1
|
Wang X, Kong W, Zhai X, Wang Z, Epsztein R, Li X. Direct Quantification of Ion Partitioning and Diffusion Resistances in Reverse Osmosis Membranes via Electrochemical Impedance Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40434163 DOI: 10.1021/acs.est.5c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Polyamide (PA) reverse osmosis (RO) membranes are crucial for water desalination and purification, where salt ion transport is governed by partitioning and diffusion through the PA film. Despite extensive research, decoupling these two steps and quantifying their relative contributions remain challenging due to the lack of reliable characterization methods. Here, we develop a rapid, reproducible electrochemical impedance spectroscopy (EIS) protocol incorporating advanced electrical equivalent circuits to directly quantify partitioning and diffusion resistance. Its validity is verified through membrane filtration experiments and activation energy analysis. Our findings reveal that diffusion dominates ion transport resistance, with values 4.5 to 6.0 times higher than partitioning resistance across diverse monovalent cations. However, we discovered a critical concentration-dependent behavior where partitioning resistance becomes increasingly significant at lower electrolyte concentrations, eventually equaling diffusion resistance near 0.1 mM. We also uncovered that the anomalously low rejection of NH4+ of RO membranes stemmed from significantly reduced diffusion resistance, likely due to moderate hydrogen-bonding interactions with membrane pores or its tetrahedral geometry. This quantitative insight into transport resistance mechanisms establishes new design principles for next-generation RO membranes, enabling tailored strategies for applications ranging from high-salinity desalination to the removal of low-concentration micropollutants.
Collapse
Affiliation(s)
- Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wanting Kong
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Cao T, Wang L, Pataroque KE, Wang R, Elimelech M. Relating Solute-Membrane Electrostatic Interactions to Solute Permeability in Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5819-5828. [PMID: 40070342 DOI: 10.1021/acs.est.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Despite the widespread use of reverse osmosis (RO) membranes in water desalination, the role of solute-membrane interactions in solute transport remains complex and relatively not well understood. This study elucidates the relationship between solute-membrane electrostatic interactions and solute permeability in RO membranes. The transport of salt and neutral molecules through charged polyamide (PA) and uncharged cellulose triacetate (CTA) RO membranes was examined. Results show that salt rejection and salt permeability in the PA membrane are highly dependent on the solution pH due to the variations of membrane charge density and the Donnan potential at the membrane-solution interface. Specifically, a higher salt rejection (and hence lower salt permeability) of the PA membrane is observed under alkaline conditions compared to acidic conditions. This observation is attributed to the enhanced Donnan potential at higher solution pH, which hinders co-ion partitioning into the membrane. In contrast, for salt transport through the CTA membrane and neutral solute transport through both membranes, solute permeability is independent of the solution pH and solute concentration due to the negligible Donnan effect. Overall, our results demonstrate the important role of solute-membrane electrostatic interactions, combined with steric exclusion, in regulating solute permeability in RO membranes.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Li Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kevin E Pataroque
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Vickers R, Weigand TM, Coronell O, Miller CT. Water transport mechanisms during pressure-driven transport through polyamide nanogaps. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2025; 37:012020. [PMID: 39811080 PMCID: PMC11726587 DOI: 10.1063/5.0248257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Molecular-scale simulations of pressure-driven transport through polyamide nanogaps (5-100 Å) were performed to investigate fundamental transport mechanisms. Results show that transport in nanogaps ≤ 10 Å is always subdiffusive, but superdiffusive transport was observed in nanogaps ≥ 20 Å. Near typical operating pressures for applications ( Δ p = 100 atm), only the 100 Å nanogap exhibited superdiffusive behavior. Since openings in common membrane materials are typically <20 Å, results indicate that subdiffusive to diffusive transport dominates for typical applications, such as reverse osmosis.
Collapse
Affiliation(s)
- Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | - Timothy M. Weigand
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA
| |
Collapse
|
4
|
Foo ZH, Rehman D, Bouma AT, Monsalvo S, Lienhard JH. Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6320-6330. [PMID: 37027336 DOI: 10.1021/acs.est.2c08584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danyal Rehman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew T Bouma
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sebastian Monsalvo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Perry LA, Chew NGP, Grzebyk K, Cay-Durgun P, Lind ML, Sitaula P, Soukri M, Coronell O. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. DESALINATION 2023; 550:116370. [PMID: 37274380 PMCID: PMC10237506 DOI: 10.1016/j.desal.2023.116370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties. The effects of nanofiller loading, surface area, and size on membrane performance, along with active layer physico-chemical properties, were characterized in TFN membranes incorporated with Linde Type A (LTA) zeolite and zeolitic imidazole framework-8 (ZIF-8). Results show that nanofiller incorporation up to ~0.15 wt% resulted in higher water permeance and unchanged salt rejection, above which salt rejection decreased 0.9-25.6% and 26.1-48.3% for LTA-TFN and ZIF-8-TFN membranes, respectively. Observed changes in active layer physico-chemical properties were generally unsubstantial and did not explain observed changes in TFN membrane performance. Therefore, increased water permeance in TFN membranes could be due to preferential water transport through porous structures of nanofillers or along polymer-nanofiller interfaces. These findings offer new insights into the development of high-performance TFN membranes for water/ion separations.
Collapse
Affiliation(s)
- Lamar A. Perry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
- Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kasia Grzebyk
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Pinar Cay-Durgun
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Laura Lind
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Paban Sitaula
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Mustapha Soukri
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
6
|
Wang L, Cao T, Pataroque KE, Kaneda M, Biesheuvel PM, Elimelech M. Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3930-3939. [PMID: 36815574 DOI: 10.1021/acs.est.2c09772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Salt permeability of polyamide reverse osmosis (RO) membranes has been shown to increase with increasing feed salt concentration. The dependence of salt permeability on salt concentration has been attributed to the variation of salt partitioning with feed salt concentration. However, studies using various analytical techniques revealed that the salt (total ion) partitioning coefficient decreases with increasing salt concentration, in marked contrast to the observed increase in salt permeability. Herein, we thoroughly investigate the dependence of total ion and co-ion partitioning coefficients on salt concentration and solution pH. The salt partitioning is measured using a quartz crystal microbalance (QCM), while the co-ion partitioning is calculated from the measured salt partitioning using a modified Donnan theory. Our results demonstrate that the co-ion and total ion partitioning behave entirely differently with increasing salt concentrations. Specifically, the co-ion partitioning increased fourfold, while total ion partitioning decreased by 60% as the salt (NaCl) concentration increased from 100 to 800 mM. The increase in co-ion partitioning with increasing salt concentration is in accordance with the increasing trend of salt permeability in RO experiments. We further show that the dependence of salt and co-ion partitioning on salt concentration is much more pronounced at a higher solution pH. The good co-ion exclusion (GCE) model─derived from the solution-friction model─is used to calculate the salt permeability based on the co-ion partitioning coefficients. Our results show that the GCE model predicts the salt permeabilities in RO experiments relatively well, indicating that co-ion partitioning, not salt partitioning, governs salt transport through RO membranes. Our study provides an in-depth understanding of ion partitioning in polyamide RO membranes and its relationship with salt transport.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Kevin E Pataroque
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Masashi Kaneda
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - P Maarten Biesheuvel
- European Centre of Excellence for Sustainable Water Technology, Wetsus, Leeuwarden 8911 MA, The Netherlands
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
7
|
Armstrong MD, Vickers R, Coronell O. Trends and errors in reverse osmosis membrane performance calculations stemming from test pressure and simplifying assumptions about concentration polarization and solute rejection. J Memb Sci 2022; 660:120856. [PMID: 36186741 PMCID: PMC9521160 DOI: 10.1016/j.memsci.2022.120856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A primary goal in the design of reverse osmosis (RO) membranes is to improve water-solute selectivity and water permeance. These transport properties are commonly calculated in the literature using the solution-diffusion model with selectivity (A/B, bar-1) defined as the ratio between water permeance (A, L.m-2.h-1.bar-1) and solute permeance (B, L.m-2.h-1). In calculating transport properties, researchers often use simplifying assumptions about concentration polarization (CP; i.e., assuming negligible CP or a certain extent of CP) and solute rejection (i.e., assuming solute rejection is approximately 1 to enable the explicit use of the CP modulus in solute permeance calculations). Although using these assumptions to calculate transport properties is common practice, we could not find a study that evaluated the errors associated with using them. The uncertainty in these errors could impede unequivocally identifying manufacturing approaches that break through the commonly plotted trade-off frontier between selectivity and water permeance (A/B vs. A); however, we did not find in the literature a study that quantified such errors. Accordingly, we aimed to: (1) quantify the error in transport properties (A, B, and A/B) calculated using common simplifying assumptions about CP and rejection; and (2) determine if using simplifying assumptions affects conclusions drawn about membrane performance or trends concerning the trade-off frontier. Results show that compared with the case where no simplifying assumptions were made, simplified calculations were least accurate at low pressures for water permeance (up to 78% overestimation) and high pressures for solute permeance (up to 188% overestimation). Accordingly, the corresponding selectivities were least accurate at low pressure (up to 111% overestimation) and high pressure (up to 66% underestimation), and conclusions drawn about membrane performance and trade-off trends were pressure-dependent. Importantly, even in the absence of simplifying assumptions, selectivity results were pressure-dependent, indicating the importance of standardizing test conditions for the continued use of current performance metrics (i.e., A/B and A). We propose a two-pressure approach-collecting data for A and B at a high and a low pressure, respectively-combined with simplifying assumptions for more accurate simplified estimations of selectivity (< 10% absolute error). Our work contributes to a better understanding of the effects of operating pressure and key simplifying assumptions commonly used in calculating RO membrane performance metrics and interpretation of corresponding results.
Collapse
Affiliation(s)
- Mikayla D. Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Armstrong MD, Vickers R, Coronell O. Dataset of reverse osmosis membrane transport properties calculated with and without assumptions about concentration polarization and solute rejection and the errors associated with each assumption. Data Brief 2022; 44:108538. [PMID: 36060824 PMCID: PMC9436753 DOI: 10.1016/j.dib.2022.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
The data shared in this work represent aspects of the performance of reverse osmosis membranes during filtration. We present pressure, permeate flux, and solute rejection data gathered during cross-flow filtration experiments, which were used to (i) model water and solute permeation through the membranes and (ii) calculate concentration polarization moduli and a suite of transport properties, including water permeance, solute permeance, and water-solute selectivity. Membrane transport properties were calculated with the different approaches commonly used to simplify transport property calculations. Typical calculations of these transport properties often use simplifying assumptions (e.g., negligible concentration polarization and solute rejection close to 100%). However, the extent of the errors associated with using simplifying assumptions in this context were not previously known or quantified. This publication and corresponding dataset pertain to figures presented in the accompanying work (Armstrong et al., 2022) [1].
Collapse
Affiliation(s)
- Mikayla D. Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Riley Vickers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Pavluchkov V, Shefer I, Peer-Haim O, Blotevogel J, Epsztein R. Indications of ion dehydration in diffusion-only and pressure-driven nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Shefer I, Peer-Haim O, Leifman O, Epsztein R. Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14863-14875. [PMID: 34677944 DOI: 10.1021/acs.est.1c04956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While polyamide reverse osmosis and nanofiltration membranes have been extensively utilized in water purification and desalination processes, the molecular details governing water and solute permeation in these membranes are not fully understood. In this study, we apply transition-state theory for transmembrane permeation to systematically break down the intrinsic permeabilities of water and small ions in loose and tight polyamide nanofiltration membranes into enthalpic and entropic components using an Eyring-type equation. We analyze trends in these components to elucidate molecular phenomena that induce water-salt, monovalent-divalent, and monovalent-monovalent selectivity at different pH values. Our results suggest that in pores that are either too small or contain an electrostatically repelling mouth, the thermal activation of ions in the form of ion dehydration is less likely, promoting entropically driven selectivity with steric exclusion of hydrated ions. Instead, larger uncharged pores enable ion dehydration, inducing enthalpic selectivity that is driven by differences in the ion hydration properties. We also demonstrate that electrostatic interactions between cations and intrapore carboxyl groups hinder salt permeability, increasing the enthalpic barrier of the transport. Last, permeation tests of monovalent cations in the loose and tight polyamide membranes expose opposite rejection trends that further support the phenomenon of ion dehydration in large subnanopores.
Collapse
Affiliation(s)
- Idit Shefer
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ophir Peer-Haim
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Olga Leifman
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|