1
|
Wang YC, Wang S, Lv YH, Wang JY, Yang WX, Deng Y, Ju F, Wang C. Diversity, influential factor, and communication network construction of quorum sensing bacteria in global wastewater treatment plants. WATER RESEARCH 2025; 279:123437. [PMID: 40054278 DOI: 10.1016/j.watres.2025.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
Quorum sensing (QS) is widespread in the microbial world and mediates microbial relationships in communities. However, the existing knowledge is far from a full description of the complex communication-based microbial interactions in engineered ecosystems, i.e., wastewater treatment plants (WWTPs). Herein, we conducted a systematic analysis of the diversity and influential factors of the QS-related microflora through the collection of global 1186 activated sludge microbiome samples. We found that the richness of bacteria associated with the universal bacterial secondary messenger presented the highest in QS system, whereas the bacteria related to the degradation of N-Acyl-homoserine lactones occupied the main position in the quorum quenching system. The community turnover of QS microflora was found more likely to be dominated by the deterministic process, such as the dissolved oxygen and resource availability (the ratio of organic matter to microorganisms). Meanwhile, these QS microflora in turn have a profound impact on the functions of WWTPs, especially multilingual intelligencers involving various language systems, such as Nitrospira. By connecting the signal molecule synthesis and acceptance bacteria, we constructed a QS communication network, which can be a robust tool for initial investigation of signaling molecule-mediated microbial interactions. The above results were further integrated into an online access website, named Quorum Sensing Communication Network in Activated Sludge (QSCNAS) (http://www.qscnas.cn/), which allowed users to browse and capture possible QS-based interactions of target bacterium. This work contributes to the understanding of bacterial communication in WWTPs and provides a platform to help in developing potential regulation strategies.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Sen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Jia-Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Wen-Xuan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
2
|
Tang J, Li Z, Xiao X, Liu B, Huang W, Xie Q, Lan C, Luo S, Tang L. Recent advancements in antibiotics removal by bio-electrochemical systems (BESs): From mechanisms to application of emerging combined systems. WATER RESEARCH 2025; 268:122683. [PMID: 39476544 DOI: 10.1016/j.watres.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
Recent advancements in bio-electrochemical systems (BESs) for antibiotic removal are receiving great attentions due to the electro-active bacteria on the electrode that could elevate the removal efficiency. Enhanced detoxification performance of BESs compared to the traditional biological processes indicates the great potential serving as a sustainable alternative or a pre-/post-processing unit to improve the performance of biological processes. However, the successfully application of BESs to antibiotic-polluted water remediation requires a deeper discussion on their operational performance and emerging coupled systems. In order to address BESs as a practical option for antibiotic removal, we deeply analyze the detoxification mechanism of antibiotic treatment by BESs, involving BES fundamentals, extracellular electron transfer and degradation pathways via functional enzymes of microorganisms, followed by systematic evaluations of the operational conditions. Furthermore, the recently-emerged BESs combined with other techniques for practical applications has been summarized and emphasized. This review further directions the current limitations such as the potential risk of antibiotic resistance genes, etc., and prospects for the attenuation of antibiotics via BESs related techniques, promoting the development of practical application.
Collapse
Affiliation(s)
- Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Zijun Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Baicheng Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shuai Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| |
Collapse
|
3
|
Chen S, Kong Z, Qiu L, Wang H, Yan Q. Effects of different quorum sensing signal molecules on alleviation of ammonia inhibition during biomethanation. ENVIRONMENTAL RESEARCH 2025; 264:120295. [PMID: 39505134 DOI: 10.1016/j.envres.2024.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Anaerobic digestion (AD) is a promising technology for achieving both organic wastes treatment and energy recovery. However, challenges such as ammonia inhibition still remain. Quorum sensing (QS) system is relevant with the regulation of microbial community behaviors by releasing and sensing signal molecules, which could improve methane production during AD process. Therefore, the current study explored the effects of different quorum sensing signal molecules on alleviation of ammonia inhibition. The results showed that both secretion of N-butyryl-DL-homoserine lactone (C4-HSL) and N-(β-ketocaproyl)-DL-homoserine lactone (3OC6-HSL) could be inhibited by high ammonia stress while stimulation of N-hexanoyl-L-homoserine lactone (C6-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) secretion might be triggered by ammonia toxicity. Moreover, the alleviation of ammonia inhibition could be achieved by both introducing 3OC6-HSL (0.5 μM) and combination of 3OC6-HSL (0.1 μM) and biochar (4 g/L). Exogenous 3OC6-HSL could regulate microbial social behaviors and enhance the secretion of extracellular polymeric substances (EPS) to promote anaerobic digestion. In addition, the mitigation of ammonia inhibition through exogenous 3OC6-HSL and biochar were confirmed by microbial community changes (Methanobacterium, Propionicicella and Petrimonas). Critical enzymes involved in both acidification and methanogenic steps were enhanced after adding the combination of 3OC6-HSL and biochar. The combination of low levels of 3OC6-HSL and biochar could promote both direct interspecies electron transfer (DIET) process and communication between different anaerobic microorganisms to mitigate ammonia inhibition. The current study will provide primary insights for conquering ammonia inhibition during biomethanation.
Collapse
Affiliation(s)
- Siyi Chen
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liwei Qiu
- Changzhou Cheff Environmental Protection Technology Co., Ltd, Changzhou, 213164, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China
| |
Collapse
|
4
|
Wang L, Wang X, Wu H, Wang H, Lu Z. Interspecies synergistic interactions mediated by cofactor exchange enhance stress tolerance by inducing biofilm formation. mSystems 2024; 9:e0088424. [PMID: 39189769 PMCID: PMC11406921 DOI: 10.1128/msystems.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic exchange plays a crucial role in shaping microbial community interactions and functions, including the exchange of small molecules such as cofactors. Cofactors are fundamental to enzyme catalytic activities; however, the role of cofactors in microbial stress tolerance is unclear. Here, we constructed a synergistic consortium containing two strains that could efficiently mineralize di-(2-ethylhexyl) phthalate under hyperosmotic stress. Integration of transcriptomic analysis, metabolic profiling, and a genome-scale metabolic model (GEM) facilitated the discovery of the potential mechanism of microbial interactions. Multi-omics analysis revealed that the vitamin B12-dependent methionine-folate cycle could be a key pathway for enhancing the hyperosmotic stress tolerance of synergistic consortium. Further GEM simulations revealed interspecies exchange of S-adenosyl-L-methionine and riboflavin, cofactors needed for vitamin B12 biosynthesis, which was confirmed by in vitro experiments. Overall, we proposed a new mechanism of bacterial hyperosmotic stress tolerance: bacteria might promote the production of vitamin B12 to enhance biofilm formation, and the species collaborate with each other by exchanging cofactors to improve consortium hyperosmotic stress tolerance. These findings offer new insights into the role of cofactors in microbial interactions and stress tolerance and are potentially exploitable for environmental remediation. IMPORTANCE Metabolic interactions (also known as cross-feeding) are thought to be ubiquitous in microbial communities. Cross-feeding is the basis for many positive interactions (e.g., mutualism) and is a primary driver of microbial community assembly. In this study, a combination of multi-omics analysis and metabolic modeling simulation was used to reveal the metabolic interactions of a synthetic consortium under hyperosmotic stress. Interspecies cofactor exchange was found to promote biofilm formation under hyperosmotic stress. This provides a new perspective for understanding the role of metabolic interactions in microbial communities to enhance environmental adaptation, which is significant for improving the efficiency of production activities and environmental bioremediation.
Collapse
Affiliation(s)
- Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
He L, Zhu G. Regulation and application of quorum sensing on anaerobic digestion system. CHEMOSPHERE 2024; 363:142983. [PMID: 39089336 DOI: 10.1016/j.chemosphere.2024.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.
Collapse
Affiliation(s)
- Liyan He
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
6
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Zhu H, Luo Z, Zhang L, Shen Q, Yang R, Cheng W, Zhang Y, Jiang M, Guo C, Fu B, Song C, Tao P, An S, Shang W, Deng T. Manipulation of Convection Using Infrared Light Emitted from Human Hands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307020. [PMID: 38239054 DOI: 10.1002/advs.202307020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Indexed: 03/28/2024]
Abstract
Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.
Collapse
Affiliation(s)
- Hanrui Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhen Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lifu Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Weizheng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Modi Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunzhi Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shun An
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Sousa AM, Ferreira D, Rodrigues LR, Pereira MO. Aptamer-based therapy for fighting biofilm-associated infections. J Control Release 2024; 367:522-539. [PMID: 38295992 DOI: 10.1016/j.jconrel.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Biofilms are key players in the pathogenesis of most of chronic infections associated with host tissue or fluids and indwelling medical devices. These chronic infections are hard to be treated due to the increased biofilms tolerance towards antibiotics in comparison to planktonic (or free living) cells. Despite the advanced understanding of their formation and physiology, biofilms continue to be a challenge and there is no standardized therapeutic approach in clinical practice to eradicate them. Aptamers offer distinctive properties, including excellent affinity, selectivity, stability, making them valuable tools for therapeutic purposes. This review explores the flexibility and designability of aptamers as antibiofilm drugs but, importantly, as targeting tools for diverse drug and delivery systems. It highlights specific examples of application of aptamers in biofilms of diverse species according to different modes of action including inhibition of motility and adhesion, blocking of quorum sensing molecules, and dispersal of biofilm-cells to planktonic state. Moreover, it discusses the limitations and challenges that impaired an increased success of the use of aptamers on biofilm management, as well as the opportunities related to aptamers modifications that can significantly expand their applicability on the biofilm field.
Collapse
Affiliation(s)
- Ana Margarida Sousa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Débora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Lígia Raquel Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
10
|
Zhu Q, Zheng Y, Zhou X, Wang D, Yuan M, Qian D, Liang S, Yu W, Yang J, Hou H, Hu J. c-di-GMP and AHL signals-triggered chemical communication under electrical signaling disruption restores Geobacter sulfurreducens biofilm formation. ISME COMMUNICATIONS 2024; 4:ycae096. [PMID: 39071848 PMCID: PMC11283642 DOI: 10.1093/ismeco/ycae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Electrogenic biofilms, which have attracted considerable attention in simultaneous wastewater treatment and energy recovery in bioelectrochemical systems, are regulated by chemical communication and potassium channel-mediated electrical signaling. However, how these two communication pathways interact with each other has not been thoroughly investigated. This study first explored the roles of chemical communication, including intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and extracellular N-acyl-homoserine lactone (AHL)-mediated quorum sensing, in electrogenic biofilm formation through an integrated analysis of transcriptomics and metabolomics. Electrical signaling disruption inhibited the formation and electroactivity of Geobacter sulfurreducens biofilm, which was mainly ascribed to the reduction in biofilm viability and extracellular protein/polysaccharide ratio. The upregulation of expression levels of genes encoding c-di-GMP and AHL synthesis by transcriptomic analysis, and the increased secretion of N-butanoyl-L-homoserine lactone by metabolomic analysis confirmed the enhancement of chemical communication under electrical signaling disruption, thus indicating a compensatory mechanism among different signaling pathways. Furthermore, protein-protein interaction network showed the convergence of different signaling pathways, with c-di-GMP-related genes acting as central bridges. This study highlights the interaction of different signaling pathways, especially the resilience of c-di-GMP signaling to adverse external stresses, thereby laying the foundation for facilitating electrogenic biofilm formation under adverse conditions in practical applications.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Yanyan Zheng
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Xingwang Zhou
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Dunjia Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, 11 Cihu Road, Huangshi 435002, Hubei, China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei,, China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan 430074, Hubei, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| |
Collapse
|
11
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Xue YM, Wang YC, Lin YT, Jiang GY, Chen R, Qin RL, Jia XQ, Wang C. Engineering a Pseudomonas putida as living quorum quencher for biofilm formation inhibition, benzenes degradation, and environmental risk evaluation. WATER RESEARCH 2023; 246:120690. [PMID: 37804807 DOI: 10.1016/j.watres.2023.120690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Bacterial communication interruption based on quorum quenching (QQ) has been proven its potential in biofilm formation inhibition and biofouling control. However, it would be more satisfying if QQ could be combined with the efficient degradation of contaminants in environmental engineering. In this study, we engineered a biofilm of Pseudomonas putida through introducing a QQ synthetic gene, which achieved both biofilm formation inhibition and efficient degradation of benzene series in wastewater. The aiiO gene introduced into the P. putida by heat shock method was highly expressed to produce QQ enzyme to degrade AHL-based signal molecules. The addition of this engineered P. putida reduced the AHLs concentration, quorum sensing gene expression, and connections of the microbial community network in activated sludge and therefore inhibited the biofilm formation. Meanwhile, the sodium benzoate degradation assay indicated an enhanced benzene series removal ability of the engineering bacteria on activated sludge. Besides, we also demonstrated a controllable environmental risk of this engineered bacteria through monitoring its abundance and horizontal gene transfer test. Overall, the results of this study suggest an alternative strategy to solve multiple environmental problems through genetic engineering means and provide support for the application of engineered bacteria in environmental biotechnology.
Collapse
Affiliation(s)
- Yi-Mei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Rui Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ruo-Lin Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Qiang Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
13
|
Kim Y, Anburajan P, Kim H, Oh HS. Inhibiting Biofilm Formation via Simultaneous Application of Nitric Oxide and Quorum Quenching Bacteria. MEMBRANES 2023; 13:836. [PMID: 37888008 PMCID: PMC10608578 DOI: 10.3390/membranes13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum sensing (QS) signaling, while nitric oxide (NO) signaling helps to disperse biofilms. In this study, batch biofilm experiments were conducted to investigate the impact of simultaneously applying NO signaling and QQ for biofilm control using Pseudomonas aeruginosa PAO1 as a model microorganism. The NO treatment involved the injection of NONOates (NO donor compounds) into mature biofilms, while QQ was implemented by immobilizing QQ bacteria (Escherichia coli TOP10-AiiO or Rhodococcus sp. BH4) in alginate or polyvinyl alcohol/alginate beads to preserve the QQ activity. When QQ beads were applied together with (Z)-1-[N-(3-aminopropyl)-N-(n-propyl) amino]diazen-1-ium-1,2-diolate (PAPA NONOate), they achieved a 39.0% to 71.3% reduction in biofilm formation, which was substantially higher compared to their individual applications (16.0% to 54.4%). These findings highlight the significant potential of combining QQ and NO technologies for effective biofilm control across a variety of processes that require enhanced biofilm inhibition.
Collapse
Affiliation(s)
- Youkyoung Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
| | - Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
- Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (Y.K.); (P.A.); (H.K.)
- Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
14
|
Huang Y, Wen X, Li J, Niu Q, Tang A, Li Q. Metagenomic insights into role of red mud in regulating fate of compost antibiotic resistance genes mediated by both direct and indirect ways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120795. [PMID: 36462475 DOI: 10.1016/j.envpol.2022.120795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, the amendment of red mud (RM) in dairy manure composting on the fate of antibiotic resistance genes (ARGs) by both direct (bacteria community, mobile genetic elements and quorum sensing) and indirect ways (environmental factors and antibiotics) was analyzed. The results showed that RM reduced the total relative abundances of 10 ARGs and 4 mobile genetic elements (MGEs). And the relative abundances of total ARGs and MGEs decreased by 53.48% and 22.30% in T (with RM added) on day 47 compared with day 0. Meanwhile, the modification of RM significantly increased the abundance of lsrK, pvdQ and ahlD in quorum quenching (QQ) and decreased the abundance of luxS in quorum sensing (QS) (P < 0.05), thereby attenuating the intercellular genes frequency of communication. The microbial community and network analysis showed that 25 potential hosts of ARGs were mainly related to Firmicutes, Proteobacteria and Actinobacteria. Redundancy analysis (RDA) and structural equation model (SEM) further indicated that RM altered microbial community structure by regulating antibiotic content and environmental factors (temperature, pH, moisture content and organic matter content), which then affected horizontal gene transfer (HGT) in ARGs mediated by QS and MGEs. These results provide new insights into the dissemination mechanism and removal of ARGs in composting process.
Collapse
Affiliation(s)
- Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
15
|
Mit Prohim Y, Cayetano RDA, Anburajan P, Tang Thau N, Kim S, Oh HS. Enhancement of biomethane recovery from batch anaerobic digestion by exogenously adding an N-acyl homoserine lactone cocktail. CHEMOSPHERE 2023; 312:137188. [PMID: 36400188 DOI: 10.1016/j.chemosphere.2022.137188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Biomethane recovered through anaerobic digestion (AD) is a renewable, sustainable, and cost-effective alternative energy source that has the potential to help address rising energy demands. Efficient bioconversion during AD depends on the symbiotic relationship between hydrolytic bacteria and methanogenic archaea. Interactions between microorganisms occur in every biological system via a phenomenon known as quorum sensing (QS), in which signaling molecules are simultaneously transmitted and detected as a mode of cell-to-cell communication. However, there's still a lack of understanding on how QS works in the AD system, where diverse bacteria and archaea interact in a complex manner. In this study, different concentrations (0.5 and 5 μM) of signaling molecules in the form of an N-acyl homoserine lactone cocktail (C6-, C8-, C10-, and 3-oxo-C6-HSL) were prepared and introduced into anaerobic batch reactors to clearly assess how QS affects AD systems. It was observed that the methane yield increased with the addition of AHLs: a 5 μM AHL cocktail improved the methane yield (341.9 mL/g-COD) compared to the control without AHLs addition (285.9 mL/g-COD). Meanwhile, evidence of improved microbial growth and cell aggregation was noticed in AHLs-supplemented systems. Our findings also show that exogenously adding AHLs alters the microbial community structure by increasing the overall bacterial and archaeal population counts while favoring the growth of the methanogenic archaea group, which is essential in biomethane synthesis.
Collapse
Affiliation(s)
- You Mit Prohim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Roent Dune A Cayetano
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Parthiban Anburajan
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Nguyen Tang Thau
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Sungmi Kim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea; Institute of Environmental Technology, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
16
|
Ge S, Zhao Y, Liu D, Dong X, Zhang Y, Yang H, Li Y. Characterization of a N-acylhomoserine lactonase from Serratia sp. and its biofouling mitigation in a membrane bioreactor. Microbiol Res 2022; 264:127175. [DOI: 10.1016/j.micres.2022.127175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
|
17
|
Hu J, Wang J, Li J, Hu H, Wu B, Ren H, Wang J. AHLS-pred: a novel sequence-based predictor of acyl-homoserine-lactone synthases using machine learning algorithms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:616-631. [PMID: 35403334 DOI: 10.1111/1758-2229.13068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Acyl-homoserine-lactones (AHLs), as the major quorum sensing (QS) signalling molecules in Gram-negative bacteria, have shown great application potential in regulating biological nutrient removal process. The identification of AHLs synthases plays an essential role in in-depth research on QS mechanisms and applications of biological wastewater treatment processes. This work proposed the first prediction model for AHLs synthases based on machine learning algorithms, namely, AHLS-pred. The training dataset AHLS1400 and the independent testing dataset AHLS132 for AHLSs prediction were first established. Three sequence-based feature extraction methods are utilized to generate feature descriptors, namely, amino acid composition, dipeptide composition and G-gap dipeptide composition respectively. Subsequently, the optimal features were obtained based on the sorted feature descriptors (in F-score order) and the sequential forward search strategy. By comparing five different machine learning algorithms, the final prediction model is trained with support vector machine classifier on AHLS1400 in fivefold cross-validation with the best performance (ACC = 99.43%, MCC = 0.989, AUC = 0.997). The results show that AHLS-pred achieves an ACC of 94.70%, MCC of 0.894 and AUC of 0.995 on the independent testing dataset AHLS132. It demonstrates that AHLS-pred is a promising and powerful prediction method for accelerating the process of AHLSs computational identification.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jiahao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Bin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
18
|
Hills OJ, Yong CW, Scott AJ, Devine DA, Smith J, Chappell HF. Atomic-scale interactions between quorum sensing autoinducer molecules and the mucoid P. aeruginosa exopolysaccharide matrix. Sci Rep 2022; 12:7724. [PMID: 35545629 PMCID: PMC9095684 DOI: 10.1038/s41598-022-11499-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/18/2022] [Indexed: 12/22/2022] Open
Abstract
Mucoid Pseudomonas aeruginosa is a prevalent cystic fibrosis (CF) lung coloniser whose chronicity is associated with the formation of cation cross-linked exopolysaccharide (EPS) matrices, which form a biofilm that acts as a diffusion barrier, sequestering cationic and neutral antimicrobials, and making it extremely resistant to pharmacological challenge. Biofilm chronicity and virulence of the colony is regulated by quorum sensing autoinducers (QSAIs), small signalling metabolites that pass between bacteria, through the biofilm matrix, regulating genetic responses on a population-wide scale. The nature of how these molecules interact with the EPS is poorly understood, despite the fact that they must pass through EPS matrix to reach neighbouring bacteria. Interactions at the atomic-scale between two QSAI molecules, C4-HSL and PQS—both utilised by mucoid P. aeruginosa in the CF lung—and the EPS, have been studied for the first time using a combined molecular dynamics (MD) and density functional theory (DFT) approach. A large-scale, calcium cross-linked, multi-chain EPS molecular model was developed and MD used to sample modes of interaction between QSAI molecules and the EPS that occur at physiological equilibrium. The thermodynamic stability of the QSAI-EPS adducts were calculated using DFT. These simulations provide a thermodynamic rationale for the apparent free movement of C4-HSL, highlight key molecular functionality responsible for EPS binding and, based on its significantly reduced mobility, suggest PQS as a viable target for quorum quenching.
Collapse
Affiliation(s)
- Oliver J Hills
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Chin W Yong
- Daresbury Laboratory, Scientific Computing Department, Science and Technology Facilities Council, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.,Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew J Scott
- School of Chemical & Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Deirdre A Devine
- School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU, UK
| | - James Smith
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Helen F Chappell
- School of Food Science & Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Noori A, Kim H, Kim MH, Kim K, Lee K, Oh HS. Quorum quenching bacteria isolated from industrial wastewater sludge to control membrane biofouling. BIORESOURCE TECHNOLOGY 2022; 352:127077. [PMID: 35378282 DOI: 10.1016/j.biortech.2022.127077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
N-acylhomoserine lactone (AHL)-based bacterial communication through quorum sensing (QS) is one of the main causes of biofouling. Although quorum quenching (QQ) has proven to be an effective strategy against biofouling in membrane bioreactors (MBRs) for municipal wastewater treatment, its applicability for industrial wastewater treatment has rarely been studied. This is the first study to isolate QQ strains from the activated sludge used to treat industrial wastewater containing toxic tetramethylammonium hydroxide (TMAH) and 1-methyl-2-pyrrolidinone. The two QQ strains from genus Bacillus (SDC-U1 and SDC-A8) survived and effectively degraded QS signals in the presence of TMAH. They also showed resistance to toxic byproducts of TMAH degradation such as ammonium and formaldehyde. They effectively reduced the biofilm formation of Pseudomonas aeruginosa PAO1 and mixed community of activated sludge. The strains isolated in this study thus have the potential to be employed to reduce membrane biofouling in MBRs during the treatment of TMAH-containing wastewater.
Collapse
Affiliation(s)
- Abdolvahed Noori
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Myung Hee Kim
- Facility Team, Samsung Display Co. Ltd, Asan 31454, Chungcheongnam-do, Republic of Korea
| | - Keumyong Kim
- Facility Team, Samsung Display Co. Ltd, Asan 31454, Chungcheongnam-do, Republic of Korea
| | - Kibaek Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
20
|
Cheng XL, Xu Q, Sun JD, Li CR, Yang QW, Li B, Zhang XY, Zhou J, Yong XY. Quorum sensing signals improve the power performance and chlortetracycline degradation efficiency of mixed-culture electroactive biofilms. iScience 2022; 25:104299. [PMID: 35573194 PMCID: PMC9097700 DOI: 10.1016/j.isci.2022.104299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Electroactive biofilms (EABs) play an important role in bioelectrochemical systems due to their abilities to generate electrons and perform extracellular electron transfer (EET). Here, we investigated the effects of quorum sensing (QS) signals on power output, chlortetracycline degradation, and structure of EABs in MFCs treating antibiotic wastewater. The voltage output of MFCs with C4-HSL and PQS increased by 21.57% and 13.73%, respectively, compared with that without QS signals. The chlortetracycline degradation efficiency in closed-circuit MFCs with C4-HSL and PQS increased by 56.53% and 50.04%, respectively, which resulted from the thicker biofilms, higher biomass, and stronger activities. Additionally, QS signals induced the heterogeneous distribution of EPS for a balance between self-protection and EET under environmental pressure. Geobacter prevailed by the addition of QS signals to resist high chlortetracycline concentration. Our results provided a broader understanding on regulating EABs within electrode interface to improve their performance for environmental remediation and clean energy development. The voltage output of MFCs was enhanced with the addition of QS signals QS signals increased the bioelectrochemical degradation efficiency of CTC EABs exhibited heterogeneity in composition and interaction by the QS signals QS signals induced a balance between self-protection and EET of EABs
Collapse
|
21
|
Xu Y, Yang S, You G, Hou J. Attenuation effects of iron on dissemination of antibiotic resistance genes in anaerobic bioreactor: Evolution of quorum sensing, quorum quenching and dynamics of community composition. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126136. [PMID: 34492925 DOI: 10.1016/j.jhazmat.2021.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) coupled with bioreactors is arising as a promising technology for antibiotic resistance genes (ARGs) mitigation, whereas the succession and behaviors of microbes caused by ZVI in relieving ARGs propagation remain unclear. Herein, the effects of ZVI on microbial quorum sensing (QS), quorum quenching (QQ) system and community dynamics were examined in anaerobic bioreactor fed with oxytetracycline (tet), to illustrate the roles of evolutive microbial communication and community composition in ARGs attenuation. With the addition of 5 g/L ZVI, the total absolute abundance of tet ARGs was retarded by approximate 95% and 72% in sludge and effluent after 25 days operation. The abundance of mobile genetic elements and the heredity of antibiotic resistant bacteria revealed the declined horizontal and vertical transfer of ARGs, which directly led to the reduced ARGs propagation. Potential mechanisms are that the positive effects of ZVI on QQ activity via the functional bacteria enrichment inhibited QS system and thus ARGs transfer. Partial least--squares path modeling further demonstrated that ARGs abundance was strongly limited by the dynamics of bacterial composition and thereby less frequent microbial communication. These results provide new insights into the mechanisms of antibiotic resistome remission in anaerobic bioreactor modified by ZVI.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
22
|
Izadi P, Izadi P, Eldyasti A. Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: A review. CHEMOSPHERE 2021; 274:129703. [PMID: 33578118 DOI: 10.1016/j.chemosphere.2021.129703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic ammonia oxidation (anammox) process has been proven to be a favorable and innovative process, for treatment of nitrogen-rich wastewater due to decreased oxygen and carbon requirements at very high nitrogen loading rates. Anammox process is mainly operated through biofilm or granular sludge structures, as for such slow-growing microorganisms, elevated settling velocity of granules allows for adequate biomass retention and lowered potential risk of washouts. Stability of granular sludge biomass is extremely critical, yet the formation mechanism is poorly understood. There are number of important functions linked to Extracellular Polymeric Substance (EPS) in anammox bacterial matrix, such as; structural stability, aggregation promotion, maintenance of physical structure in the granules, water preserving and protective cell barrier. There is an increasing demand to introduce accurate methods for proper EPS extraction and characterization, to expand the perception of anammox granule stability and potential resource recovery. Analyzing EPS with a focus on various (mechanical and physical) properties can lead to biopolymer production from granular sludge. Biopolymers such as EPS are attractive alternatives substituting the conventional chemical polymers furthermore their recovery from the waste sludge and the potential applications in industrial sectors, leads to a radical enhancement of both environmental and economical sustainability, accelerating the circular economy advancements. Here, this study aims to overview the newest understanding on the structure of anammox sludge EPS, obtained recently and to assess the potential challenges and prospects to identify the knowledge gaps towards constructing an inclusive anammox EPS recovery and characterization procedure.
Collapse
Affiliation(s)
- Parin Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Parnian Izadi
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Ahmed Eldyasti
- Lassonde School of Engineering, Civil Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
23
|
Liu J, Wu P, Wang F, Niu W, Ahmed Z, Chen M, Lu G, Dang Z. Differential regulation and the underlying mechanisms of clay minerals to Escherichia coli under the stress of polymyxin B: Comparing halloysite with kaolinite. CHEMOSPHERE 2021; 265:129095. [PMID: 33302200 DOI: 10.1016/j.chemosphere.2020.129095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The reuse of polymyxin B (PMB) has attracted extensive attention. Although the resistance mechanism to PMB is clear, there are few reports on the regulation mechanisms and effects of clay minerals on bacteria induced by PMB. The focus of this study is to investigate the multidrug resistance, cell morphology and physiological modification of Escherichia coli (E. coli) exposed to PMB in the presence and absence of clay minerals. To be specific, E. coli was cultured serially for 15 days in the increasing concentration of PMB, with or without halloysite or kaolinite. The potential influence mechanisms of halloysite and kaolinite on E. coli was analyzed by proteomics, antibiotic resistance testing, confocal laser scanning microscopy, scanning electron microscopy and Fourier transform infrared. The results showed that kaolinite could obviously promote the growth of bacteria. Moreover, compared with halloysite, kaolinite could stimulate the overexpression of PMB resistance-related proteins ArnA, ArnB and EptA in E. coli exposed to PMB, and promote the synthesis of peptidoglycan and activate glycolysis pathway to produce energy. In contrast, halloysite was able to regulate the production of low molecular weight thiols by E. coli to prevent bacteria from producing excessive reactive oxygen species, activate the oxidative phosphorylation pathway to supply energy for bacterial life activities, and reduce multidrug resistance of E. coli in a variety of ways. These findings are essential for exploring the impacts of clay minerals on the emergence and spread of multi-drug resistant strains in the environment.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, PR China.
| | - Fang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Wenchao Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|