1
|
van Doorn M, van Rotterdam D, Ros GH, Koopmans GF, de Vries W. Using the phosphorus saturation degree as a guide for sustainable phosphorus management balancing crop production and water quality objectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125617. [PMID: 40319688 DOI: 10.1016/j.jenvman.2025.125617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Incorporating environmental boundaries into P fertilizer recommendations is key to reconcile agronomic objectives and P leaching risks to ground- and surface waters. Current agronomic soil P quantity tests, used as the basis for fertilizer recommendations, are poorly suited for this purpose as they provide no information on the ortho-P concentration in soil solution which is prone to leach. Therefore, we converted agronomic soil P test values to the equilibrium ortho-P concentration in soil solution through the corresponding P saturation degree (PSD), using information on the P sorption capacity and the affinity of ortho-P to bind to soil. We derived an environmental PSD threshold and compared this with the current PSD and the agronomic target values. In Dutch agricultural soils, current PSD values exceed the agronomic target and environmental threshold for 84 % and 94 % of the agricultural land area, respectively. Decreasing the current PSD to the environmental threshold through P mining showed limited adverse effects on crop yields, except in areas being vulnerable to P losses because of a low P sorption capacity and high hydrological connectivity. Here, the cultivation of less P-sensitive crops or the provision of other ecosystem services than food production may be more appropriate. Limited adverse effects on crop yield result from high agronomic soil P targets in Dutch fertilizer recommendations, based on achieving 99 % of the maximum yield for the P-sensitive potato crop. Given the high livestock density and excess manure in the Netherlands, reducing the current PSD to the environmental threshold poses a significant challenge.
Collapse
Affiliation(s)
- Maarten van Doorn
- Nutriënten Management Instituut, Nieuwe Kanaal 7C, 6709PA, Wageningen, the Netherlands; Earth Systems and Global Change Group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the Netherlands.
| | - Debby van Rotterdam
- Nutriënten Management Instituut, Nieuwe Kanaal 7C, 6709PA, Wageningen, the Netherlands.
| | - Gerard H Ros
- Nutriënten Management Instituut, Nieuwe Kanaal 7C, 6709PA, Wageningen, the Netherlands; Earth Systems and Global Change Group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the Netherlands.
| | - Gerwin F Koopmans
- Soil Chemistry Group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the Netherlands.
| | - Wim de Vries
- Earth Systems and Global Change Group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Jin J, Xiong J, Liang Y, Wang M, Huang C, Koopal L, Tan W. Generic phosphate affinity constants of the CD-MUSIC-eSGC model to predict phosphate adsorption and dominant speciation on iron (hydr)oxides. WATER RESEARCH 2024; 264:122194. [PMID: 39121821 DOI: 10.1016/j.watres.2024.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Estimating the availability of phosphorus in soils and sediments is complicated by the diverse mineralogical properties of iron (hydr)oxides that control the environmental fate of phosphorus. Despite various surface complexation models have been developed, lack of generic phosphate affinity constants (logKPO4s) for iron (hydr)oxides hinders the prediction of phosphate adsorption to iron (hydr)oxides in nature. The aim of this work is to derive generic logKPO4s for the Charge Distribution-Multisite Complexation extended-Stern-Gouy-Chapman (CD-MUSIC-eSGC) model using a large phosphate adsorption database and previously derived generic protonation parameters. The optimized logKPO4s of goethite, hematite and ferrihydrite are located in a much narrower range than those in the RES3T database. Specifically, the logKPO4 ranges of FeOPO3, FeOPO2OH, FeOPO(OH)2, (FeO)2PO2, and (FeO)2POOH complexes were 17.40-18.00, 24.20-27.40, 27.90-29.80, 26.50-29.60, and 30.70-33.40, respectively. A simplified CD-MUSIC-eSGC model with species FeOPO2OH and (FeO)2PO2 and generic logKPO4 values 26.0 ± 0.9 and 27.9 ± 0.8, respectively, provides an accurate prediction of phosphate adsorption and dominant speciation to the iron (hydr)oxides at environmental pH and phosphate levels. For ferrihydrite at low pH and high phosphate levels the species FeOPO(OH)2 and (FeO)2POOH cannot be neglected. The simplified model expands the application boundaries of CD-MUSIC-eSGC model in predicting the phosphate adsorption on natural iron (hydr)oxides without laborious characterization.
Collapse
Affiliation(s)
- Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuanqin Huang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Luuk Koopal
- Physical Chemistry and Soft Matter, Wageningen University and Research, P.O. Box 8038, 6708 WE, Wageningen, the Netherlands
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
3
|
Liang Y, Jin J, Chen H, Xu J, Wang M, Tan W. Modeling of phosphate speciation on goethite surface: Effects of humic acid. CHEMOSPHERE 2024; 359:142351. [PMID: 38761821 DOI: 10.1016/j.chemosphere.2024.142351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Iron (hydr)oxides and humic acid (HA) are important active components in soils and usually coexist in the environment. The effects of HA on the adsorption and subsequent immobilization of phosphate on iron (hydr)oxide surface are of great importance in studies of soil fertility and eutrophication. In this study, two types of goethite with different particle sizes were prepared to investigate the phosphate adsorption behaviors and complexation mechanisms in the absence or presence of HA by combining multiple characterization and modeling studies. The adsorption capacity of micro- (M-Goe) and nano-sized goethite (N-Goe) for phosphate was 2.02 and 2.04 μmol/m2, which decreased by ∼25% and ∼45% in the presence of 100 and 200 mg/L HA, respectively. Moreover, an increase in equilibrium phosphate concentration significantly decreased the adsorption amount of goethite for HA. Charge distribution-multisite surface complexation (CD-MUSIC) and natural organic matter-charge distribution (NOM-CD) modeling identified five phosphate complexes and their corresponding affinity constants (logKP). Among these phosphate complexes, FeOPO2OH, (FeO)2PO2, and (FeO)2POOH species were predominant complexes on the surface of both M-Goe and N-Goe across a wide range of pH and initial phosphate concentrations. The presence of HA had little effect on the coordination mode and logKP of phosphate on goethite surface. These results and the obtained model parameters shed new lights on the interfacial reactivity of phosphate at the goethite-water interface in the presence of HA, and may facilitate further prediction of the environmental fate of phosphate in soils and sediments.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongfeng Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
4
|
Wossine SE, Thothadri G, Tufa HB, Tucho WM, Murtaza A, Edacherian A, Sayeed Ahmed GM. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties. Polymers (Basel) 2024; 16:1629. [PMID: 38931979 PMCID: PMC11207728 DOI: 10.3390/polym16121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world's growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J-CNCs) were successfully synthesized from Jenfokie micro-cellulose (J-MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J-CNCs were measured. A field emission gun-scanning electron microscope (FEG-SEM) was used to assess the morphology of the J-MC and J-CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J-CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J-CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT-IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J-MC and J-CNC samples. The thermal analysis of J-CNC indicated lower thermal stability than J-MC. It was noted that J-CNC showed higher levels of crystallinity and larger crystallite sizes than J-MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals' size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study.
Collapse
Affiliation(s)
- Solomon Estifo Wossine
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | - Ganesh Thothadri
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Habtamu Beri Tufa
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | | | - Adil Murtaza
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Abhilash Edacherian
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gulam Mohammed Sayeed Ahmed
- Center of Excellence (COE) for Advanced Manufacturing Engineering, Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia;
| |
Collapse
|
5
|
Verma LM, Kumar A, Kumar A, Singh G, Singh U, Chaudhary S, Kumar S, Sanwaria AR, Ingole PP, Sharma S. Green chemistry routed sugar press mud for (2D) ZnO nanostructure fabrication, mineral fortification, and climate-resilient wheat crop productivity. Sci Rep 2024; 14:4074. [PMID: 38374327 PMCID: PMC10876626 DOI: 10.1038/s41598-024-53682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024] Open
Abstract
Nanotechnology appears to be a promising tool to redefine crop nutrition in the coming decades. However, the crucial interactions of nanomaterials with abiotic components of the environment like soil organic matter (SOM) and carbon‒sequestration may hold the key to sustainable crop nutrition, fortification, and climate change. Here, we investigated the use of sugar press mud (PM) mediated ZnO nanosynthesis for soil amendment and nutrient mobilisation under moderately alkaline conditions. The positively charged (+ 7.61 mv) ZnO sheet-like nanoparticles (~ 17 nm) from zinc sulphate at the optimum dose of (75 mg/kg blended with PM (1.4% w/w) were used in reinforcing the soil matrix for wheat growth. The results demonstrated improved agronomic parameters with (~ 24%) and (~ 19%) relative increases in yield and plant Zn content. Also, the soil solution phase interactions of the ZnO nanoparticles with the PM-induced soil colloidal carbon (- 27.9 mv and diameter 0.4864 μm) along with its other components have influenced the soil nutrient dynamics and mineral ecology at large. Interestingly, one such interaction seems to have reversed the known Zn-P interaction from negative to positive. Thus, the study offers a fresh insight into the possible correlations between nutrient interactions and soil carbon sequestration for climate-resilient crop productivity.
Collapse
Affiliation(s)
- Lahur Mani Verma
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
- Electrophysical Laboratory, Department of Chemistry, IIT Delhi, New Delhi, 110016, India
| | - Ajay Kumar
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, UP, India
| | - Garima Singh
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Umesh Singh
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Shivani Chaudhary
- Biommaterials and Bio-Interface Laboratory, Center for Biomedical Engineering IIT Delhi, New Delhi, 110016, India
| | - Sachin Kumar
- Biommaterials and Bio-Interface Laboratory, Center for Biomedical Engineering IIT Delhi, New Delhi, 110016, India
| | - Anita Raj Sanwaria
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India
| | - Pravin P Ingole
- Electrophysical Laboratory, Department of Chemistry, IIT Delhi, New Delhi, 110016, India
| | - Satyawati Sharma
- Biomass Technology Laboratory, Centre for Rural Development and Technology (CRDT), Indian Institute of Technology Delhi (IITD), Room No. 289, Block-III, Main Building Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
6
|
Bi X, Chu H, Fu M, Xu D, Zhao W, Zhong Y, Wang M, Li K, Zhang YN. Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Sci Rep 2023; 13:12242. [PMID: 37507437 PMCID: PMC10382485 DOI: 10.1038/s41598-023-38646-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Understanding the distribution of soil organic carbon and nitrogen (OC(N)) content, cation exchange capacity (CEC), and specific surface area (SSA) in different soil particle sizes is crucial for studying soil fertility and properties. In this study, we investigated the distribution characteristics of the OC(N), CECand SSA in different particles of yellow-brown soil under different methods. The result revealed that as the particle size decreased, the soil OC(N), SSA and CEC content gradually increase. The content of OC and ON different soil particles ranged from 1.50-28.16 g·kg-1 to 0.18-3.78 g·kg-1, respectively, and exhibited significant differences between different particles. We observed good linear relationships between OC and ON in different particle sizes of yellow-brown soil under different utilization methods, with correlation coefficients ranging from 0.86 to 0.98, reaching a very significant level (n = 12, p < 0.01). The ranges of SSA and CEC in different particles of the four soils were 0.30-94.70 m2·g-1 and 0.70-62.91 cmol·kg-1, respectively. Additionally, we found logarithmic relationships between SSA (CEC) and the equivalent diameter for the four soils, with correlation coefficients (r2) higher than 0.91. Furthermore, there was an extremely significant linear relationship between CEC and SSA of the four soils, with correlation coefficients (r2) of 0.92-0.97 (n = 12, p < 0.01). These results highlight the close relationship between soil particle size and soil OC(N), SSA, and CEC. The conclusions drawn from this study provide valuable data support and a theoretical basis for further understanding soil properties.
Collapse
Affiliation(s)
- Xiaoqian Bi
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hang Chu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Mingming Fu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Dandan Xu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Wenyu Zhao
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China.
| | - Yijian Zhong
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Mei Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin, 541100, China
| | - Ke Li
- College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, 541004, China
| | - Ya-Nan Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- College of Environmental Science and Engineering, Guilin University of Technology, Jiangan Road 12, Guilin, 541004, Guangxi, China.
| |
Collapse
|
7
|
Niu C, Weng L, Lian W, Zhang R, Ma J, Chen Y. Carbon sequestration in paddy soils: Contribution and mechanisms of mineral-associated SOC formation. CHEMOSPHERE 2023; 333:138927. [PMID: 37187382 DOI: 10.1016/j.chemosphere.2023.138927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
In this work, comparative study of paddy and upland soils were carried out to unravel mechanisms of enhanced soil organic carbon (SOC) sequestration in paddy soils using fractionation methods, 13C NMR and Nano-SIMS analysis, as well as organic layer thickness calculations (Core-Shell model). The results showed that although there is a strong increase in particulate SOC in paddy soils compared to that in the upland soils, the increase in mineral-associated SOC is more important, explaining 60-75% of SOC increase in the paddy soils. In the wet and dry alternate cycles of paddy soil, iron (hydr)oxides adsorb relatively small and soluble organic molecules (fulvic acid-like), promote catalytic oxidation and polymerization, thus accelerating formation of larger organic molecules. Upon reductive iron dissolution, these molecules are released and incorporated into existing less soluble organic compounds (humic acid or humin-like), which are coagulated and associated with clay minerals, becoming part of the mineral-associated SOC. The functioning of this "iron wheel" process stimulates accumulation of relatively young SOC into mineral-associated organic carbon pool, and reduces the difference in chemical structure between oxides-bound and clay-bound SOC. Further, the faster turnover of oxides and soil aggregates in paddy soil also facilities interaction between SOC and minerals. The formation of mineral-associated SOC may delay degradation of organic matter during both wet and dry period in the paddy field, therefore enhancing carbon sequestration in paddy soils.
Collapse
Affiliation(s)
- Cuiyun Niu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, 061000, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Wanli Lian
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ran Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| |
Collapse
|
8
|
Jin J, Liang Y, Wang M, Fang L, Xiong J, Hou J, Tan W, Koopal L. Generic CD-MUSIC-eSGC model parameters to predict the surface reactivity of iron (hydr)oxides. WATER RESEARCH 2023; 230:119534. [PMID: 36628867 DOI: 10.1016/j.watres.2022.119534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The surface reactivity of iron (hydr)oxides plays a crucial role in controlling their interfacial reactions, for which various surface complexation models have been developed. The diversity of mineralogical properties of iron (hydr)oxides has resulted in a redundancy of model parameters, which hampers the modeling of iron (hydr)oxides in soils and sediments, where goethite, hematite and ferrihydrite dominate the iron (hydr)oxide mass fraction. To capture their combined surface reactivity, optimized generic protonation parameters of the Charge Distribution-Multisite Complexation (CD-MUSIC) extended-Stern-Gouy-Chapman (eSGC) model were derived by reanalyzing literature datasets and tested with some newly synthesized iron (hydr)oxides. It was observed that the proton and monovalent ion affinity constants of the different iron (hydr)oxides were located in a narrow range. For the singly- and triply-coordinated hydroxyl sites the obtained generic log(affinity constants) were 8.3 and 11.7 for the protonation reaction and -0.5 for the reaction with the monovalent background ions. Their combination with fixed site densities of singly-/triply-coordinated hydroxyl sites of 3.45/2.70, 5.00/2.50, and 5.80/1.40 sites/nm2 for goethite, hematite, and ferrihydrite, respectively, provided good results. The Stern layer capacitances of the inner and outer Stern layers were set equal and could be acquired by an empirical correlation with the sample specific surface area (SSA). The CD-MUSIC-eSGC model with the generic model parameters enables good quality predictions of the proton reactivity of iron (hydr)oxides in 1:1 electrolyte solutions regardless of the sample heterogeneity. The advantages of the generic CD-MUSIC-eSGC model are twofold: (1) protonation of iron (hydr)oxides can be described without making use of spectroscopic measurements and proton titrations, and (2) the model calculations are greatly simplified.
Collapse
Affiliation(s)
- Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Linchuan Fang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Luuk Koopal
- Physical Chemistry and Soft Matter, Wageningen University and Research, P.O. Box 8038, 6703 HB Wageningen, the Netherlands
| |
Collapse
|
9
|
Liang Y, Jin J, Wei Z, Wang M, Xiong J, Hou J, Tan W. Complexation mechanism of Pb 2+ at the ferrihydrite-water interface: The role of Al-substitution. CHEMOSPHERE 2022; 307:135627. [PMID: 35830935 DOI: 10.1016/j.chemosphere.2022.135627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Ferrihydrite is a poorly crystalline iron (hydr)oxide and highly efficient adsorbent for heavy metals. Al-substitution in ferrihydrite is ubiquitous in nature. However, the effect of Al-substitution on the surface reactivity of ferrihydrite remains unclear due to its low crystallinity. The present study aims to clarify the microstructure and interfacial reaction of Al-substituted ferrihydrite. Al-substitution had little effect on the morphology and surface site density of ferrihydrite, while the presence of ≡AlOH-0.5 sites resulted in higher proton affinity and surface positive charge of ferrihydrite. Besides, the affinity constant of Pb2+ adsorption on the surface of ferrihydrite decreased at higher Al content, which further decreased the adsorption performance of ferrihydrite for Pb2+. The modeling results revealed that bidentate complex was the dominant Pb complexation species on the surface of ferrihydrite, which was less affected by Al-substitution. The present study provides important insights into the effect of Al-substitution on the interfacial reaction at the ferrihydrite-water interface. The obtained parameters may facilitate the future advance of surface complexation model.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Amini M, Antelo J, Fiol S, Rahnemaie R. Estimation of phosphate extractability in flooded soils: Effect of solid-solution ratio and bicarbonate concentration. CHEMOSPHERE 2022; 303:135188. [PMID: 35660054 DOI: 10.1016/j.chemosphere.2022.135188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The Olsen method is widely used to determine bioavailable phosphate (P) in upland soils. It is also used in flooded soils, although different estimates of extractable-P are obtained under anoxic and oxic conditions. In this study, variations in extractable-P in three soils under different redox conditions were evaluated as a function of solid to solution ratio (SSR) (1:5-1:200) and bicarbonate concentration (0.1-1 M). The parameterized CD-MUSIC model was used to describe the data, with optimization of reactive surface area (RSA) and reversibly adsorbed-P (R-PO4). The RSA may vary due to the reductive dissolution of iron minerals and/or the formation of new reactive surfaces upon the establishment of reducing conditions. Changes in SSR and bicarbonate concentration significantly affected extractable-P under both oxic and anoxic conditions; more P was extracted under anoxic than under oxic conditions. The difference was 1.5-2 times greater for the highest SSR considered. In the soil samples with higher organic carbon content, the effect of bicarbonate concentration on extractable-P was remarkable. The large differences in extractable-P under oxic and anoxic conditions were probably due to differences in iron (hydr)oxide content. The CD-MUSIC model successfully predicted the effect of SSR on extractable-P under both conditions. R-PO4 data were fitted for oxic conditions and assumed unchanged for anoxic samples, while RSA data were fitted for both conditions. The RSA values were lower in anoxic than in oxic samples. Overall, our data and model calculations indicate that using wet soil samples obtained in-situ for evaluation of Olsen-P in submerged soils lead to a higher estimation of extractable-P than estimated in oxic soils. If soil testing in the presence of target plants confirms the reliability of in-situ sampling for Olsen-P estimation, the P fertilizer dose applied to submerged soils could be reduced, which is very important from environmental and economic perspectives.
Collapse
Affiliation(s)
- Mitra Amini
- Department of Soil Science, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | - Juan Antelo
- CRETUS. Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sarah Fiol
- CRETUS. Department of Physical Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rasoul Rahnemaie
- Department of Soil Science, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran.
| |
Collapse
|
11
|
Li J, Weng L, Deng Y, Ma J, Chen Y, Li Y. NOM-mineral interaction: Significance for speciation of cations and anions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153259. [PMID: 35065113 DOI: 10.1016/j.scitotenv.2022.153259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
In this study, the nano-scale spatial distribution of natural organic matter (NOM) on the surface of iron (hydr)oxides and its relevance to oxyanion (PO43-) and metal cation (Cd2+ and Cu2+) adsorption to the assemblage of oxide (goethite) and NOM (humic acids (HA) or fulvic acids (FA)) was investigated with experiments and advanced surface complexation modeling. Both the linear additive Multi-Surface model (MSM) and the more sophisticated Natural Organic Matter-Charge Distribution (NOM-CD) model were used. The MSM model ignores the effects of NOM-mineral interaction on ion adsorption, whereas the NOM-CD model considers this effect. The results showed that with the increase of NOM loading on oxides, deviation between the MSM and NOM-CD model became bigger for PO43-, but smaller for Cd2+ and Cu2+. Oxyanions bind mainly to oxides and therefore the competitive effect of NOM cannot be neglected, which explains the large difference between these two models for PO43-. On the contrary, at a relatively high NOM loading, a large fraction of NOM extends further away from the surface of oxides. Thus for metal cations that bind mainly to NOM, the influence of NOM-mineral interaction on their adsorption is small and the results of the MSM and NOM-CD model are similar. In top soils, the NOM loading on oxides is often high, therefore the linear additive MSM is applicable for metal cation speciation calculations as reported in many literatures. An approach based on the NOM-CD model was proposed, which can not only calculate the macroscopic solid-solution distribution of both cations and anions, but can also provide information regarding their microscopic surface speciation.
Collapse
Affiliation(s)
- Jinbo Li
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| | - Yingxuan Deng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongtao Li
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Natural Resources & Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
In-Gel Assay to Evaluate Antioxidant Enzyme Response to Silver Nitrate and Silver Nanoparticles in Marine Bivalve Tissues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver is back in vogue today as this metal is used in the form of nanomaterials in numerous commercial products. We have developed in-gel electrophoretic techniques to measure the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX), and used the same techniques in combination with HSP70 Western blot analysis to evaluate the effects of nanomolar amounts of silver nitrate and 5 nm alkane-coated silver nanoparticles in tissues of the marine bivalve Mytilus galloprovincialis (Lam.) exposed for 28 days in mesocosms. Our results showed a negligible effect for nanosilver exposure and dose-dependent effects for the nitrate form.
Collapse
|