1
|
Li Q, Zhang X, Xiong Z, Liao Q, Si M, Yang Z, Yang W. Insights into biostimulation-enhanced microbial detoxification of chromium ore processing residue-contaminated soil: The critical role of Cr(VI) key host-phase transformation and soil microbiota shifts. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137736. [PMID: 40022923 DOI: 10.1016/j.jhazmat.2025.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The continuous and slow release of Cr(VI) from chromium ore processing residue contaminated soil (COPR-soil) poses a substantial threat to soil and groundwater. Despite microbial reduction is considered as an effective approach for the remediation of Cr(VI)-contaminated soil, the efficiency and rate of Cr(VI) reduction in COPR-soil, especially Cr(VI) embedded in minerals (e.g., vaterite, Ca/Al-Cr layered double hydroxide (Ca/Al-Cr LDH)) remain low. Here, a biostimulation-enhanced microbial detoxification strategy was developed, utilizing the strong electron transfer properties of FeSx. The removal efficiency of Cr(VI) from COPR-soil reached 99.9 %, with a 9-fold increase in the reduction rate of dissolved Cr(VI) compared to microbial remediation. FeSx semiconductor nanoparticles adhered tightly to the surface of the electroactive bacterium Pannonibacter phragmitetus BB (BB), facilitating mineral-microbial interactions that increased protein concentration by 35.8 % and Cr(VI) tolerance by 23.0 %. Biostimulation with FeSx significantly enhanced the biochemical dissolution capacity and electron shuttle potential of BB, accelerating the transformation of Cr(VI) host-phases. Vaterite was completely converted to calcite with a 22 % increase in transformation degree, while the interlayer nanoconfined Ca-Cr coordination in Ca/Al-Cr LDH shifted to a more accessible outer nonconfined structure. This transformation reduced the Cr(VI) binding capacity by 68.6 % and 79.4 %, respectively, effectively releasing Cr(VI) from mineral. Soluble Fe(III) emerged as a critical electron shuttle, enabling indirect electron transfer from BB to Cr(VI) via the Fe(III)/Fe(II) redox cycle. Additionally, biostimulation enhanced soil fertility and stability, fostering microbial consortia with improved resistance to environmental stresses through Cr(VI) efflux and intracellular translocation of Fe-Fe carrier complexes. This study provides a promising strategy to promote effective microbial remediation of COPR-soil.
Collapse
Affiliation(s)
- Qi Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zixuan Xiong
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
2
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Zheng Z, Yang Y, Wang M, Pan X, Yao M. Ball milling of mackinawite and oxalic acid to fabricate an efficient and stable reductive material for remediation of Cr(Ⅵ)-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124214. [PMID: 39848187 DOI: 10.1016/j.jenvman.2025.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Compared with zero-valent iron, iron sulfide has more diverse reactive species and higher reductivity, but it is still prone to be gradually deactivated due to various passivation factors. In this study, a novel reductive material (BMMW@OA) was prepared by ball milling of mackinawite (MW) as raw material and oxalic acid (OA) as modifier, so as to simultaneously improve its reductivity and stability by continuous releasing reductive species and maintaining freshness of the material surface. The BMMW@OA (w/w of MW/OA = 4/1) effectively removed Cr(Ⅵ) from water with wide pH adaptability. Compared to the BMMW obtained by direct ball milling of MW, BMMW@OA shows good resistance to air exposure, alkaline environment and scale-forming ions. The Freundlich model can accurately describes the Cr(Ⅵ) removal capacity of BMMW@OA. BMMW@OA continuously releases Fe2⁺ and S2⁻ into aqueous solution, thus maintaining the freshness and reactivity of the material surface. The homogeneous reduction by dissolved Fe2⁺ and the heterogeneous reduction by Fe⁰/Fe2⁺ on the surface of BMMW@OA are two primary mechanisms for the efficient removal of Cr(Ⅵ). Adding 2% BMMW@OA reduced the Cr(Ⅵ) content in soil from 989.826 mg/kg to 2.034 mg/kg within 2 h. The horizontal vibration, toxicity characteristic, and synthetic precipitation leaching procedure tests showed that the Cr(Ⅵ) concentration in the soil leachate was as low as 0.005-0.020 mg/L and remained stable in 30 d. This study developed a green and economic viable material for remediation of Cr(Ⅵ)-contaminated soil with high efficiency and stability.
Collapse
Affiliation(s)
- Zhiwei Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yifan Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou, 213164, PR China.
| | - Xinxing Pan
- Jiangsu Longhuan Environmental Technology Co., Ltd, Changzhou 213125, PR China
| | - Meng Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| |
Collapse
|
4
|
Zhang Y, Li F, Wang X, Zhao C, Zhang Y, Wang C, Li Y, Zhao X, Xu C. Trade-off between sulfidated zero-valent iron reactivity and air stability: Regulation of iron sulfides by ammonium dihydrogen phosphate. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135274. [PMID: 39053067 DOI: 10.1016/j.jhazmat.2024.135274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The reactivity and stability of zero-valent iron (ZVI) and sulfidated zero-valent iron (S-ZVI) are inherently contradictory. Iron sulfides (FeSX) on the S-ZVI surface play multiple roles, including electrostatic adsorption and catalyzing reduction. We proposed to balance the reactivity and air stability of S-ZVI by regulating FeSX. Benefiting from the superior coordination and accelerate electron transport capabilities of phosphate, herein, eco-friendly ammonium dihydrogen phosphate (ADP) was employed to synthesize N, P, and S-incorporated ZVI (NPS-ZVI) and regulate the FeSX. Raman, FTIR, XPS, and density functional theory (DFT) calculations were combined to reveal that HPO42- acts as the main P species on the Fe surface. The superior reactivity of NPS-ZVI was quantified by kobs, kSA, and kM of Cr(VI), which were 210.77, 27.44, and 211.17-fold than ZVI, respectively. NPS-ZVI demonstrated excellent reusability, with no risk of secondary pollution. Critically, NPS-ZVI could effectively maintain FeSX stability under the combination of diffusion limitation and surface protection mechanisms of ADP. The superior reactivity of NPS-ZVI was attributed to the fact that ADP maintains FeSX stability and accelerates electron transport. This study provides a novel strategy in balancing the reactivity and air stability of S-ZVI and offers theoretical support for material modification.
Collapse
Affiliation(s)
- Yanshi Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chengxuan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiqiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanlu Li
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xian Zhao
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Yuan Z, Peng A, Chu Z, Zhang X, Huang H, Mi Y, Xia D, Wu X, Ye Z, Tao Y, Yan X. Sustainable remediation of Cr(VI)-contaminated soil by soil washing and subsequent recovery of washing agents using biochar supported nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171107. [PMID: 38387560 DOI: 10.1016/j.scitotenv.2024.171107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions. The nZVI-BC exhibited superior properties for Cr(VI) and Cr(total) removal from spent effluent, allowing effective recovery of the washing agents. The elimination mechanism of Cr(total) by nZVI-BC involved the coordinated actions of electrostatic adsorption, reduction, and co-precipitation. The contributions to Cr(VI) reduction by Fe0, surface-bound Fe(II), and soluble Fe(II) were 0.6 %, 39.8 %, and 59.6 %, respectively. Meanwhile, CA favored the activity of surface-bound Fe(II) and Fe0 in nZVI-BC, enhancing the production of soluble Fe(II) to strengthen Cr(VI) removal. Finally, the recovered washing agent was proven to be reused three times. This study showcases that the combined soil washing using biodegradable chelant CA and effluent treatment by nZVI-BC could be a sustainable and promising strategy for Cr(VI)-contaminated soil remediation.
Collapse
Affiliation(s)
- Zhe Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Aifang Peng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhaopeng Chu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Xinyi Zhang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - He Huang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Yuanzhu Mi
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Dongsheng Xia
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan 430200, China
| | - Xiaogang Wu
- School of Urban Construction, Yangtze University, Jingzhou 434103, PR China
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| | - Yufang Tao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| | - Xuemin Yan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
6
|
Qu G, Wang X, Duan Z, Li F, Xu C. Decoding the divalent cation effect on sulfidation of zero-valent iron: Phase evolution and FeS x assembly. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133441. [PMID: 38215521 DOI: 10.1016/j.jhazmat.2024.133441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
The decontamination ability of sulfidated zero-valent iron (S-ZVI) can be enhanced by the effective assembly of iron sulfides (FeSx) on neglected heterogeneous surfaces by liquid-phase precipitation. However, S-ZVI preparation with the usual pickling is detrimental to orderly interfacial assembly and leads to an imbalance between electron transfer optimization and electron storage. In this work, S-ZVI was prepared in solutions containing trace divalent cation, and it removed Cr(VI) up to 323.25 times higher than ZVI. This result is achieved by surface sites protonation of divalent cations regulating the phase evolution on the ZVI surface and inducing FeSx chemical assembly. Regulation of divalent cation and S(-II) content further promotes FeSx targeted assembly and reduces electron storage consumption as much as possible. The barrier for FeSx assembly is found to lie at the ZVI interface rather than in the deposition between FeSx. Chemical assembly at heterogeneous interfaces is a prerequisite for the ordered assembly of FeSx. In addition, S-ZVI prepared in simulated groundwater showed extensive preparation pH and universality for remediation scenarios. These findings provide new insights into the development of in-situ sulfidation mechanisms with particular implications for S-ZVI applied to soil and groundwater remediation by the regulation of heterogeneous interfacial assembly.
Collapse
Affiliation(s)
- Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhongkai Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Li Q, Zhang X, Zheng J, Qin J, Ou C, Liao Q, Si M, Yang Z, Yang W. Phase transformation of Cr(VI) host-mineral driven by citric acid-aided mechanochemical approach for advanced remediation of chromium ore processing residue-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132530. [PMID: 37716262 DOI: 10.1016/j.jhazmat.2023.132530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The slow release of Cr(VI) from chromium ore processing residue-contaminated soil (COPR-soil) poses a significant environmental and health risk, yet advanced remediation techniques are still insufficient. Here, the slow-release behavior of Cr(VI) in COPR-soil is observed and attributed to the embedded Cr(VI) in the lattice of vaterite due to the isomeric substitution of CrO42- for CO32-. A citric acid-aided mechanochemical approach with FeS2/ZVI as reductive material was developed and found to be highly effective in remediating COPR-soil. Almost all Cr(VI) in COPR-soil, including Cr(VI) embedded in the minerals, are reduced with a reduction efficiency of 99.94%. Cr(VI) reduction kinetics indicate that the Cr(VI) reduction rate constant in the presence of citric acid was 4.8 times higher compared to its absence. According to the Raman spectroscopy, X-ray diffraction (XRD), and Electron Probe X-ray Micro-Analyzer (EPMA) analysis, the reduction of Cr(VI) embedded in vaterite was mainly attributed to the citric acid-induced protonation effect. That is, under the protonation effect, the embedded Cr(VI) could be released from vaterite through its phase transformation to calcite, whose affinity to Cr(VI) is low. While the reduction of released Cr(VI) could be promoted due to the complexation of citric acid with disulfide groups on FeS2/ZVI. The results of long-term stability tests demonstrated that the remediated COPR-soil exhibited excellent long-term stability, which may also be associated with improved utilization of available carbon and electron donors by the Cr(VI) reducing bacteria (Proteobacteria)-dominated microbial community in the presence of citric acid, thereby promoting to establish a stable reducing microenvironment. Collectively, these findings will further our understanding of the reduction remediation of COPR-soil, especially in the case of Cr(VI) embedded in minerals.
Collapse
Affiliation(s)
- Qi Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Junhao Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jingxi Qin
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chunyu Ou
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
8
|
Qu G, Zhang Y, Duan Z, Li K, Xu C. Regulating the FeS x assembly pattern of sulfidated zero-valent iron: All-in-one interface modulation with activated carbon. WATER RESEARCH 2024; 248:120860. [PMID: 37984041 DOI: 10.1016/j.watres.2023.120860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/16/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Specifically designing the heterogeneous interface in sulfidated zero-valent iron (S-ZVI) has been an effective, yet usually overlooked method to improve the decontamination ability. However, the mechanism behind FeSx assembly remains elusive and the lack of modulating strategies that can essentially tune the applicability of S-ZVI further imposes difficulties in creating better-performing S-ZVI with heterogeneous interface. In this study, by introducing powdered activated carbon (PAC) during S-ZVI preparation, S-ZVI/PAC microparticles were prepared to modulate the assembly pattern of FeSx for the applicability and reactivity of the material. S-ZVI/PAC showed robust performance in Cr(VI) sequestration, with 11.16 and 1.78 fold increase in Cr(VI) reactivity compared to ZVI and S-ZVI, respectively. This was attributed to the fact that the introduced PAC could acquire FeSx to enhance the electron transfer capacity matching its adsorption threshold, thus helping to accommodate the transfer of the reduction center to PAC in S-ZVI/PAC. In optimizing the FeSx allocation between ZVI and PAC, the chemical assembly of FeSx on S-ZVI was superior to physical adsorption. Critically, we found that isolated FeSx in the prepared solution was physically adsorbed by the PAC, allowing chemically assembled FeSx on the S-ZVI. This was achieved by controlling the addition sequence of Na2S and PAC, as it effectively controlled the release rate and content of Fe(II) in the preparation solution. S-ZVI/PAC was demonstrated to be extremely effective in simulated wastewater and electrokinetics-permeable reactive barrier (EK-PRB) treatments. Introducing PAC enriches the diversity of sulfidation mechanisms and may realize the universality of the S-ZVI/PAC application scenarios. This study provides a new interface optimization strategy for S-ZVI targeted design towards environmental applications.
Collapse
Affiliation(s)
- Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhongkai Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ke Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Zhang Y, Duan Z, Jin Y, Han H, Xu C. Chemical Bond Bridging across Two Domains: Generation of Fe(II) and In Situ Formation of FeS x on Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37433023 DOI: 10.1021/acs.est.3c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Sulfidation of zerovalent iron (SZVI) can strengthen the decontamination ability by promoting the electron transfer from inner Fe0 to external pollutants by iron sulfide (FeSx). Although FeSx forms easily, the mechanism for the FeSx bonding on the ZVI surface through a liquid precipitation method is elusive. In this work, we demonstrate a key pathway for the sulfidation of ZVI, namely, the in situ formation of FeSx on ZVI surface, which leads to chemical bonding across two domains: the pristine ZVI and the newly formed FeSx phase. The two chemically bridged heterophases display superior activity in electron transportation compared to the physically coated SZVI, eventually bringing about the better performance in reducing Cr(VI) species. It is revealed that the formation of chemically bonded FeSx requires balancing the rates for the two processes of Fe(II) release and sulfidation, which can be achieved by tuning the pH and S(-II) concentration. This study elucidates a mechanism for surface generation of FeSx on ZVI, and it provides new perspectives to design high-quality SZVI for environmental applications.
Collapse
Affiliation(s)
- Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhongkai Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuhao Jin
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Dai Y, Dong Y, Duan L, Zhang B, Wang S, Zhao S. Unraveling the neglected role of elemental sulfur in chromate removal by sulfidated microscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131025. [PMID: 36801721 DOI: 10.1016/j.jhazmat.2023.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Elemental sulfur (S0), as an oxidation product of low-valent sulfur, is widely believed to inhibit the reactivity of sulfidated zero-valent iron (S-ZVI). However, this study found that the Cr(VI) removal and recyclability of S-ZVI with S0 as the dominant sulfur species were superior to those FeS or iron polysulfides (FeSx, x > 1) dominated ones. The more S0 directly mixed with ZVI, the better Cr(VI) removal obtained. This was ascribed to the formation of micro-galvanic cells, the semiconductor properties of cyclo-octasulfur S0 with sulfur atom substituted by Fe2+, and the in situ generations of highly reactive iron monosulfide (FeSaq) or polysulfides precursors (FeSx,aq). The Cr(VI) sequestration of FeSx,aq was 1.2-2 times that of FeSaq, and the reaction rate of amorphous iron sulfides (FexSy) in the removal of Cr(VI) by S-ZVI was 8- and 66-fold faster than that of crystalline FexSy and micron ZVI, respectively. The interaction of S0 with ZVI required direct contact and needed to overcome the spatial barrier caused by FexSy formation. These findings reveal the role of S0 in Cr(VI) removal by S-ZVI and guide the future development of in situ sulfidation technologies to utilize the highly reactive FexSy precursors for field remediation.
Collapse
Affiliation(s)
- Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yamin Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
11
|
Jawed A, Golder AK, Pandey LM. Synthesis of iron oxide nanoparticles mediated by Camellia sinensis var. Assamica for Cr(VI) adsorption and detoxification. BIORESOURCE TECHNOLOGY 2023; 376:128816. [PMID: 36868429 DOI: 10.1016/j.biortech.2023.128816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Environment-benign synthesis of nanoparticles (NPs) are of great importance. Plant-based polyphenols (PPs) are electron donor analytes for the synthesis of metal and metal oxide NPs. This work produced and investigated iron oxide nanoparticles (IONPs) from PPs of tea leaves of Camellia sinensis var. assamica for Cr(VI) removal. The conditions for IONPs synthesis were using RSM CCD and found to be optimum at a time of 48 min, temperature of 26 °C, and iron precursors/leaves extract ratio (v/v) of 0.36. Further, these synthesized IONPs at a dosage of 0.75 g/L, temperature of 25 °C, and pH 2 achieved a maximum of 96% Cr(VI) removal from 40 mg/L of Cr(VI) concentration. The exothermic adsorption process followed the pseudo-second-order model, and Langmuir isotherm estimated a remarkable maximum adsorption capacity (Qm) of 1272 mg g-1 of IONPs. The proposed mechanistic for Cr(VI) removal and detoxification involved adsorption and its reduction to Cr(III), followed by Cr(III)/Fe(III) co-precipitation.
Collapse
Affiliation(s)
- Aquib Jawed
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animes K Golder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
12
|
Wang X, Zhang Y, Zhang Y, Xu C. Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent. CHEMOSPHERE 2023; 313:137436. [PMID: 36462563 DOI: 10.1016/j.chemosphere.2022.137436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Leaching and chemical reduction are two commonly used methods for Cr(VI)-contaminated soil remediation. Leaching focuses more on leaching Cr(VI) out of the soil. Chemical reduction has the disadvantages of poor fluidity of reductant. Combining these two remediation methods, this study investigated the performance of Cr(VI)-contaminated soil when H2O and citric acid were used as eluant separately and sulfidated zero-valent iron (SZVI) as reductant. And based on the properties of Cr(VI) chelated with -COOH to form a complex and the characteristics of -OH anchored to FeSx, citric acid modified SZVI (Cit-SZVI) was prepared. The prepared Cit-SZVI was characterized by SEM-EDS, XPS, XRD to study its surface properties. The transformation of Cr species in soil was explored by BCR sequential extraction. The results indicated Cr(VI) removal by SZVI was significantly promoted when citric acid as eluant compared with H2O. With SZVI dosage of 2.0 wt%, 23.1 mg/L Cr(VI) was basically removed within 60 min when citric acid as eluant, while only 60% Cr(VI) was removed when H2O as eluant even after 3 h. The kobs of Cit-SZVI was 1.4 times that of SZVI when H2O as eluant. The characterization of Cit-SZVI showed that more FeSx was formed on the surface of the Cit-SZVI, and more -OH of citric acid was anchored to FeSx, leaving -COOH available to chelate Cr(VI). Compared with H2O as eluant and SZVI/Cit-SZVI as reducing agent, the removal effect of Cr(VI) was the best when citric acid as eluant and SZVI as reducing agent. BCR sequential extraction showed that Cr(VI) was effectually fixed, weak acid extractable Cr proportion decreased significantly and residual Cr proportion increased in the treated soil. The combination of leaching and chemical reduction proposed in this study can greatly enhance the Cr(VI) removal effect in soil, which is important for the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yanshi Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
13
|
Zhang J, Yu H, Xu W, Shi H, Hu X, Xu J, Lou L. Adsorption-reduction coupling mechanism and reductive species during efficient florfenicol removal by modified biochar supported sulfidized nanoscale zerovalent iron. ENVIRONMENTAL RESEARCH 2023; 216:114782. [PMID: 36395864 DOI: 10.1016/j.envres.2022.114782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sulfidized nanoscale zerovalent iron (S-nZVI) was a promising material for degrading halogenated contaminants, but the easy aggregation limits its application for in-situ groundwater remediation. Hence, S-nZVI was decorated onto modified biochar (mBC) to obtain better dispersity and reactivity with florfenicol (FF), a widely used antibiotic. Uniform dispersion of S-nZVI particles were achieved on the mBC with plentiful oxygen-containing functional groups and negative surface charge. Thus, the removal rate of FF by S-nZVI@mBC was 2.5 and 3.1 times higher than that by S-nZVI and S-nZVI@BC, respectively. Adsorption and dechlorination of FF showed synergistic effect under appropriate mBC addition (e.g., C/Fe mass ratio = 1:3, 1:1), probably due to the enrichment of FF facilitates its reduction. In contrast, the contact between FF and S-nZVI could be hindered under more mBC addition, significantly decrease the reduction rate of FF and the reduction capacity of per unit Fe0. In addition, sulfur dose altered the surface species of surface Fe and S, and removal rates of FF correlated well with surface reductive species, i.e., FeS (r = 0.90, p < 0.05) and Fe0 (r = 0.98, p < 0.01). These mechanistic insights indicate the importance of rational design for biochar supported S-nZVI, which can lead to more efficient FF degradation.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Hao Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Xiaohong Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Jiang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, China.
| |
Collapse
|
14
|
Acetate improves catalytic performance for rapid removal of Cr(VI) by sodium borohydride in aqueous environments. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Sun P, Wang Z, An S, Zhao J, Yan Y, Zhang D, Wu Z, Shen B, Lyu H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115211. [PMID: 35561491 DOI: 10.1016/j.jenvman.2022.115211] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Over the past decade, biochar-supported nZVI composites (nZVI/biochar) have been developed and applied to treat various pollutants due to their excellent physical and chemical properties, especially in the field of chromium (VI) removal. This paper reviewed the factors influencing the preparation and experiments of nZVI/biochar composites, optimization methods, column experimental studies and the mechanism of Cr(VI) removal. The results showed that the difference in raw materials and preparation temperature led to the difference in functional groups and electron transfer capabilities of nZVI/biochar materials. In the experimental process, pH and test temperature can affect the surface chemical properties of materials and involve the electron transfer efficiency. Elemental doping and microbial coupling can effectively improve the performance of nZVI/biochar composites. In conclusion, biochar can stabilize nZVI and enhance electron transfer in nZVI/biochar materials, enabling the composite materials to remove Cr(VI) efficiently. The study of column experiments provides a theoretical basis for applying nZVI/biochar composites in engineering. Finally, the future work prospects of nZVI/biochar composites for heavy metal removal are introduced, and the main challenges and further research directions are proposed.
Collapse
Affiliation(s)
- Peng Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengwei An
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jian Zhao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yichen Yan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Daijie Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
16
|
Duan L, Dai Y, Shi L, Wei Y, Xiu Q, Sun S, Zhang X, Zhao S. Humic acid addition sequence and concentration affect sulfur incorporation, electron transfer, and reactivity of sulfidated nanoscale zero-valent iron. CHEMOSPHERE 2022; 294:133826. [PMID: 35114258 DOI: 10.1016/j.chemosphere.2022.133826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is extensively used in field remediation and can be sulfidated in situ with sulfide or sulfate-reducing bacteria to enhance its performance. Humic acid (HA) widely exists in nature, but its influence on both the sulfidation process of nZVI and the reactivity of sulfidated nZVI (S-nZVI) has been rarely reported. Herein, we first synthesized S-nZVI by one-pot (S1-nZVI) and two-step (S2-nZVI) approaches with adding HA before (pre-added) or after (post-added) FexSy generation, respectively. Then, we evaluated their reactivity on Cr(VI) removal and analyzed the effects of HA on sulfidation regarding electron transfer resistance, sulfur incorporation, and structure characterization. Pre-added HA inhibited the Cr(VI) removal by S1-nZVI more seriously than by S2-nZVI and nZVI, and stronger inhibition was observed at higher HA concentrations. The inhibitory effect can be attributed mainly to the adsorbed HA increasing the impedance of the material and the free HA impeding the generation and deposition of FexSy. Different from the inhibition of pre-added HA at all studied HA concentrations, the Cr(VI) removal by both S1-nZVI and S2-nZVI with post-added HA was enhanced at specific HA concentrations. The reason for this phenomenon was that the dispersion and specific surface area of S-nZVI were improved, thereby offsetting the inhibition from both impedance increase and sulfur loss. This work suggests that the presence of HA can affect the sulfidation process and the property of S-nZVI, which is conducive to evaluating the performance of S-nZVI produced both by injection and in situ in the subsurface contaminant remediation.
Collapse
Affiliation(s)
- Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Lijiao Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuwei Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Qi Xiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaodong Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
17
|
Ma B, Yao J, Knudsen TŠ, Chen Z, Liu B, Zhao C, Zhu X. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126698. [PMID: 34315632 DOI: 10.1016/j.jhazmat.2021.126698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The heavy metal and organic pollution caused by mining activities keep attracting attention, thus an economic and efficient treatment for combined pollution is pressing. In this study, the simultaneous removal performance of typical organic flotation reagent 8-hydroxyquinoline (8-HQ) and Cr(VI) was investigated via heterogeneous Fenton process induced by a novel polydopamine (PDA) functionalized attapulgite supported nano sized zero-valent iron (nZVI) composite (PDA/ATP-nZVI). Batch experiments showed that PDA/ATP-nZVI had better catalytic reactivity and reduction ability than both ATP-nZVI and nZVI. Under acidic condition, 96.0% of 8-HQ was degraded accompanied with the 42.5% of total organic carbon (TOC) decrease, while 95.8% of Cr(VI) removal efficiency was accomplished by PDA/ATP-nZVI. PDA not only served as redox mediator in expediting electron transfer, but also acted as electron donor that accelerated transformation from Fe(III) to both dissolved Fe(II) and surface Fe(II), which resulted in the increased degradation of 8-HQ. The synergic removal behavior between 8-HQ and Cr(VI) was discussed and the reaction mechanism in the persulfate (PS)-PDA/ATP-nZVI system was also explored. This study developed a highly efficient heterogeneous catalyst, and demonstrated that the PS-PDA/ATP-nZVI system had a potential for remediation of mine environment polluted by both heavy metals and organic flotation reagents.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Zhihui Chen
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
18
|
Nie X, Li G, Wang Y, Luo Y, Song L, Yang S, Wan Q. Highly efficient removal of Cr(VI) by hexapod-like pyrite nanosheet clusters. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127504. [PMID: 34678566 DOI: 10.1016/j.jhazmat.2021.127504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Pyrite nanomaterials show an excellent performance in remediating Cr(VI) contaminated wastewater. However, the high surface reactivity makes them easy to agglomerate to reduce their removal efficiency for Cr(VI). In this study, a novel hexapod-like pyrite nanosheet clusters material was successfully synthesized via a facile hydrothermal method with the assistance of fluorides. The products were pyrite microspherulites without fluoride ion. The hexapod-like pyrite nanosheet clusters had dramatically higher Cr(VI) removal efficiencies than microspherulites due to more dissolved Fe(II) and S(-II) into the suspension released for nanosheet clusters should be responsible for the enhanced removal rate of Cr(VI). The XPS analysis revealed that the rapid adsorption on the surface of pyrite nanosheet clusters followed by reduction of Cr(VI) to Cr(III) by FeS2 and subsequent precipitation of Cr(III) hydroxides/oxyhydroxides are responsible for the high removal capacity of Cr(VI). The hexapod-like pyrite nanosheet clusters material had high stability and longevity, and did not aggregate during the Cr(VI) removal process. The removal efficiency of Cr(VI) was still 100% after 5 cycles. Our study shows that the hexapod-like pyrite nanosheet clusters material could be acted as a recyclable and promising mineral material with high activity, stability, feasibility for remediating Cr(VI) contaminated environment.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Yingmei Luo
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Lei Song
- School of Chemistry and Materials Science, Guizhou Education University, 115 Gaoxin Road, Wudang District, Guiyang 550018, Guizhou, China
| | - Shuguang Yang
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| |
Collapse
|
19
|
Gao G, Zhang L, Shi Y, Yang S, Wang G, Xu H, Ding D, Chen R, Jin P, Wang XC. Mutual-activation between Zero-Valent iron and graphitic carbon for Cr(VI) Removal: Mechanism and inhibition of inherent Side-reaction. J Colloid Interface Sci 2022; 608:588-598. [PMID: 34628318 DOI: 10.1016/j.jcis.2021.09.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
The low reactivity of zero-valent iron (ZVI) usually limits its application for pollutant remediation. Therefore, a microscopic galvanic cell (mGC) with short-circuited cathode and anode was synthesized to intensify its galvanic corrosion. The prepared mGC exhibited 7.14 times higher Fe(II) release performance than ordinary nanoscale-ZVI (nZVI), rendering efficient Cr(VI) removal performance. Density functional theory (DFT) revealed mutual-activation of the cathode and anode due to close proximity, dramatically enhancing the galvanic corrosion of Fe(0) in mGC. The corrosion potential of mGC was measured as -0.77 V, which was 100 mV more negative than nZVI. The released electrons and surface-bond Fe(II) from anode in mGC was proved to be the dominant reductive species. More importantly, Cr(VI) reduction was slightly inhibited by hydroxyl radicals generated by a series of inherent side-reactions in the system, which could be well eliminated by low concentrations of 4-acetamido phenol. This study provides a promising strategy for ZVI activation, and sheds light on its environmental applications.
Collapse
Affiliation(s)
- Ge Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Lei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Yixin Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China.
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Huining Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing 100049, China.
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| |
Collapse
|
20
|
Li F, Zhang Y, Tian B, Zhou Z, Ye L, Carozza JC, Yan W, Han H, Xu C. Phase evolution of the surface iron (hydr)oxides to the iron sulfide through anion exchange during sulfidation of zero valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127486. [PMID: 34736181 DOI: 10.1016/j.jhazmat.2021.127486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The naturally-formed iron (hydr)oxides on the surface of zero valent iron (ZVI) have long been considered as passivation layer and inert phases which significantly reduce the reaction activities when they are employed in environmental remediation. Although it seems there are no direct benefits to keep these passivation layers, here, we show that such phases are necessary intermediates for the transformation to iron sulfides through an anion exchange pathway during sulfidation of ZVI. The pre-formed (hydr)oxides undergo a phase evolution upon aging and specific phases can be effectively trapped, which can be confirmed by a combination of different characterization techniques including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRPD), and X-ray absorption near edge structure (XANES) spectroscopy. Interestingly, after sulfidation, the resultant samples originated from different (hydr)oxides demonstrate different activities in the Cr(VI) sequestration. The XANES investigation of Fe K edge and Fe L2,3 edge indicates Fe remains the same after sulfidation, suggesting a non-redox, anion exchange reaction pathway for the production of iron sulfides, where O2- anions are directly replaced with S2-. Consequently, the structural characteristics of the parent (hydr)oxides are inherited by the as-formed iron sulfides, which make them behave differently because of their different structural natures.
Collapse
Affiliation(s)
- Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Boyang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zheng Zhou
- The School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Li Ye
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Haixiang Han
- The School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
21
|
Yuan Y, Wei X, Yin H, Zhu M, Luo H, Dang Z. Synergistic removal of Cr(VI) by S-nZVI and organic acids: The enhanced electron selectivity and pH-dependent promotion mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127240. [PMID: 34844358 DOI: 10.1016/j.jhazmat.2021.127240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The effects of organic acids on hexavalent chromium (Cr(VI)) removal by reduced iron-based materials have been extensively studied. Nevertheless, the promotion mechanism from the perspective of the electron transfer process is still unclear. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) and the selected organic acids, citric acid (containing both -OH and -COOH groups) and oxalic acid (containing only -COOH groups), showed significant synergistic promotion effects in Cr(VI) removal. The FeS and FeS2 on S-nZVI surface could enhance the Cr(VI) reduction as the reductive entity and electron conductor. Furthermore, even though the reactivity of FeS with Cr(VI) is higher than that with FeS2, the Cr(VI) removal efficiency by FeS2 was much higher than that by FeS with organic acids. Under neutral and alkaline conditions (pH 6.0-8.0), organic acids promoted the diffusion, adsorption and complexation of Cr(VI) on S-nZVI surface, thus enhancing the electron selectivity towards Cr(VI). However, when the solution pH changed to acidic conditions (pH 4.0), organic acids facilitated the dissolution of Fe(II) ions from S-nZVI and enhanced the electron utilization towards Cr(VI) via the fast Fe(III) reduction process. This study provided a new insight into the Cr(VI) removal, which was beneficial to understand the application boundaries of S-nZVI for Cr(VI) remediation.
Collapse
Affiliation(s)
- Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China.
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| | - Haoyu Luo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| |
Collapse
|
22
|
Ling C, Wu S, Dong T, Dong H, Wang Z, Pan Y, Han J. Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: Major radicals, the role of sulfur species, and particle size effect. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127082. [PMID: 34488104 DOI: 10.1016/j.jhazmat.2021.127082] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Sulfide-modified zero-valent iron (S-Fe0) is regarded as a promising method to enhance the catalytic activity of Fe0 for peroxymonosulfate (PMS) activation. However, the roles of sulfidation and the application of the sulfidation treatment method are worth to further investigation. In our study, the effects of the S/Fe ratio, Fe0 dosage, and initial pH on sulfadiazine (SDZ) removal were investigated. The characterization of S-Fe0 with SEM, XPS, contact angle and Tafel analysis confirmed that the formation of sulfur species on the Fe0 surface could enhance the catalytic performance of Fe0. S2- played the major role and SO32- played the minor role in accelerating the conversion of Fe3+ to Fe2+. EPR tests, radical quenching and quantitative determination experiments identified •OH as playing the major role and SO4•- also playing an important role in SDZ removal in S-Fe0/PMS system. Sulfidation produced no notable change in the role of •OH and SO4•-. A possible degradation pathway of SDZ was proposed. Effect of sulfidation on various sizes of Fe0 was also studied which demonstrated that the smaller sizes of Fe0 (< 8 µm) were more effective in the sulfidation method treatment. S-Fe0/PMS system also showed a good performance in removing antibiotics in natural fresh water.
Collapse
Affiliation(s)
- Chen Ling
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuai Wu
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tailu Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Haifan Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhengxiao Wang
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuwei Pan
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jiangang Han
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, PR China.
| |
Collapse
|
23
|
Zhong M, Li M, Tan B, Gao B, Qiu Y, Wei X, Hao H, Xia Z, Zhang Q. Investigations of Cr(VI) removal by millet bran biochar modified with inorganic compounds: Momentous role of additional lactate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148098. [PMID: 34174608 DOI: 10.1016/j.scitotenv.2021.148098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, millet bran biochars modified with inorganic compounds (H3PO4: P-BC, NaOH: Na-BC and K2CO3: K-BC) were prepared and applied for Cr(VI) removal to evaluate the effects of modification on biochars' physicochemical properties. The results showed that Cr(VI) reduction capacity complied with the order of Na-BC > BC > P-BC > K-BC, and reductive groups such as -OH and -NH2 played considerable roles in electrons donating. Based on this, lactate was added for further investigation of electrons transferring. The results displayed that Cr(VI) removal of all biochars was enhanced tremendously and modified biochars exhibited better Cr(VI) reduction. This may be due to the bridging effect of lactate, which could not only chelate with Cr(VI) via -COOH (or -OH) but also form hydrogen bonds with oxygen or nitrogen containing groups on biochars through the other groups, thus facilitating electrons transferring between biochars and Cr(VI). This work provided an insight into evaluation of the influence of inorganic compounds modification on both electrons donating capability of biochars and electrons transferring potential of biochars combined with lactate in Cr(VI) removal.
Collapse
Affiliation(s)
- Min Zhong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bin Tan
- Wuhan Branch, Chengdu JiZhun FangZhong Architectural Design, Wuhan 40061, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Yue Qiu
- Wuhan Hanyang Municipal Construction Group CO.LTD., Wuhan 430000, PR China
| | - Xiaonan Wei
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huiru Hao
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhixuan Xia
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
24
|
Fan P, Guan X, Wei G, Li L. Simply closing the reactor improves the electron efficiency of zerovalent iron toward various metal(loid)s removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1829-1836. [PMID: 33253452 DOI: 10.1002/wer.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The controlled corrosion of zerovalent iron (ZVI) is crucial for the favorable performance of ZVI toward metal(loid)s removal, and dissolved oxygen (DO) plays an important role in the process of ZVI corrosion. However, few efforts have been made to control the concentration of DO in real practice. In this study, we found that the electron efficiency and the specific removal capacity of ZVI toward the removal of four metal(loid)s were increased by 1.2-9.1 times and 1.2-3.6 times, respectively, by simply closing the reactor, while the removal kinetics of metal(loid)s was slightly influenced. The rate constants obtained under open condition were always greater than those obtained under closed condition, and the removal amounts of metal(loid)s by ZVI at the reaction equilibrium under closed condition were nearly equivalent to those under open condition. Compared with the case under open condition, the consumption-redissolution process of DO was decelerated under closed condition, and the rapid corrosion of ZVI was alleviated subsequently. Although closing the reactor is simple, it does contribute much to the favorable electron efficiency of ZVI toward metal(loid)s sequestration and can be easily adopted in real practice. © 2021 Water Environment Federation PRACTITIONER POINTS: Closing the reactor promoted the selectivity of ZVI towards four metal(loid)s removal. The consumption-redissolution process of DO and corrosion of ZVI were decelerated by closing the reactor. Metal(loid)s were reduced to lower valence by ZVI under closed condition. Effect of DO was different when ZVI was applied to remove different metal(loid)s.
Collapse
Affiliation(s)
- Peng Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, China
| | - Guangfeng Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, China
| |
Collapse
|
25
|
Wang X, Zhang Y, Wang Z, Xu C, Tratnyek PG. Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms. CHEMOSPHERE 2021; 280:130766. [PMID: 34162087 DOI: 10.1016/j.chemosphere.2021.130766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Metal(loid) oxyanions in groundwater, surface water, and wastewater can have harmful effects on human or ecological health due to their high toxicity, mobility, and lack of degradation. In recent years, the removal of metal(loid) oxyanions using zerovalent iron (ZVI) has been the subject of many studies, but the full scope of this literature has not been systematically reviewed. The main elements that form metal(loid) oxyanions under environmental conditions are Cr(VI), As(V and III), Sb(V and III), Tc(VII), Re(VII), Mo(VI), V(V), etc. The removal mechanisms of metal(loid) oxyanions by ZVI may involve redox reactions, adsorption, precipitation, and coprecipitation, usually with one of these mechanisms being the main reaction pathway and the other playing auxiliary roles. However, the removal mechanisms are coupled to the reactions involved in corrosion of Fe(0) and reaction conditions. The layer of iron oxyhydroxides that forms on ZVI during corrosion mediates the sequestration of metal(loid) oxyanions. This review summarizes most of the currently available data on mechanisms and performance (e.g., kinetics) of removal of the most widely studies metal(loid) oxyanion contaminants (Cr, As, Sb) by different types of ZVI typically used in wastewater treatment, as well as ZVI that has been sulfidated or combination with catalytic bimetals.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
26
|
Garcia AN, Zhang Y, Ghoshal S, He F, O'Carroll DM. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8464-8483. [PMID: 34170112 DOI: 10.1021/acs.est.1c01251] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario N6A 5B8, Canada
| | - Yanyan Zhang
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province China
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Feng He
- Institute of Environmental Chemistry and Pollution Control College of Environment, Zhejiang University of Technology 18 Chaowang Rd, Hangzhou, China 310014
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney New South Wales 2052, Australia
| |
Collapse
|
27
|
Liu K, Li F, Tian Q, Nie C, Ma Y, Zhu Z, Fang L, Huang Y, Liu S. A highly porous animal bone-derived char with a superiority of promoting nZVI for Cr(VI) sequestration in agricultural soils. J Environ Sci (China) 2021; 104:27-39. [PMID: 33985730 DOI: 10.1016/j.jes.2020.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Paddy soil and irrigation water are commonly contaminated with hexavalent chromium [Cr(VI)] near urban industrial areas, thereby threatening the safety of agricultural products and human health. In this study, we develop a porous and high specific area bone char (BC) to support nanoscale zero-valent iron (nZVI) and apply it to remediate Cr(VI) pollution in water and paddy soil under anaerobic conditions. The batch experiments reveal that BC/nZVI exhibits a higher removal capacity of 516.7 mg/(g•nZVI) for Cr(VI) than nZVI when normalized to the actual nZVI content, which is 2.8 times that of nZVI; moreover, the highest nZVI utilization is the nZVI loading of 15% (BC/nZVI15). The Cr(VI) removal efficiency of BC/nZVI15 decreases with increasing pH (4 - 10). Coexisting ions (phosphate and carbonate) and humic acid can inhibit the removal of Cr(VI) with BC/nZVI15. Additionally, BC exhibits a strong advantage in promoting Cr(VI) removal by nZVI compared to the widely used biochar and activated carbon. Our results demonstrate that reduction and coprecipitation are the dominant Cr(VI) removal mechanisms. Furthermore, BC/nZVI15 shows a significantly higher reduction and removal efficiency as well as a strong anti-interference ability for Cr(VI) in paddy soil, as compared to nZVI. These findings provide a new effective material for remediating Cr(VI) pollution from water and soil.
Collapse
Affiliation(s)
- Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Qingwen Tian
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; School of Food Science and Engineering, Foshan university, Foshan 528225, China
| | - Chengrong Nie
- School of Food Science and Engineering, Foshan university, Foshan 528225, China
| | - Yibing Ma
- Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, China
| | - Zhenlong Zhu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Yuanying Huang
- National Research Center for Geoanalysis, Beijing 100037, China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, China
| | - Siwen Liu
- National Research Center for Geoanalysis, Beijing 100037, China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, China
| |
Collapse
|