Technology, Prof. CR Rao Road Gachibowli, Hyderabad 500032, Telangana, India
| | | | - Geoffrey R Hutchison
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Oliver S Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St. Andrews KY16 9ST, United Kingdom
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Andrew S Rosen
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | | | | | - Casper Steinmann
- Department of Chemistry and Bioscience, Aalborg University, DK-9230 Aalborg, Denmark
| | | | | | - Weronika Zak
- Department of Computer Science, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | | |
Collapse
|
20
|
Holzer C, Franzke YJ. Beyond Electrons: Correlation and Self-Energy in Multicomponent Density Functional Theory. Chemphyschem 2024; 25:e202400120. [PMID: 38456204 DOI: 10.1002/cphc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Post-Kohn-Sham methods are used to evaluate the ground-state correlation energy and the orbital self-energy of systems consisting of multiple flavors of different fermions. Starting from multicomponent density functional theory, suitable ways to arrive at the corresponding multicomponent random-phase approximation and the multicomponent Green's functionG W ${GW}$ approximation, including relativistic effects, are outlined. Given the importance of both of this methods in the development of modern Kohn-Sham density functional approximations, this work will provide a foundation to design advanced multicomponent density functional approximations. Additionally, theG W ${GW}$ quasiparticle energies are needed to study light-matter interactions with the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Christof Holzer
- Karlsruhe Institute of Technology (KIT), Institute of Theoretical Solid State Physics, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Löbdergraben 32, 07743, Jena, Germany
| |
Collapse
|
21
|
Garner SM, Upadhyay S, Li X, Hammes-Schiffer S. Nuclear-Electronic Orbital Time-Dependent Configuration Interaction Method. J Phys Chem Lett 2024; 15:6017-6023. [PMID: 38815051 DOI: 10.1021/acs.jpclett.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Combining real-time electronic structure with the nuclear-electronic orbital (NEO) method has enabled the simulation of complex nonadiabatic chemical processes. However, accurate descriptions of hydrogen tunneling and double excitations require multiconfigurational treatments. Herein, we develop and implement the real-time NEO time-dependent configuration interaction (NEO-TDCI) approach. Comparison to NEO-full CI calculations of absorption spectra for a molecular system shows that the NEO-TDCI approach can accurately capture the tunneling splitting associated with the electronic ground state as well as vibronic progressions corresponding to double electron-proton excitations associated with excited electronic states. Both of these features are absent from spectra obtained with single reference real-time NEO methods. Our simulations of hydrogen tunneling dynamics illustrate the oscillation of the proton density from one side to the other via a delocalized, bilobal proton wave function. These results indicate that the NEO-TDCI approach is highly suitable for studying hydrogen tunneling and other inherently multiconfigurational systems.
Collapse
Affiliation(s)
- Scott M Garner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Shiv Upadhyay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Hasecke L, Mata RA. Optimization of Quantum Nuclei Positions with the Adaptive Nuclear-Electronic Orbital Approach. J Phys Chem A 2024; 128:3205-3211. [PMID: 38619054 PMCID: PMC11056972 DOI: 10.1021/acs.jpca.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
The use of multicomponent methods has become increasingly popular over the last years. Under this framework, nuclei (commonly protons) are treated quantum mechanically on the same footing as the electronic structure problem. Under the use of atomic-centered orbitals, this can lead to some complications as the ideal location of the nuclear basis centers must be optimized. In this contribution, we propose a straightforward approach to determine the position of such centers within the self-consistent cycle of a multicomponent calculation, making use of individual proton charge centroids. We test the method on model systems including the water dimer, a protonated water tetramer, and a porphine system. Comparing to numerical gradient calculations, the adaptive nuclear-electronic orbital (NEO) procedure is able to converge the basis centers to within a few cents of an Ångström and with less than 0.1 kcal/mol differences in absolute energies. This is achieved in one single calculation and with a small added computational effort of up to 80% compared to a regular NEO- self-consistent field run. An example application for the human transketolase proton wire is also provided.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Lambros E, Fetherolf JH, Hammes-Schiffer S, Li X. A Many-Body Perspective of Nuclear Quantum Effects in Aqueous Clusters. J Phys Chem Lett 2024; 15:4070-4075. [PMID: 38587257 DOI: 10.1021/acs.jpclett.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nuclear quantum effects play an important role in the structure and thermodynamics of aqueous systems. By performing a many-body expansion with nuclear-electronic orbital (NEO) theory, we show that proton quantization can give rise to significant energetic contributions for many-body interactions spanning several molecules in single-point energy calculations of water clusters. Although zero-point motion produces a large increase in energy at the one-body level, nuclear quantum effects serve to stabilize higher-order molecular interactions. These results are significant because they demonstrate that nuclear quantum effects play a nontrivial role in many-body interactions of aqueous systems. Our approach also provides a pathway for incorporating nuclear quantum effects into water potential energy surfaces. The NEO approach is advantageous for many-body expansion analyses because it includes nuclear quantum effects directly in the energies.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H Fetherolf
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Xu J, Carney TE, Zhou R, Shepard C, Kanai Y. Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics. J Am Chem Soc 2024; 146:5011-5029. [PMID: 38362887 DOI: 10.1021/jacs.3c08226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The explicit real-time propagation approach for time-dependent density functional theory (RT-TDDFT) has increasingly become a popular first-principles computational method for modeling various time-dependent electronic properties of complex chemical systems. In this Perspective, we provide a nontechnical discussion of how this first-principles simulation approach has been used to gain novel physical insights into nonequilibrium electron dynamics phenomena in recent years. Following a concise overview of the RT-TDDFT methodology from a practical standpoint, we discuss our recent studies on the electronic stopping of DNA in water and the Floquet topological phase as examples. Our discussion focuses on how RT-TDDFT simulations played a unique role in deriving new scientific understandings. We then discuss existing challenges and some new advances at the frontier of RT-TDDFT method development for studying increasingly complex dynamic phenomena and systems.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
25
|
Moncada F, Quintero W, Posada E, Pettersson LGM, Reyes A. A nuclear configuration interaction approach to study nuclear spin effects: an application to ortho- and para- 3 He 2 @C 60. Chemphyschem 2024; 25:e202300498. [PMID: 38055206 DOI: 10.1002/cphc.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
We introduce a non-orthogonal configuration interaction approach to investigate nuclear quantum effects on energies and densities of confined fermionic nuclei. The Hamiltonian employed draws parallels between confined systems and many-electron atoms, where effective non-Coulombic potentials represent the interactions of the trapped particles. One advantage of this method is its generality, as it offers the potential to study the nuclear quantum effects of various confined species affected by effective isotropic or anisotropic potentials. As a first application, we analyze the quantum states of two 3 He atoms encapsulated in C60 . At the Hartree-Fock level, we observe the breaking of spin and spatial symmetries. To ensure wavefunctions with the correct symmetries, we mix the broken-symmetry Hartree-Fock states within the non-orthogonal configuration interaction expansion. Our proposed approach predicts singly and triply degenerate ground states for the singlet (para-3 He2 @C60 ) and triplet (ortho-3 He2 @C60 ) nuclear spin configurations, respectively. The ortho-3 He2 @C60 ground state is 5.69 cm-1 higher in energy than the para-3 He2 @C60 ground state. The nuclear densities obtained for these states exhibit the icosahedral symmetry of the C60 embedding potential. Importantly, our calculated energies for the lowest 85 states are in close agreement with perturbation theory results based on a harmonic oscillator plus rigid rotor model of 3 He2 @C60 .
Collapse
Affiliation(s)
- Félix Moncada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - William Quintero
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - Edwin Posada
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91, Stockholm, Sweden
| | - Andrés Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, Colombia
| |
Collapse
|
26
|
Hassan M, Pavošević F, Wang DS, Flick J. Simulating Polaritonic Ground States on Noisy Quantum Devices. J Phys Chem Lett 2024; 15:1373-1381. [PMID: 38287217 DOI: 10.1021/acs.jpclett.3c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The recent advent of quantum algorithms for noisy quantum devices offers a new route toward simulating strong light-matter interactions of molecules in optical cavities for polaritonic chemistry. In this work, we introduce a general framework for simulating electron-photon-coupled systems on small, noisy quantum devices. This method is based on the variational quantum eigensolver (VQE) with the polaritonic unitary coupled cluster (PUCC) ansatz. To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods, such as electron-photon parity, and use recently developed error mitigation schemes, such as the reference zero-noise extrapolation method. We explore the robustness of the VQE-PUCC approach across a diverse set of regimes for the bond length, cavity frequency, and coupling strength of the H2 molecule in an optical cavity. To quantify the performance, we measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number, an experimentally accessible general indicator of electron-photon correlation.
Collapse
Affiliation(s)
- Mohammad Hassan
- Department of Physics, City College of New York, New York, New York 10031, United States
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
| | | | - Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Department of Physics, City College of New York, New York, New York 10031, United States
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
27
|
Javed M, Shah A, Nisar J, Shahzad S, Haleem A, Shah I. Nanostructured Design Cathode Materials for Magnesium-Ion Batteries. ACS OMEGA 2024; 9:4229-4245. [PMID: 38313505 PMCID: PMC10831983 DOI: 10.1021/acsomega.3c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Energy is undeniably one of the most fundamental requirements of the current generation. Solar and wind energy are sustainable and renewable energy sources; however, their unpredictability points to the development of energy storage systems (ESSs). There has been a substantial increase in the use of batteries, particularly lithium-ion batteries (LIBs), as ESSs. However, low rate capability and degradation due to electric load in long-range electric vehicles are pushing LIBs to their limits. As alternative ESSs, magnesium-ion batteries (MIBs) possess promising properties and advantages. Cathode materials play a crucial role in MIBs. In this regard, a variety of cathode materials, including Mn-based, Se-based, vanadium- and vanadium oxide-based, S-based, and Mg2+-containing cathodes, have been investigated by experimental and theoretical techniques. Results reveal that the discharge capacity, capacity retention, and cycle life of cathode materials need improvement. Nevertheless, maintaining the long-term stability of the electrode-electrolyte interface during high-voltage operation continues to be a hurdle in the execution of MIBs, despite the continuous research in this field. The current Review mainly focuses on the most recent nanostructured-design cathode materials in an attempt to draw attention to MIBs and promote the investigation of suitable cathode materials for this promising energy storage device.
Collapse
Affiliation(s)
- Mohsin Javed
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jan Nisar
- National
Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Suniya Shahzad
- Department
of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Abdul Haleem
- School
of Chemistry and Chemical Engineering, Jiangsu
University, Zhenjiang, Jiangsu 212013, China
| | - Iltaf Shah
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Li TE, Paenurk E, Hammes-Schiffer S. Squeezed Protons and Infrared Plasmonic Resonance Energy Transfer. J Phys Chem Lett 2024; 15:751-757. [PMID: 38226772 DOI: 10.1021/acs.jpclett.3c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Unusual nuclear quantum effects may emerge near noble metal nanostructures such as squeezed vibrational states in molecular junctions and plasmonic resonance energy transfer in the infrared domain. Herein, nuclear quantum effects near heavy metals are studied by nuclear-electronic orbital density functional theory (NEO-DFT) with an effective core potential. For a quantum proton sandwiched between a pair of gold tips modeled by two Au6 clusters, NEO-DFT calculations suggest that the quantum proton density can be squeezed as the tip distance decreases. For an HF molecule placed near a one-dimensional Au nanowire composed of up to 34 Au atoms, real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) shows that the infrared plasmonic motion within the Au nanowire may resonantly transfer electronic energy to the HF proton vibrational stretch mode. Overall, these calculations illustrate the advantages of the NEO approach for probing nuclear quantum effects, such as squeezed proton vibrational states and infrared plasmonic resonance energy transfer.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eno Paenurk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
29
|
Matoušek M, Pernal K, Pavošević F, Veis L. Variational Quantum Eigensolver Boosted by Adiabatic Connection. J Phys Chem A 2024; 128:687-698. [PMID: 38214999 PMCID: PMC10823474 DOI: 10.1021/acs.jpca.3c07590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
In this work, we integrate the variational quantum eigensolver (VQE) with the adiabatic connection (AC) method for efficient simulations of chemical problems on near-term quantum computers. Orbital-optimized VQE methods are employed to capture the strong correlation within an active space, and classical AC corrections recover the dynamical correlation effects comprising electrons outside of the active space. On two challenging strongly correlated problems, namely, the dissociation of N2 and the electronic structure of the tetramethyleneethane biradical, we show that the combined VQE-AC approach enhances the performance of VQE dramatically. Moreover, since the AC corrections do not bring any additional requirements on quantum resources or measurements, they can actually boost the VQE algorithms. Our work paves the way toward quantum simulations of real-life problems on near-term quantum computers.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | | | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
30
|
Nykänen A, Miller A, Talarico W, Knecht S, Kovyrshin A, Skogh M, Tornberg L, Broo A, Mensa S, Symons BCB, Sahin E, Crain J, Tavernelli I, Pavošević F. Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals. J Chem Theory Comput 2023; 19:9269-9277. [PMID: 38081802 DOI: 10.1021/acs.jctc.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.
Collapse
Affiliation(s)
- Anton Nykänen
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
| | - Aaron Miller
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- School of Physics, Trinity College Dublin, College Green Dublin 2, Ireland
| | - Walter Talarico
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- Department of Applied Physics, QTF Centre of Excellence, Center for Quantum Engineering, Aalto University School of Science, Aalto FIN-00076, Finland
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, Helsinki FI-00160, Finland
- ETH Zürich, Department of Chemistry and Applied Life Sciences Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Arseny Kovyrshin
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Mårten Skogh
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Lars Tornberg
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Anders Broo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Stefano Mensa
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | | | - Emre Sahin
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
| | - Jason Crain
- IBM Research Europe, Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, U.K
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | | | | |
Collapse
|
31
|
Xu J, Zhou R, Blum V, Li TE, Hammes-Schiffer S, Kanai Y. First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems. PHYSICAL REVIEW LETTERS 2023; 131:238002. [PMID: 38134781 DOI: 10.1103/physrevlett.131.238002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/01/2023] [Indexed: 12/24/2023]
Abstract
The coupled quantum dynamics of electrons and protons is ubiquitous in many dynamical processes involving light-matter interaction, such as solar energy conversion in chemical systems and photosynthesis. A first-principles description of such nuclear-electronic quantum dynamics requires not only the time-dependent treatment of nonequilibrium electron dynamics but also that of quantum protons. Quantum mechanical correlation between electrons and protons adds further complexity to such coupled dynamics. Here we extend real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) to periodic systems and perform first-principles simulations of coupled quantum dynamics of electrons and protons in complex heterogeneous systems. The process studied is an electronically excited-state intramolecular proton transfer of o-hydroxybenzaldehyde in water and at a silicon (111) semiconductor-molecule interface. These simulations illustrate how environments such as hydrogen-bonding water molecules and an extended material surface impact the dynamical process on the atomistic level. Depending on how the molecule is chemisorbed on the surface, excited-state electron transfer from the molecule to the semiconductor surface can inhibit ultrafast proton transfer within the molecule. This Letter elucidates how heterogeneous environments influence the balance between the quantum mechanical proton transfer and excited electron dynamics. The periodic RT-NEO-TDDFT approach is applicable to a wide range of other photoinduced heterogeneous processes.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA and Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | | | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA and Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
32
|
Pavošević F, Smith RL, Rubio A. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J Phys Chem A 2023; 127:10184-10188. [PMID: 37992280 DOI: 10.1021/acs.jpca.3c06285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Click chemistry, which refers to chemical reactions that are fast and selective with high product yields, has become a powerful approach in organic synthesis and chemical biology. Due to the cytotoxicity of the transition metals employed in click chemistry reactions, a search for novel metal-free alternatives continues. Herein, we demonstrate that an optical cavity can be utilized as a metal-free alternative in the click chemistry cycloaddition reaction between cyanoacetylene and formylazide using the quantum electrodynamics coupled cluster method. We show that by changing the molecular orientation with respect to the polarization of the cavity mode(s), the reaction can be selectively catalyzed to form a major 1,4-disubstituted or 1,5-disubstituted product. This work highlights that a cavity has the same effect on the investigated cycloaddition as the transition metal catalysts traditionally employed in click chemistry reactions. We expect our findings to further stimulate research on cavity-assisted click chemistry reactions.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Robert L Smith
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
33
|
Culpitt T, Tellgren EI, Pavošević F. Unitary coupled-cluster for quantum computation of molecular properties in a strong magnetic field. J Chem Phys 2023; 159:204101. [PMID: 37991157 DOI: 10.1063/5.0177417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
In truncated coupled-cluster (CC) theories, non-variational and/or generally complex ground-state energies can occur. This is due to the non-Hermitian nature of the similarity transformed Hamiltonian matrix in combination with CC truncation. For chemical problems that deal with real-valued Hamiltonian matrices, complex CC energies rarely occur. However, for complex-valued Hamiltonian matrices, such as those that arise in the presence of strong magnetic fields, complex CC energies can be regularly observed unless certain symmetry conditions are fulfilled. Therefore, in the presence of magnetic fields, it is desirable to pursue CC methods that are guaranteed to give upper-bound, real-valued energies. In this work, we present the first application of unitary CC to chemical systems in a strong magnetic field. This is achieved utilizing the variational quantum eigensolver algorithm applied to the unitary coupled-cluster singles and doubles (UCCSD) method. We benchmark the method on the H2 molecule in a strong magnetic field and then calculate UCCSD energies for the H4 molecule as a function of both geometry and field angle. We show that while standard CCSD can yield generally complex energies that are not an upper-bound to the true energy, UCCSD always results in variational and real-valued energies. We also show that the imaginary components of the CCSD energy are largest in the strongly correlated region. Last, the UCCSD calculations capture a large percentage of the correlation energy.
Collapse
Affiliation(s)
- Tanner Culpitt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, USA
| | - Erik I Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | | |
Collapse
|
34
|
Hasecke L, Mata RA. Nuclear Quantum Effects Made Accessible: Local Density Fitting in Multicomponent Methods. J Chem Theory Comput 2023; 19:8223-8233. [PMID: 37920900 PMCID: PMC10687858 DOI: 10.1021/acs.jctc.3c01055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The simulation of nuclear quantum effects (NQEs) is crucial for an accurate description of systems and processes involving light nuclei, such as hydrogen atoms. Within the last years, the importance of those effects has been highlighted for a vast range of systems with tremendous implications in chemistry, biology, physics, and materials sciences. However, while electronic structure theory methods have become routine tools for quantum chemical investigations, there is still a lack of approaches to address NQEs that are computationally accessible and straightforward to use. To address this, we present the first combination of the nuclear-electronic orbital Hartree-Fock approach with both local and density fitting approximations (LDF-NEO-HF). This results in a low-order scaling approach that enables the inclusion of NQEs for large systems within a fraction of a day and for small to medium size systems in minutes. Moreover, we demonstrate the qualitative accuracy and robustness of our approach to retrieve NQEs for three real-use cases motivated by chemical, biological, and materials science applications.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Schrader T, Khanifaev J, Perlt E. Koopmans' theorem for acidic protons. Chem Commun (Camb) 2023; 59:13839-13842. [PMID: 37921279 DOI: 10.1039/d3cc04304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The famous Brønsted acidity, which is relevant in many areas of experimental and synthetic chemistry, but also in biochemistry and other areas, is investigated from a new perspective. Nuclear electronic orbital methods, which explicitly account for the quantum character of selected protons, are applied. The resulting orbital energies of the proton wavefunction are interpreted and related to enthalpies of deprotonation and acid strength in analogy to the Koopmans' theorem for electrons. For a set of organic acids, we observe a correlation which indicates the validity of such a NEO-Koopmans' approach and opens up new opportunities for the computational investigation of more complex acidic systems.
Collapse
Affiliation(s)
- Tim Schrader
- Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany.
| | | | - Eva Perlt
- Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany.
| |
Collapse
|
36
|
Lambros E, Link B, Chow M, Lipparini F, Hammes-Schiffer S, Li X. Assessing Implicit and Explicit Polarizable Solvation Models for Nuclear-Electronic Orbital Systems: Quantum Proton Polarization and Solvation Energetics. J Phys Chem A 2023; 127:9322-9333. [PMID: 37889479 DOI: 10.1021/acs.jpca.3c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Accurate simulations of many chemical processes require the inclusion of both nuclear quantum effects and a solvent environment. The nuclear-electronic orbital (NEO) approach, which treats electrons and select nuclei quantum mechanically on the same level, combined with a polarizable continuum model (PCM) for the solvent environment, addresses this challenge in a computationally practical manner. In this work, the NEO-PCM approach is extended beyond the IEF-PCM (integral equation formalism PCM) and C-PCM (conductor PCM) approaches to the SS(V)PE (surface and simulation of volume polarization for electrostatics) and ddCOSMO (domain decomposed conductor-like screening model) approaches. IEF-PCM, SS(V)PE, C-PCM, and ddCOSMO all exhibit similar solvation energies as well as comparable nuclear polarization within the NEO framework. The calculations show that the nuclear density does not leak out of the molecular cavity because it is much more localized than the electronic density. Finally, the polarization of quantized protons is analyzed in both continuum solvent and explicit solvent environments described by the polarizable MB-pol model, illustrating the impact of specific hydrogen-bonding interactions captured only by explicit solvation. These calculations highlight the relationship among solvation formalism, nuclear polarization, and energetics.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin Link
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mathew Chow
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | | | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
37
|
Goli M, Bressanini D, Shahbazian S. On the nature of the two-positron bond: evidence for a novel bond type. Phys Chem Chem Phys 2023; 25:29531-29547. [PMID: 37905569 DOI: 10.1039/d3cp03003b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The nature of the newly proposed two-positron bond in (PsH)2, which is composed of two protons, four electrons and two positrons, is considered in this contribution. The study is done at the multi-component-Hartree-Fock (MC-HF) and the Diffusion Monte Carlo (DMC) levels of theory by comparing ab initio data, analyzing the spatial structure of the DMC wavefunction, and applying the multi-component quantum theory of atoms in molecules and the two-component interacting quantum atoms energy partitioning schemes to the MC-HF wavefunction. The analysis demonstrates that (PsH)2 to a good approximation may be conceived of as two slightly perturbed PsH atoms, bonded through a two-positron bond. In contrast to the usual two-electron bonds, the positron exchange phenomenon is quite marginal in the considered two-positron bond. The dominant stabilizing mechanism of bonding is a novel type of classical electrostatic interaction between the positrons, which are mainly localized between nuclei, and the surrounding electrons. To emphasize its uniqueness, this mechanism of bonding is proposed to be called gluonic which has also been previously identified as the main driving mechanism behind formation of the one-positron bond in [H-,e+,H-]. We conclude that the studied two-positron bond should not be classified as a covalent bond and it must be seen as a brand-new type of bond, foreign to the electronic bonding modes discovered so far in the purely electronic systems.
Collapse
Affiliation(s)
- Mohammad Goli
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
| | - Dario Bressanini
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como, Italy.
| | - Shant Shahbazian
- Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran.
| |
Collapse
|
38
|
Chow M, Li TE, Hammes-Schiffer S. Nuclear-Electronic Orbital Quantum Mechanical/Molecular Mechanical Real-Time Dynamics. J Phys Chem Lett 2023; 14:9556-9562. [PMID: 37857272 PMCID: PMC11401051 DOI: 10.1021/acs.jpclett.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Simulating the nuclear-electronic quantum dynamics of large-scale molecular systems in the condensed phase is key for studying biologically and chemically important processes such as proton transfer and proton-coupled electron transfer reactions. Herein, the real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) approach is combined with a hybrid quantum mechanical/molecular mechanical (QM/MM) strategy to enable the accurate description of coupled nuclear-electronic quantum dynamics in the presence of heterogeneous environments such as solvent or proteins. The densities of the electrons and quantum protons are propagated in real time, while the other nuclei are propagated classically on the instantaneous electron-proton vibronic surface. This approach is applied to phenol bound to lysozyme, intramolecular proton transfer in malonaldehyde, and nonequilibrium excited-state intramolecular proton transfer in o-hydroxybenzaldehyde. These examples illustrate that the RT-NEO-TDDFT framework, coupled with an atomistic representation of the environment, allows the simulation of condensed-phase systems that exhibit significant nuclear quantum effects.
Collapse
Affiliation(s)
- Mathew Chow
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
39
|
Feldmann R, Baiardi A, Reiher M. Symmetry-Projected Nuclear-Electronic Hartree-Fock: Eliminating Rotational Energy Contamination. J Phys Chem A 2023; 127:8943-8954. [PMID: 37831620 PMCID: PMC10614303 DOI: 10.1021/acs.jpca.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Indexed: 10/15/2023]
Abstract
We present a symmetry projection technique for enforcing rotational and parity symmetries in nuclear-electronic Hartree-Fock wave functions, which treat electrons and nuclei on equal footing. The molecular Hamiltonian obeys rotational and parity inversion symmetries, which are, however, broken by expanding in Gaussian basis sets that are fixed in space. We generate a trial wave function with the correct symmetry properties by projecting the wave function onto representations of the three-dimensional rotation group, i.e., the special orthogonal group in three dimensions SO(3). As a consequence, the wave function becomes an eigenfunction of the angular momentum operator which (i) eliminates the contamination of the ground-state wave function by highly excited rotational states arising from the broken rotational symmetry and (ii) enables the targeting of specific rotational states of the molecule. We demonstrate the efficiency of the symmetry projection technique by calculating the energies of the low-lying rotational states of the H2 and H3+ molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Markus Reiher
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
40
|
Di Felice R, Mayes ML, Richard RM, Williams-Young DB, Chan GKL, de Jong WA, Govind N, Head-Gordon M, Hermes MR, Kowalski K, Li X, Lischka H, Mueller KT, Mutlu E, Niklasson AMN, Pederson MR, Peng B, Shepard R, Valeev EF, van Schilfgaarde M, Vlaisavljevich B, Windus TL, Xantheas SS, Zhang X, Zimmerman PM. A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput 2023; 19:7056-7076. [PMID: 37769271 PMCID: PMC10601486 DOI: 10.1021/acs.jctc.3c00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/30/2023]
Abstract
The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.
Collapse
Affiliation(s)
- Rosa Di Felice
- Departments
of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- CNR-NANO
Modena, Modena 41125, Italy
| | - Maricris L. Mayes
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | | | | | - Garnet Kin-Lic Chan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Wibe A. de Jong
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Niranjan Govind
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Martin Head-Gordon
- Pitzer Center
for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Karol Kowalski
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Karl T. Mueller
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Erdal Mutlu
- Advanced
Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Bo Peng
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Edward F. Valeev
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Theresa L. Windus
- Department
of Chemistry, Iowa State University and
Ames Laboratory, Ames, Iowa 50011, United States
| | - Sotiris S. Xantheas
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced
Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xing Zhang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Paul M. Zimmerman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
41
|
Stocker S, Jung H, Csányi G, Goldsmith CF, Reuter K, Margraf JT. Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration. J Chem Theory Comput 2023; 19:6796-6804. [PMID: 37747812 PMCID: PMC10569033 DOI: 10.1021/acs.jctc.3c00541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 09/27/2023]
Abstract
Predicting the rate constants of elementary reaction steps is key for the computational modeling of catalytic processes. Within transition state theory (TST), this requires an accurate estimation of the corresponding free energy barriers. While sophisticated methods for estimating free energy differences exist, these typically require extensive (biased) molecular dynamics simulations that are computationally prohibitive with the first-principles electronic structure methods that are typically used in catalysis research. In this contribution, we show that machine-learning (ML) interatomic potentials can be trained in an automated iterative workflow to perform such free energy calculations at a much reduced computational cost as compared to a direct density functional theory (DFT) based evaluation. For the decomposition of CHO on Rh(111), we find that thermal effects are substantial and lead to a decrease in the free energy barrier, which can be vanishingly small, depending on the DFT functional used. This is in stark contrast to previously reported estimates based on a harmonic TST approximation, which predicted an increase in the barrier at elevated temperatures. Since CHO is the reactant of the putative rate limiting reaction step in syngas conversion on Rh(111) and essential for the selectivity toward oxygenates containing multiple carbon atoms (C2+ oxygenates), our results call into question the reported mechanism established by microkinetic models.
Collapse
Affiliation(s)
- Sina Stocker
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Hyunwook Jung
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gábor Csányi
- Engineering
Laboratory, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - C. Franklin Goldsmith
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Karsten Reuter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Johannes T. Margraf
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
42
|
Liu A, Zhang T, Hammes-Schiffer S, Li X. Multicomponent Cholesky Decomposition: Application to Nuclear-Electronic Orbital Theory. J Chem Theory Comput 2023; 19:6255-6262. [PMID: 37699735 DOI: 10.1021/acs.jctc.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The Cholesky decomposition technique is commonly used to reduce the memory requirement for storing two-particle repulsion integrals in quantum chemistry calculations that use atomic orbital bases. However, when quantum methods use multicomponent bases, such as nuclear-electronic orbitals, additional challenges are introduced due to asymmetric two-particle integrals. This work proposes several multicomponent Cholesky decomposition methods for calculations using nuclear-electronic orbital density functional theory. To analyze the errors in different Cholesky decomposition components, benchmark calculations using water clusters are carried out. The largest benchmark calculation is a water cluster (H2O)27 where all 54 protons are treated quantum mechanically. This study provides energetic and complexity analyses to demonstrate the accuracy and performance of the proposed multicomponent Cholesky decomposition method.
Collapse
Affiliation(s)
- Aodong Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
43
|
Pavošević F, Tavernelli I, Rubio A. Spin-Flip Unitary Coupled Cluster Method: Toward Accurate Description of Strong Electron Correlation on Quantum Computers. J Phys Chem Lett 2023; 14:7876-7882. [PMID: 37639229 DOI: 10.1021/acs.jpclett.3c01935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Quantum computers have emerged as a promising platform to simulate strong electron correlation that is crucial to catalysis and photochemistry. However, owing to the choice of a trial wave function employed in the variational quantum eigensolver (VQE) algorithm, accurate simulation is restricted to certain classes of correlated phenomena. Herein, we combine the spin-flip (SF) formalism with the unitary coupled cluster with singles and doubles (UCCSD) method via the quantum equation-of-motion (qEOM) approach to allow for an efficient simulation of a large family of strongly correlated problems. We show that the developed qEOM-SF-UCCSD/VQE method outperforms its UCCSD/VQE counterpart for simulation of the cis-trans isomerization of ethylene, and the automerization of cyclobutadiene and the predicted qEOM-SF-UCCSD/VQE barrier heights are in a good agreement with the experimentally determined values. The developments presented herein will further stimulate the investigation of this approach for simulations of other types of correlated/entangled phenomena on quantum computers.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Ave., New York, New York 10010, United States
| | | | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Ave., New York, New York 10010, United States
- Center for Free-Electron Laser Science and Department of Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
44
|
Li TE, Hammes-Schiffer S. Nuclear-Electronic Orbital Quantum Dynamics of Plasmon-Driven H 2 Photodissociation. J Am Chem Soc 2023; 145:18210-18214. [PMID: 37555733 DOI: 10.1021/jacs.3c04927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Leveraging localized surface plasmon resonances of metal nanoparticles to trigger chemical reactions is a promising approach for heterogeneous catalysis. First-principles modeling of such processes is challenging due to the large number of electrons and electronic excited states as well as the significance of nuclear quantum effects when hydrogen is involved. Herein, the nonadiabatic nuclear-electronic quantum dynamics of plasmon-induced H2 photodissociation near an Al13- cluster is simulated with real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT). This approach propagates the nonequilibrium quantum dynamics of both electrons and protons. The plasmonic oscillations are shown to inject hot electrons into the antibonding orbital of H2, thereby inducing H2 dissociation. The quantum mechanical treatment of the hydrogen nuclei leads to faster H2 photodissociation and slightly larger isotope effects. Analysis of the nonequilibrium electronic density suggests that these findings stem from enhanced excited-state electronic coupling between the plasmonic mode and the H2 antibonding orbital due to proton delocalization or zero-point energy effects. Given the low computational overhead for including nuclear quantum effects with the RT-NEO-TDDFT approach, this work paves the way for simulating nonadiabatic nuclear-electronic quantum dynamics in other plasmonic systems.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
45
|
Kovyrshin A, Skogh M, Tornberg L, Broo A, Mensa S, Sahin E, Symons BCB, Crain J, Tavernelli I. Nonadiabatic Nuclear-Electron Dynamics: A Quantum Computing Approach. J Phys Chem Lett 2023; 14:7065-7072. [PMID: 37527463 DOI: 10.1021/acs.jpclett.3c01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Coupled quantum electron-nuclear dynamics is often associated with the Born-Huang expansion of the molecular wave function and the appearance of nonadiabatic effects as a perturbation. On the other hand, native multicomponent representations of electrons and nuclei also exist, which do not rely on any a priori approximation. However, their implementation is hampered by prohibitive scaling. Consequently, quantum computers offer a unique opportunity for extending their use to larger systems. Here, we propose a quantum algorithm for simulating the time-evolution of molecular systems and apply it to proton transfer dynamics in malonaldehyde, described as a rigid scaffold. The proposed quantum algorithm can be easily generalized to include the explicit dynamics of the classically described molecular scaffold. We show how entanglement between electronic and nuclear degrees of freedom can persist over long times if electrons do not follow the nuclear displacement adiabatically. The proposed quantum algorithm may become a valid candidate for the study of such phenomena when sufficiently powerful quantum computers become available.
Collapse
Affiliation(s)
- Arseny Kovyrshin
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Mårten Skogh
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lars Tornberg
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Anders Broo
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, Molndal SE-431 83, Sweden
| | - Stefano Mensa
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Emre Sahin
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Benjamin C B Symons
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Jason Crain
- IBM Research Europe, Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Ivano Tavernelli
- IBM Quantum, IBM Research Europe-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
46
|
Xu X. Constrained Nuclear-Electronic Orbital Density Functional Theory with a Dielectric Continuum Solvent Model. J Phys Chem A 2023. [PMID: 37470267 DOI: 10.1021/acs.jpca.3c02507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Solvent effects are crucial for simulating chemical and biological processes in solutions. The continuum solvation model is widely used for incorporating solvent effects with different levels of theoretical descriptions of solutes. For solutes and solutions containing hydrogen atoms, nuclear quantum effects can also be nonnegligible for reliable simulations. In this work, we couple our recently developed constrained nuclear-electronic orbital density functional theory with a dielectric continuum solvation model to cover nuclear quantum effects and solvent effects simultaneously. This approach is applied to the formate ion, where an anomalous solvatochromic shift in C-H stretch frequency was reported in experiments. By using this new approach to account for nuclear quantum effects and solvent effects, we show that the vibrational frequency of the C-H stretch and the solvatochromic shift are accurately described.
Collapse
Affiliation(s)
- Xi Xu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
47
|
Dickinson JA, Yu Q, Hammes-Schiffer S. Generalized Nuclear-Electronic Orbital Multistate Density Functional Theory for Multiple Proton Transfer Processes. J Phys Chem Lett 2023:6170-6178. [PMID: 37379485 DOI: 10.1021/acs.jpclett.3c01422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Proton transfer and hydrogen tunneling play pivotal roles in many chemical and biological processes. The nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) approach was developed to describe hydrogen tunneling systems within the multicomponent NEO framework, where the transferring proton is quantized and treated with molecular orbital techniques on the same level as the electrons. Herein, the NEO-MSDFT framework is generalized to an arbitrary number of quantum protons to allow applications to systems involving the transfer and tunneling of multiple protons. The generalized NEO-MSDFT approach is shown to produce delocalized, bilobal proton densities and accurate tunneling splittings for fixed geometries of the formic acid dimer and asymmetric substituted variants, as well as the porphycene molecule. Investigation of a protonated water chain highlights the applicability of this approach to proton relay systems. This work provides the foundation for nuclear-electronic quantum dynamics simulations of a wide range of multiple proton transfer processes.
Collapse
Affiliation(s)
- Joseph A Dickinson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
48
|
Chow M, Lambros E, Li X, Hammes-Schiffer S. Nuclear-Electronic Orbital QM/MM Approach: Geometry Optimizations and Molecular Dynamics. J Chem Theory Comput 2023. [PMID: 37329317 DOI: 10.1021/acs.jctc.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods allow simulations of chemical reactions in atomistic solvent and heterogeneous environments such as proteins. Herein, the nuclear-electronic orbital (NEO) QM/MM approach is introduced to enable the quantization of specified nuclei, typically protons, in the QM region using a method such as NEO-density functional theory (NEO-DFT). This approach includes proton delocalization, polarization, anharmonicity, and zero-point energy in geometry optimizations and dynamics. Expressions for the energies and analytical gradients associated with the NEO-QM/MM method, as well as the previously developed polarizable continuum model (NEO-PCM), are provided. Geometry optimizations of small organic molecules hydrogen bonded to water in either dielectric continuum solvent or explicit atomistic solvent illustrate that aqueous solvation can strengthen hydrogen-bonding interactions for the systems studied, as indicated by shorter intermolecular distances at the hydrogen-bond interface. We then performed a real-time direct dynamics simulation of a phenol molecule in explicit water using the NEO-QM/MM method. These developments and initial examples provide the foundation for future studies of nuclear-electronic quantum dynamics in complex chemical and biological environments.
Collapse
Affiliation(s)
- Mathew Chow
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eleftherios Lambros
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | |
Collapse
|
49
|
Pavošević F, Smith RL, Rubio A. Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations. Nat Commun 2023; 14:2766. [PMID: 37179341 PMCID: PMC10183045 DOI: 10.1038/s41467-023-38474-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Achieving control over chemical reaction's rate and stereoselectivity realizes one of the Holy Grails in chemistry that can revolutionize chemical and pharmaceutical industries. Strong light-matter interaction in optical or nanoplasmonic cavities might provide the knob to reach such control. In this work, we demonstrate the catalytic and selectivity control of an optical cavity for two selected Diels-Alder cycloaddition reactions using the quantum electrodynamics coupled cluster (QED-CC) method. Herein, we find that by changing the molecular orientation with respect to the polarization of the cavity mode the reactions can be significantly inhibited or selectively enhanced to produce major endo or exo products on demand. This work highlights the potential of utilizing quantum vacuum fluctuations of an optical cavity to modulate the rate of Diels-Alder cycloaddition reactions and to achieve stereoselectivity in a practical and non-intrusive way. We expect that the present findings will be applicable to a larger set of relevant reactions, including the click chemical reactions.
Collapse
Affiliation(s)
- Fabijan Pavošević
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010, NY, USA.
| | - Robert L Smith
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010, NY, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Angel Rubio
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Ave., New York, 10010, NY, USA.
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761, Hamburg, Germany.
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco (UPV/EHU), Av. Tolosa 72, 20018, San Sebastian, Spain.
| |
Collapse
|
50
|
Tully JC. Ehrenfest dynamics with quantum mechanical nuclei. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|