1
|
Li D, Long L, Xia W, Zhao W, Feng L, Xia X, He S, Liu Y, You S, Wei L. Utilization of UV/VUV irradiation for removal of human body fluids related pollutants in swimming pool water. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137549. [PMID: 39952138 DOI: 10.1016/j.jhazmat.2025.137549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Human body fluids related pollutants (BFPs) are primary precursors to disinfection by-products (DBPs) in swimming pool water (SPW). This study evaluated the degradation efficiency of ultraviolet/vacuum ultraviolet (UV/VUV) technology for the removal of three typical BFPs: urea, creatinine, and hippuric acid. The results showed that UV/VUV irradiation significantly enhanced the removal of these pollutants compared to UV alone. In addition, the observed rate constant (kobs) of the UV/VUV system was 1.9-8.0 times higher than that of the UV/H2O2 system, accompanied by a substantial 89.6 % reduction in the electrical energy per order (EEO). Urea degradation primarily involved the cleavage of C-N and C-H bonds within the urea molecule induced by VUV photolysis, whereas the degradation of creatinine and hippuric acid was mainly driven by a series of reactions (including decarboxylation, demethylation, hydroxylation, and ring opening) initiated by •OH. pH variations within the range of 6.8-8.2 exerted minimal impact on pollutant removal. However, NO3, humic acid, and cyanuric acid obviously inhibited the removal of BFPs. Employing UV/VUV system as a pretreatment step prior to chlorination disinfection led to a noteworthy reduction of 63.6 %-69.1 % of the adsorbable chlorine in actual SPW. Results of this study presented a green, chemical-free, and operationally simple method to mitigate DBPs formation in SPW.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangchen Long
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Jarin M, Ly J, Goldman J, Xie X. Water Disinfection Systems for Pools and Spas: Advantages, Disadvantages, and Consumer Views in the US. ACS ES&T WATER 2025; 5:525-538. [PMID: 39974564 PMCID: PMC11833866 DOI: 10.1021/acsestwater.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Disinfection of swimming pools and hot tubs (pools/spas) are necessary to prevent outbreaks and exposure to waterborne pathogens from water recreation. However, harmful disinfection byproducts (DBPs) from heavy chlorine usage continue to be a growing concern. Chlorine-based disinfectants also react with human inputs like sweat, urine, cosmetics, sunscreen, etc., that are introduced in a pool/spa, further increasing the severity of the DBP problem. We reviewed the current status of water disinfection technologies in the pool/spa industry and summarize the methods, trends, advantages, and disadvantages from a health and consumer viewpoint. Market research and face-to-face interviews were also accomplished with 100 industry experts and end-users in the US. We then integrate the literature findings in parallel with these market insights. Overall, we conclude the future of water recreation is trending away from high dosage chlorine-based solutions to disinfect swimming water and turning to alternatives with better sustainability and safety in mind. Lastly, we discuss the future directions of these technologies with current and past trends, offering insights to where research and development should be focused for both the user's health and overall experience.
Collapse
Affiliation(s)
- Mourin Jarin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jackie Ly
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jonathan Goldman
- Office
of Commercialization, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Wang S, Zhou R, Xu L, Hao Y, Zhang X, Chen L, Zhu X, Zhu P, Ding X. Exhaled breath of children swimmers conveniently collected in Teflon bags and used for trihalomethane determination by SPME-GC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7624-7632. [PMID: 39385737 DOI: 10.1039/d4ay01499e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Trihalomethanes (THMs) are the most common disinfection by-products in swimming pools; however, they exhibit strong cytotoxicity and genotoxicity, posing health risks. Children are more vulnerable to swimming-related health risks than adults; therefore, a rapid and accurate assessment of internal THM exposure in children swimmers is important for health risk assessment. For internal exposure measurement, collecting exhaled breath samples is more convenient, non-invasive, and easier to perform than collecting blood and urine. Therefore, this study aimed to develop a rapid, accurate, and reproducible method for determining THMs in children swimmers' exhaled breath using solid-phase microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS). The factors influencing the pretreatment procedure, including selecting SPME fibers, extraction temperature, and time, were systematically evaluated. Under the optimized conditions, the instrumental linearity range was 1-200 ng L-1 with correlation coefficients >0.998. The limit of detection for this method was 0.3-0.5 ng L-1. The recovery values ranged between 76.87 and 111.49%. Detecting THMs at three different calibration levels using this method had an intra-day precision of 1.31-5.07%, while the inter-day precision was 1.59-11.10% (n = 6). Additionally, the SPME-GC-MS method was used to detect the concentration of THMs in children swimmers' exhaled breath before and after swimming. Trichloromethane was the most abundant THM in the air around the pool and children's exhaled breath, and THM concentrations in the children swimmers' exhaled breath increased significantly after swimming. This study found no significant differences in the concentrations of THMs in the children swimmers' exhaled breath with different swimming durations or frequencies, which may be a result of the unrepresentative sample population and small sample size, and more in-depth and comprehensive studies are needed to verify this conclusion.
Collapse
Affiliation(s)
- Shunan Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Run Zhou
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Lingling Xu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Yamei Hao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Xi Zhang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Limei Chen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Xun Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Pengfei Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
4
|
Lau SS, Feng Y, Gu AZ, Russell C, Pope G, Mitch WA. Regulated 1-2 Carbon Disinfection Byproducts do not Correlate with Cytotoxicity with Increasing Disinfectant Contact Time During Chlorination, Chlorination Followed by Chloramination or Granular Activated Carbon Followed by Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20289-20299. [PMID: 39484837 DOI: 10.1021/acs.est.4c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulations typically use four trihalomethanes (THM4) and five haloacetic acids (HAA5) as metrics of consumer exposure to disinfection byproducts (DBPs) and their chronic health risks. Their use as exposure metrics assumes that their concentrations correlate with DBP-associated toxicity. For a chlorine-disinfected surface water, this study demonstrates that increasing chlorine contact time from 1 to 7 days was associated with a 62-76% increase in THM4 and HAA5 but a 40-47% decrease in total cytotoxicity. Thus, the use of THM4 and HAA5 may divert regulatory attention away from the low water age sections of distribution systems near treatment facilities that may feature the highest cytotoxicity but lowest THM4/HAA5 concentrations. Among common options to reduce THM4/HAA5, this study also shows that chlorine disinfection followed by chloramines for maintaining a distribution system residual did not substantially reduce cytotoxicity. Granular activated carbon followed by chlorine reduced cytotoxicity by 28-80%, even at the lowest water ages where cytotoxicity was maximized. These findings highlight the need to identify DBPs that better correlate with toxicity than THM4/HAA5 to serve as metrics of exposure. These metrics could help identify distribution system locations exhibiting higher consumer risk and develop modifications to disinfection systems that effectively reduce consumer risk.
Collapse
Affiliation(s)
- Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Yinmei Feng
- School of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Avenue, Ithaca, New York 14853, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Avenue, Ithaca, New York 14853, United States
| | - Caroline Russell
- Carollo Engineers, Inc, 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - Greg Pope
- Carollo Engineers, Inc, 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
5
|
Ren J, Tang M, Wang L, Chu W, Shi W, Zhou Q, Pan Y. How to achieve adequate quenching for DBP analysis in drinking water? WATER RESEARCH 2024; 253:121264. [PMID: 38335842 DOI: 10.1016/j.watres.2024.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.
Collapse
Affiliation(s)
- Jiafeng Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengmeng Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Leyi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
6
|
Peng F, Wang Y, Lu Y, Yang Z, Li H. Formation and control of disinfection by-products during the trichloroisocyanuric acid disinfection in swimming pool water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123536. [PMID: 38365079 DOI: 10.1016/j.envpol.2024.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
7
|
Dong H, Cuthbertson AA, Plewa MJ, Weisbrod CR, McKenna AM, Richardson SD. Unravelling High-Molecular-Weight DBP Toxicity Drivers in Chlorinated and Chloraminated Drinking Water: Effect-Directed Analysis of Molecular Weight Fractions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18788-18800. [PMID: 37418586 DOI: 10.1021/acs.est.3c00771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
As disinfection byproducts (DBPs) are ubiquitous sources of chemical exposure in disinfected drinking water, identifying unknown DBPs, especially unknown drivers of toxicity, is one of the major challenges in the safe supply of drinking water. While >700 low-molecular-weight DBPs have been identified, the molecular composition of high-molecular-weight DBPs remains poorly understood. Moreover, due to the absence of chemical standards for most DBPs, it is difficult to assess toxicity contributions for new DBPs identified. Based on effect-directed analysis, this study combined predictive cytotoxicity and quantitative genotoxicity analyses and Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR-MS) identification to resolve molecular weight fractions that induce toxicity in chloraminated and chlorinated drinking waters, along with the molecular composition of these DBP drivers. Fractionation using ultrafiltration membranes allowed the investigation of <1 kD, 1-3 kD, 3-5 kD, and >5 kD molecular weight fractions. Thiol reactivity based predictive cytotoxicity and single-cell gel electrophoresis based genotoxicity assays revealed that the <1 kD fraction for both chloraminated and chlorinated waters exhibited the highest levels of predictive cytotoxicity and direct genotoxicity. The <1 kD target fraction was used for subsequent molecular composition identification. Ultrahigh-resolution MS identified singly charged species (as evidenced by the 1 Da spacing in 13C isotopologues), including 3599 chlorine-containing DBPs in the <1 kD fraction with the empirical formulas CHOCl, CHOCl2, and CHOCl3, with a relative abundance order of CHOCl > CHOCl2 ≫ CHOCl3. Interestingly, more high-molecular-weight CHOCl1-3 DBPs were identified in the chloraminated vs chlorinated waters. This may be due to slower reactions of NH2Cl. Most of the DBPs formed in chloraminated waters were composed of high-molecular-weight Cl-DBPs (up to 1 kD) rather than known low-molecular-weight DBPs. Moreover, with the increase of chlorine number in the high-molecular-weight DBPs detected, the O/C ratio exhibited an increasing trend, while the modified aromaticity index (AImod) showed an opposite trend. In drinking water treatment processes, the removal of natural organic matter fractions with high O/C ratio and high AImod value should be strengthened to minimize the formation of known and unknown DBPs.
Collapse
Affiliation(s)
- Huiyu Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing 100085, People's Republic of China
| | - Amy A Cuthbertson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Zhao J, Shang C, Yin R. A High-Radical-Yield Advanced Oxidation Process Coupling Far-UVC Radiation with Chlorinated Cyanurates for Micropollutant Degradation in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18867-18876. [PMID: 37158565 DOI: 10.1021/acs.est.3c00255] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing the radical yield and reducing energy consumption would enhance the sustainability and competitiveness of advanced oxidation processes (AOPs) for micropollutant degradation in water. We herein report a novel AOP coupling far-UVC radiation at 222 nm with chlorinated cyanurates (termed the UV222/Cl-cyanurates AOP) for radical generation and micropollutant abatement in water. We experimentally determined the concentrations of HO•, Cl•, and ClO• in the UV222/Cl-cyanurates AOP in deionized water and swimming pool water. The radical concentrations are 10-27 times and 4-13 times, respectively, higher than those in the UV254/Cl-cyanurates AOP and the well-documented UV254/chlorine AOP under comparable conditions (e.g., same UV fluence and oxidant dosing). We determined the molar absorption coefficients and innate quantum yields of two chlorine species and two Cl-cyanurates at 222 nm and incorporated these parameters into a kinetic model. The model enables accurate prediction of oxidant photodecay rates as well as the pH impact on radical generation in the UV222/Cl-cyanurates AOP. We predicted the pseudo-first-order degradation rate constants of 25 micropollutants in the UV222/Cl-cyanurates AOP and demonstrated that many micropollutants can be degraded by >80% with a low UV fluence of 25 mJ cm-2. This work advances the fundamental photochemistry of chlorine and Cl-cyanurates at 222 nm and offers a highly effective engineering tool in combating micropollutants in water where Cl-cyanurates are suitable to use.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
9
|
Yeung K, Moore N, Sun J, Taylor-Edmonds L, Andrews S, Hofmann R, Peng H. Thiol Reactome: A Nontargeted Strategy to Precisely Identify Thiol Reactive Drinking Water Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18722-18734. [PMID: 37022973 DOI: 10.1021/acs.est.2c05486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The precise identification of predominant toxic disinfection byproducts (DBPs) from disinfected water is a longstanding challenge. We propose a new acellular analytical strategy, the 'Thiol Reactome', to identify thiol-reactive DBPs by employing a thiol probe and nontargeted mass spectrometry (MS) analysis. Disinfected/oxidized water samples had reduced cellular oxidative stress responses of 46 ± 23% in Nrf2 reporter cells when preincubated with glutathione (GSH). This supports thiol-reactive DBPs as the predominant drivers of oxidative stress. This method was benchmarked using seven classes of DBPs including haloacetonitriles, which preferentially reacted with GSH via substitution or addition depending on the number of halogens present. The method was then applied to chemically disinfected/oxidized waters, and 181 tentative DBP-GSH reaction products were detected. The formulas of 24 high abundance DBP-GSH adducts were predicted, among which nitrogenous-DBPs (11) and unsaturated carbonyls (4) were the predominant compound classes. Two major unsaturated carbonyl-GSH adducts, GSH-acrolein and GSH-acrylic acid, were confirmed by their authentic standards. These two adducts were unexpectedly formed from larger native DBPs when reacting with GSH. This study demonstrated the "Thiol Reactome" as an effective acellular assay to precisely identify and broadly capture toxic DBPs from water mixtures.
Collapse
Affiliation(s)
- Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Nathan Moore
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Lizbeth Taylor-Edmonds
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Susan Andrews
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Ronald Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
10
|
Fang C, Yang W, Lu N, Xiao R, Du Z, Wang Q, Chu W. Alkaline chlorination of drinking water: A trade-off between genotoxicity control and trihalomethane formation. WATER RESEARCH 2023; 246:120692. [PMID: 37890262 DOI: 10.1016/j.watres.2023.120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
The pH of chlorination is an important factor affecting the formation of disinfection byproducts (DBPs). In this study, we discovered that the genotoxicity induced by chlorination can be effectively reduced under alkaline conditions. As the pH of chlorination increased from 6.5 to 8.5, the genotoxicity of investigated waters reduced by ∼30-90 %. By assessing the genotoxicity of the mixture of measured DBPs, it was found that the contribution of measured DBPs to the overall genotoxicity was lower than 5 %, and the significant reduction of genotoxicity was largely associated with unknown DBPs. The result of Pearson's correlation analysis indicated that humified organics and soluble microbial byproducts were likely responsible for the genotoxicity, and their derived genotoxic compounds (i.e., unknown DBPs) tended to decompose during alkaline chlorination. However, the control of genotoxicity by alkaline chlorination was achieved at the expense of promoting trihalomethane (THM) formation. The highest genotoxicity reduction (93 %) was observed for chlorinated granular activated carbon-treated waters, but the formation of THMs was promoted to a level approaching that in untreated waters. The inconsistent trend of overall genotoxicity and THM concentration during alkaline chlorination suggested the inadequacy of THMs as metric for DBP exposure, and considerations should also be given to the toxicity of bulk water in addition to regulated DBPs.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Nannan Lu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shandong Province Water Supply and Drainage Monitoring Centre, Jinan 250101, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Qi Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Lau S, Feng Y, Gu AZ, Russell C, Pope G, Mitch WA. Cytotoxicity Comparison between Drinking Water Treated by Chlorination with Postchloramination versus Granular Activated Carbon (GAC) with Postchlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13699-13709. [PMID: 37640368 PMCID: PMC10501121 DOI: 10.1021/acs.est.3c03591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Granular activated carbon treatment with postchlorination (GAC/Cl2) and chlorination followed by chloramination (Cl2/NH2Cl) represent two options for utilities to reduce DBP formation in drinking water. To compare the total cytotoxicity of waters treated by a pilot-scale GAC treatment system with postchlorination (and in some instances with prechlorination upstream of GAC (i.e., (Cl2)/GAC/Cl2)) and chlorination/chloramination (Cl2/NH2Cl) at ambient and elevated Br- and I- levels and at three different GAC ages, we applied the Chinese hamster ovary (CHO) cell cytotoxicity assay to whole-water extracts in conjunction with calculations of the cytotoxicity contributed by the 33 (semi)volatile DBPs lost during extractions. At both ambient and elevated Br- and I- levels, GAC/Cl2 and Cl2/NH2Cl achieved comparable reductions in the formation of regulated trihalomethanes (THMs) and haloacetic acids (HAAs). Nonetheless, GAC/Cl2 always resulted in lower total cytotoxicity than Cl2/NH2Cl, even at up to 65% total organic carbon breakthrough. Prechlorination formed (semi)volatile DBPs that were removed by the GAC, yet there was no substantial difference in total cytotoxicity between Cl2/GAC/Cl2 and GAC/Cl2. The poorly characterized fraction of DBPs captured by the bioassay dominated the total cytotoxicity when the source water contained ambient levels of Br- and I-. When the water was spiked with Br- and I-, the known, unregulated (semi)volatile DBPs and the uncharacterized fraction of DBPs were comparable contributors to total cytotoxicity; the contributions of regulated THMs and HAAs were comparatively minor.
Collapse
Affiliation(s)
- Stephanie
S. Lau
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Yinmei Feng
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Ave, Ithaca, New York 14853, United States
| | - April Z. Gu
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, 220 Hollister Hall, 527 College Ave, Ithaca, New York 14853, United States
| | - Caroline Russell
- Carollo
Engineers, Inc., 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - Greg Pope
- Carollo
Engineers, Inc., 8911 Capital of Texas Hwy North, Suite 2200, Austin, Texas 78759, United States
| | - William A. Mitch
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
12
|
Ahmadpour E, Delpla I, Debia M, Simard S, Proulx F, Sérodes JB, Valois I, Tardif R, Haddad S, Rodriguez M. Full-scale multisampling and empirical modeling of DBPs in water and air of indoor pools. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1128. [PMID: 37650940 DOI: 10.1007/s10661-023-11619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Disinfection by-products (DBPs) are formed in the water in swimming pools due to reactions between disinfectants (chlorine, bromine, ozone) and the organic matter introduced by bathers and supply water. High concentrations of DBPs are also reported in the air of indoor swimming pools. Based on a robust multisampling program, the levels and variations of DBPs in the air (trichloramine [TCAM] and trihalomethanes [THMs]) and water (THM) were assessed, as well as their precursors (total organic carbon, water temperature, pH, free, and total chlorine) and proxies (CO2 and relative humidity) in four indoor chlorinated swimming pools. High-frequency sampling was conducted during one high-attendance day for each pool. This study focused on parameters that are easy to measure in order to develop models for predicting levels of THMs and TCAM in the air. The results showed that the number of bathers had an important impact on the levels of THMs and TCAM, with a two-to-three-fold increase in air chloroform (up to 110 μg/m3) and a two-to-four-fold increase in TCAM (up to 0.52 mg/m3) shortly after pools opened. The results of this study for the first time showed that CO2 and relative humidity can serve as proxies for monitoring variations in airborne THMs and TCAM. Our results highlight the good predictive capacity of the developed models and their potential for use in day-to-day monitoring. This could help optimize and control DBPs formation in the air of indoor swimming pools and reduce contaminant exposure for both pool employees and users.
Collapse
Affiliation(s)
- Elham Ahmadpour
- Department of Occupational & Environmental Health, School of Public Health, Universite de Montreal, 2900, Boulevard Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Ianis Delpla
- Ecole superieure d'amenagement du territoire et de developpement regional (ESAD), Université Laval, Pavillon F-A. Savard, 2325, rue des Bibliothèques, local 1612, Quebec, QC, G1V 0A6, Canada.
| | - Maximilien Debia
- Department of Occupational & Environmental Health, School of Public Health, Universite de Montreal, 2900, Boulevard Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Sabrina Simard
- Ecole superieure d'amenagement du territoire et de developpement regional (ESAD), Université Laval, Pavillon F-A. Savard, 2325, rue des Bibliothèques, local 1612, Quebec, QC, G1V 0A6, Canada
| | - François Proulx
- Ecole superieure d'amenagement du territoire et de developpement regional (ESAD), Université Laval, Pavillon F-A. Savard, 2325, rue des Bibliothèques, local 1612, Quebec, QC, G1V 0A6, Canada
| | - Jean-Baptiste Sérodes
- Ecole superieure d'amenagement du territoire et de developpement regional (ESAD), Université Laval, Pavillon F-A. Savard, 2325, rue des Bibliothèques, local 1612, Quebec, QC, G1V 0A6, Canada
| | - Isabelle Valois
- Department of Occupational & Environmental Health, School of Public Health, Universite de Montreal, 2900, Boulevard Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Robert Tardif
- Department of Occupational & Environmental Health, School of Public Health, Universite de Montreal, 2900, Boulevard Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Sami Haddad
- Department of Occupational & Environmental Health, School of Public Health, Universite de Montreal, 2900, Boulevard Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Manuel Rodriguez
- Ecole superieure d'amenagement du territoire et de developpement regional (ESAD), Université Laval, Pavillon F-A. Savard, 2325, rue des Bibliothèques, local 1612, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
13
|
Jia M, Chen X, Liu B, Hur K, Dong S. Persistence kinetics of a novel disinfectant peracetic acid for swimming pool disinfection. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131792. [PMID: 37295331 DOI: 10.1016/j.jhazmat.2023.131792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Disinfection is essential to swimming pool water (SPW) quality. Peracetic acid (PAA) has attracted attention for water disinfection for advantages such as less formation of regulated DBPs. Persistence kinetics of disinfectants is difficult to elucidate in pools because of the complex water matrix stemming from body fluid loadings from swimmers and long residence times. In this research, the persistence kinetics of PAA was investigated in SPW benchmarked against free chlorine, use bench-scale experiments and model simulation. Kinetics models were developed to simulate the persistence of PAA and chlorine. The stability of PAA was less sensitive to swimmer loadings than chlorine. An average swimmer loading event reduced the apparent decay rate constant of PAA by 66 %, a phenomenon that diminished with increasing temperatures. L-histidine and citric acid from swimmers were identified as main retardation contributors. By contrast, a swimmer loading event instantaneously consumed 70-75 % of the residual free chlorine. The required total dose of PAA was 97 % less than chlorine under the 3-days cumulative disinfection mode. Temperature was positively correlated with disinfectant decay rate, with PAA being more sensitive than chlorine. These results shed light on the persistence kinetics of PAA and its influential factors in swimming pool settings.
Collapse
Affiliation(s)
- Mingyang Jia
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohong Chen
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, China
| | - Bingjun Liu
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, China
| | - Kyu Hur
- 3-10 Shinohara Nishicho, Kohoku Ward Yokohama, Kanagawa 222-0025, Japan
| | - Shengkun Dong
- Guangdong Engineering Technology Research Center of Water Security Regulation and Control for Southern China, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China; Southern Laboratory of Ocean Science and Engineering, China.
| |
Collapse
|
14
|
Li J, Chen J, Hu Z, Li X, Li M, Wang Y, Zhang Z, Liang X. Overlooked inorganic DBPs in trichloroisocyanuric acid (TCCA) disinfected indoor swimming pool: Evidences from concentration, cytotoxicity, and human health risk. CHEMOSPHERE 2023:139061. [PMID: 37247674 DOI: 10.1016/j.chemosphere.2023.139061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Trichloroisocyanuric acid (TCCA) is a popular disinfectant for swimming pools in China. However, the occurrence and importance of regulated disinfection byproducts (DBPs) in TCCA-disinfected swimming pools are less understood. This study analyzed 12 regulated DBPs (4 trihalomethanes (THMs), 5 haloacetic acid (HAAs), bromate, chlorate, and chlorite) in 85 swimming pool water samples and 17 input tap water samples from one swimming pool for 17 days continuously. Considering water temperature, pH, free chlorine, total chlorine, and urea, approximately 88%, 49%, 97%, 55%, and 97% of swimming pool water samples were within the water quality limits for China. Total concentrations of THMs, HAAs, and inorganic DBPs of 20.4-42.2, 82.0-229, and 100-729 μg/L in the swimming pool, and 16.6-28.3, 8.2-12.8, and 64.4-95.6 μg/L in the tap water, indicating inorganic DBPs are the dominant swimming pool and drinking water pollutants. Cancer risk values of regulated DBPs in swimming pools and input tap water are 2.7E-05 and 8.1E-05, respectively, and exceed the US EPA's threshold (1.0E-06). The non-cancer risk is below the US EPA's threshold. Following TCCA disinfection, the concentration and calculated cytotoxicity of regulated DBPs had a 3.6-fold and 1.9-fold increase, respectively. Inorganic DBPs contribute to the calculated concentration and cancer risks of DBPs in swimming pools and tap water at sufficient concentrations warranting regulation. This study provides data on 12 regulated DBPs in TCCA-disinfected indoor swimming pools, highlighting the importance of inorganic DBPs from evidences of concentration, cytotoxicity, and cancer risk for the first time.
Collapse
Affiliation(s)
- Jiafu Li
- School of Public Health, Soochow University, Suzhou, 215000, China.
| | - Jingsi Chen
- School of Public Health, Soochow University, Suzhou, 215000, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Xinyu Li
- School of Public Health, Soochow University, Suzhou, 215000, China
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011 China
| | - Yuan Wang
- Center for Disease Control and Prevention of Kunshan, Kunshan, 215301 China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou, 215000, China.
| | - Xiaojun Liang
- Center for Disease Control and Prevention of Kunshan, Kunshan, 215301 China.
| |
Collapse
|
15
|
Usman M, Kuckelkorn J, Kämpfe A, Zwiener C, Wintgens TA, Linnemann V. Identification of disinfection by-products (DBP) in thermal water swimming pools applying non-target screening by LC-/GC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130981. [PMID: 36801715 DOI: 10.1016/j.jhazmat.2023.130981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The discovery of new disinfection by-products (DBPs) is still a rarely investigated research area in past studies. In particular, compared to freshwater pools, therapeutic pools with their unique chemical composition have rarely been investigated for novel DBPs. Here we have developed a semi-automated workflow that combines data from target and non-target screening, calculated and measured toxicities into a heat map using hierarchical clustering to assess the pool's overall potential chemical risk. In addition, we used complementary analytical techniques such as positive and negative chemical ionization to demonstrate how novel DBPs can be better identified in future studies. We identified two representatives of the haloketones (pentachloroacetone, and pentabromoacetone) and tribromo furoic acid detected for the first time in swimming pools. Non-target screening combined with target analysis and toxicity assessment may help to define risk-based monitoring strategies in the future, as required by regulatory frameworks for swimming pool operations worldwide.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany
| | - Jochen Kuckelkorn
- German Environment Agency, Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - Alexander Kämpfe
- German Environment Agency, Swimming Pool Water, Chemical Analytics, Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Thomas A Wintgens
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany
| | - Volker Linnemann
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany.
| |
Collapse
|
16
|
Peng F, Lu Y, Dong X, Wang Y, Li H, Yang Z. Advances and research needs for disinfection byproducts control strategies in swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131533. [PMID: 37146331 DOI: 10.1016/j.jhazmat.2023.131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
17
|
Zhang D, Dong S, Chen L, Xiao R, Chu W. Disinfection byproducts in indoor swimming pool water: Detection and human lifetime health risk assessment. J Environ Sci (China) 2023; 126:378-386. [PMID: 36503764 DOI: 10.1016/j.jes.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/17/2023]
Abstract
Quantification of regulated and emerging disinfection byproducts (DBPs) in swimming pool water, as well as the assessment of their lifetime health risk are limited in China. In this study, the occurrence of regulated DBPs (e.g., trihalomethanes, haloacetic acids) and emerging DBPs (e.g., haloacetonitriles, haloacetaldehydes) in indoor swimming pool water and the corresponding source water at a city in Eastern China were determined. The concentrations of DBPs in swimming pool water were 1-2 orders of magnitude higher than that in source water. Lifetime cancer and non-cancer risks of DBPs stemming from swimming pool water were also estimated. Inhalation and dermal exposure were the most significant exposure routes related to swimming pool DBP cancer and non-cancer risks. For the first time, buccal and aural exposure were considered, and were proven to be important routes of DBP exposure (accounting for 17.9%-38.9% of total risk). The cancer risks of DBPs for all swimmers were higher than 10-6 of lifetime exposure risk recommended by United States Environmental Protection Agency, and the competitive adult swimmers experienced the highest cancer risk (7.82 × 10-5). These findings provide important information and perspectives for future efforts to lower the health risks associated with exposure to DBPs in swimming pool water.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
18
|
Fang C, Luan X, Ao F, Wang X, Ding S, Du Z, Liu S, Jia R, Chu W. Decomposition of Total Organic Halogen Formed during Chlorination: The Iceberg of Halogenated Disinfection Byproducts Was Previously Underestimated. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1433-1442. [PMID: 36626160 DOI: 10.1021/acs.est.2c03596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Total organic halogen (TOX) is widely used as a surrogate bulk parameter to measure the overall exposure of halogenated disinfection byproducts (DBPs) in drinking water. In this study, we surprisingly found that the level of TOX in chlorinated waters had been significantly underestimated under common analytical conditions. After the addition of quenching agent sodium thiosulfate, total organic chlorine and total organic bromine exhibited a two-phase decomposition pattern with increasing contact time, and a significant decomposition was observed for different types of quenching agents, quenching doses, and pH conditions. More importantly, the decomposed TOX closely correlated with the acute toxicity of quenched water against luminous bacteria, implying that the DBPs responsible for TOX decomposition could be of important toxicological significance. Based on nontarget analysis by using high-resolution mass spectrometry, molecular formulas for the decomposed TOX were determined. After re-examining the mass balance of TOX in the context of unintentional decomposition, it was found that both the level and percentage of unknown TOX in chlorinated waters were considerably higher than historically thought. Overall, this study brings new insights into the knowledge of TOX formed during chlorination, providing important clues on the identification of toxicity driver in drinking water.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Feiyang Ao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xingyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shushen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Centre, Jinan 250101, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Wang J, Zhang M, Hu S, Xian Q, Chen H, Gong T. Occurrence and Cytotoxicity of Aliphatic and Aromatic Halogenated Disinfection Byproducts in Indoor Swimming Pool Water and Their Incoming Tap Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17763-17775. [PMID: 36475631 DOI: 10.1021/acs.est.2c07175] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disinfection byproducts (DBPs) in swimming pool water are of wide concern for public health. In this study, the occurrence of five categories of aliphatic halogenated DBPs, i.e., trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs), and six categories of aromatic halogenated DBPs, i.e., halophenols (HPs), halonitrophenols (HNPs), halohydroxy-benzaldehydes (HBALs), halohydroxybenzoic acids (HBAs), halobenzoquinones (HBQs), and haloanilines (HAs), was examined in seven indoor swimming pool water and their incoming tap water. The correlations between the DBP concentrations and water quality parameters were explored. Moreover, the cytotoxicity of the aliphatic and aromatic halogenated DBPs was tested with human hepatoma (HepG2) cells, and the concentration-cytotoxicity contributions of different DBP categories were calculated. The results demonstrate that 24 aliphatic (5 THMs, 8 HAAs, 5 HANs, 4 HNMs, and 2 HKs) and 50 aromatic halogenated DBPs (9 HPs, 8 HNPs, 9 HBALs, 8 HBAs, 11 HBQs, and 5 HAs) were present in the swimming pool water, among which 41 aromatic halogenated DBPs were detected in swimming pool water for the first time. The average concentrations of the five categories of aliphatic halogenated DBPs in the swimming pool water were in the order of HAAs > HANs > HKs > THMs > HNMs, while those in their incoming tap water were in the order of THMs > HAAs > HKs > HANs > HNMs. The average concentrations of the aromatic halogenated DBPs in the swimming pool water were significantly lower than those of the aliphatic halogenated DBPs, following the order of HBQs > HPs > HBAs > HBALs > HAs > HNPs, while those in their incoming tap water were in the order of HBALs > HBQs > HPs > HBAs > HAs > HNPs. The average concentration-cytotoxicity contributions of different DBP categories in the swimming pool water followed the order of HAAs > HANs > HNMs > HKs > HBQs > THMs > HPs > HNPs > HBAs > HBALs > HAs, with HAAs, HANs, and HNMs possessing the main concentration-cytotoxicity contributions (93.2% in total) among all DBP categories.
Collapse
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- School of Energy and Environment, Southeast University, Nanjing210096, China
| | - Meiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing210096, China
| |
Collapse
|
20
|
Zhang D, Chen L, Dong S, Luo J, Xu Z, Chu W. Dramatically increased disinfection byproducts in swimming pool water caused by commonly used urea degradants. WATER RESEARCH 2022; 223:118987. [PMID: 36029699 DOI: 10.1016/j.watres.2022.118987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In China, urea degradants are often used in combination with chlorine in swimming pool water to remove urea. Here we report the first study about the impacts of urea degradants on urea degradation, disinfection byproduct (DBP) formation and estimated DBP-associated cytotoxicity and genotoxicity. Firstly, four groups of typical DBPs from six real indoor swimming pools were analyzed. The concentration of DBPs in swimming pool waters was about 1-2 orders of magnitude higher than that source tap water. Notably, a rapid increase in DBPs was observed after urea degradant treatment. Simulated processes of urea removal using three commonly used urea degradants were therefore conducted in laboratory. Neither urea degradant nor chlorine alone removed urea effectively within 48 h. When applied in combination, urea degradant with sufficient chlorine rapidly removed urea by 100% within 3 h, and anti-chlorourea oligomer in urea degradants was the main contributor. Meanwhile, a remarkable increase in DBPs, especially brominated DBPs, was observed due to bromide introduction by urea degradants. For this reason, bromine incorporation factor (BIF) of DBPs dramatically increased. For instance, the BIF of dihaloacetic acids increased by 2665%-4025% after applying three urea degradants. As the highly toxic brominated DBPs were generated, attention should be paid into the potential DBP-related health risks from the use of urea degradants together with chlorine.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jiayi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Liao X, Allen JM, Granger CO, Richardson SD. How well does XAD resin extraction recover halogenated disinfection byproducts for comprehensive identification and toxicity testing? J Environ Sci (China) 2022; 117:264-275. [PMID: 35725078 DOI: 10.1016/j.jes.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Halogenated disinfection byproducts (DBPs) are an unintended consequence of drinking water disinfection, and can have significant toxicity. XAD resins are commonly used to extract and enrich trace levels of DBPs for comprehensive, nontarget identification of DBPs and also for in vitro toxicity studies. However, XAD resin recoveries for complete classes of halogenated DBPs have not been evaluated, particularly for low, environmentally relevant levels (ng/L to low µg/L). Thus, it is not known whether levels of DBPs or the toxicity of drinking water might be underestimated. In this study, DAX-8/XAD-2 layered resins were evaluated, considering both adsorption and elution from the resins, for extracting 66 DBPs from water. Results demonstrate that among the 7 classes of DBPs investigated, trihalomethanes (THMs), including iodo-THMs, were the most efficiently adsorbed, with recovery of most THMs ranging from 50%-96%, followed by halonitromethanes (40%-90%). The adsorption ability of XAD resins for haloacetonitriles, haloacetamides, and haloacetaldehydes was highly dependent on the individual species. The adsorption capacity of XAD resins for haloacetic acids was lower (5%-48%), even after adjusting to pH 1 before extraction. Recovery efficiency for most DBPs was comparable with their adsorption, as most were eluted effectively from XAD resins by ethyl acetate. DBP polarity and molecular weight were the two most important factors that determine their recovery. Recovery of trichloromethane, iodoacetic acid, chloro- and iodo-acetonitrile, and chloroacetamide were among the lowest, which could lead to underestimation of toxicity, particularly for iodoacetic acid and iodo-acetonitrile, which are highly toxic.
Collapse
Affiliation(s)
- Xiaobin Liao
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA; Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA; Currently at LanzaTech, 535 Commerce Drive, Soperton, Georgia 30457, USA
| | - Caroline O Granger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| |
Collapse
|
22
|
Liberatore HK, Daiber EJ, Ravuri SA, Schmid JE, Richardson SD, DeMarini DM. Disinfection byproducts in chlorinated or brominated swimming pools and spas: Role of brominated DBPs and association with mutagenicity. J Environ Sci (China) 2022; 117:253-263. [PMID: 35725077 PMCID: PMC9986846 DOI: 10.1016/j.jes.2022.04.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 05/23/2023]
Abstract
Although the health benefits of swimming are well-documented, health effects such as asthma and bladder cancer are linked to disinfection by-products (DBPs) in pool water. DBPs are formed from the reaction of disinfectants such as chlorine (Cl) or bromine (Br) with organics in the water. Our previous study (Daiber et al., Environ. Sci. Technol. 50, 6652; 2016) found correlations between the concentrations of classes of DBPs and the mutagenic potencies of waters from chlorinated or brominated swimming pools and spas. We extended this study by identifying significantly different concentrations of 21 individual DBPs in brominated or chlorinated pool and spa waters as well as identifying which DBPs and additional DBP classes were most associated with the mutagenicity of these waters. Using data from our previous study, we found that among 21 DBPs analyzed in 21 pool and spa waters, the concentration of bromoacetic acid was significantly higher in Br-waters versus Cl-waters, whereas the concentration of trichloroacetic acid was significantly higher in Cl-waters. Five Br-DBPs (tribromomethane, dibromochloroacetic acid, dibromoacetonitrile, bromoacetic acid, and tribromoacetic acid) had significantly higher concentrations in Br-spa versus Cl-spa waters. Cl-pools had significantly higher concentrations of Cl-DBPs (trichloroacetaldehyde, trichloromethane, dichloroacetic acid, and chloroacetic acid), whereas Br-pools had significantly higher concentrations of Br-DBPs (tribromomethane, dibromoacetic acid, dibromoacetonitrile, and tribromoacetic acid). The concentrations of the sum of all 4 trihalomethanes, all 11 Br-DBPs, and all 5 nitrogen-containing DBPs were each significantly higher in brominated than in chlorinated pools and spas. The 8 Br-DBPs were the only DBPs whose individual concentrations were significantly correlated with the mutagenic potencies of the pool and spa waters. These results, along with those from our earlier study, highlight the importance of Br-DBPs in the mutagenicity of these recreational waters.
Collapse
Affiliation(s)
- Hannah K Liberatore
- Air Methods and Characterization Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Eric J Daiber
- Student Services Authority, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, USA
| | - Sridevi A Ravuri
- Student Services Authority, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, USA
| | - Judith E Schmid
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - David M DeMarini
- Air Methods and Characterization Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
23
|
Granger CO, Richardson SD. Do DBPs swim in salt water pools? Comparison of 60 DBPs formed by electrochemically generated chlorine vs. conventional chlorine. J Environ Sci (China) 2022; 117:232-241. [PMID: 35725075 DOI: 10.1016/j.jes.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
Disinfectants are added to swimming pools to kill harmful pathogens. Although liquid chlorine (sodium hypochlorite) is the most commonly used disinfectant, alternative disinfection techniques like electrochemically generated mixed oxidants or electrochemically generated chlorine, often referred to as salt water pools, are growing in popularity. However, these disinfectants react with natural organic matter and anthropogenic contaminants introduced to the pool water by swimmers to form disinfection byproducts (DBPs). DBPs have been linked to several adverse health effects, such as bladder cancer, adverse birth outcomes, and asthma. In this study, we quantified 60 DBPs using gas chromatography-mass spectrometry and assessed the calculated cytotoxicity and genotoxicity of an indoor community swimming pool before and after switching to a salt water pool with electrochemically generated chlorine. Interestingly, the total DBPs increased by 15% upon implementation of the salt water pool, but the calculated cytotoxicity and genotoxicity decreased by 45% and 15%, respectively. Predominant DBP classes formed were haloacetic acids, with trichloroacetic acid and dichloroacetic acid contributing 57% of the average total DBPs formed. Haloacetonitriles, haloacetic acids, and haloacetaldehydes were the primary drivers of calculated cytotoxicity, and haloacetic acids were the primary driver of calculated genotoxicity. Diiodoacetic acid, a highly toxic iodinated DBP, is reported for the first time in swimming pool water. Bromide impurities in sodium chloride used to electrochemically generate chlorine led to a 73% increase in brominated DBPs, primarily driven by bromochloroacetic acid. This study presents the most extensive DBP study to-date for salt water pools.
Collapse
Affiliation(s)
- Caroline O Granger
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, USA.
| |
Collapse
|
24
|
Richardson SD. A catalyst for integrating analytical biology, analytical chemistry, and engineering to improve drinking water safety: The groundbreaking work of Dr. Michael Plewa. J Environ Sci (China) 2022; 117:6-9. [PMID: 35725090 DOI: 10.1016/j.jes.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
25
|
Allen JM, Plewa MJ, Wagner ED, Wei X, Bokenkamp K, Hur K, Jia A, Liberatore HK, Lee CFT, Shirkhani R, Krasner SW, Richardson SD. Feel the Burn: Disinfection Byproduct Formation and Cytotoxicity during Chlorine Burn Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8245-8254. [PMID: 35638116 DOI: 10.1021/acs.est.2c02002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrification and biofilm growth within distribution systems remain major issues for drinking water treatment plants utilizing chloramine disinfection. Many chloraminated plants periodically switch to chlorine disinfection for several weeks to mitigate these issues, known as "chlorine burns". The evaluation of disinfection byproduct (DBP) formation during chlorine burns beyond regulated DBPs is scarce. Here, we quantified an extensive suite of 80 regulated and emerging, unregulated DBPs from 10 DBP classes in drinking water from two U.S. drinking water plants during chlorine burn and chloramination treatments. Total organic halogen (TOX), including total organic chlorine, total organic bromine, and total organic iodine, was also quantified, and mammalian cell cytotoxicity of whole water mixtures was assessed in chlorine burn waters for the first time. TOX and most DBPs increased in concentration during chlorine burns, and one emerging DBP, trichloroacetaldehyde, reached 99 μg/L. THMs and HAAs reached concentrations of 249 and 271 μg/L, respectively. Two highly cytotoxic nitrogenous DBP classes, haloacetamides and haloacetonitriles, increased during chlorine burns, reaching up to 14.2 and 19.3 μg/L, respectively. Cytotoxicity did not always increase from chloramine treatment to chlorine burn, but a 100% increase in cytotoxicity was observed for one plant. These data highlight that consumer DBP exposure during chlorine burns can be substantial.
Collapse
Affiliation(s)
- Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Wei
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyu Hur
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ai Jia
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chih-Fen T Lee
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Raha Shirkhani
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Stuart W Krasner
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
26
|
Allen JM, Plewa MJ, Wagner ED, Wei X, Bokenkamp K, Hur K, Jia A, Liberatore HK, Lee CFT, Shirkhani R, Krasner SW, Richardson SD. Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:392-402. [PMID: 34910457 DOI: 10.1021/acs.est.1c07998] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible. We report the most comprehensive investigation of drinking water toxicity to date, with measurements of extracted whole-water mammalian cell chronic cytotoxicity, over 70 regulated and priority unregulated DBPs, and total organic chlorine, bromine, and iodine, revealing a more complete picture of toxicity drivers. A variety of impacted waters were investigated, including those impacted by wastewater, agriculture, and seawater. The results revealed that unregulated haloacetonitriles, particularly dihaloacetonitriles, are important toxicity drivers. In seawater-impacted water treated with chloramine, toxicity was driven by iodinated DBPs, particularly iodoacetic acids. In chlorinated waters, the combined total organic chlorine and bromine was highly and significantly correlated with toxicity (r = 0.94, P < 0.01); in chloraminated waters, total organic iodine was highly and significantly correlated with toxicity (r = 0.80, P < 0.001). These results indicate that haloacetonitriles and iodoacetic acids should be prioritized in future research for potential regulation consideration.
Collapse
Affiliation(s)
- Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Wei
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyu Hur
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ai Jia
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chih-Fen T Lee
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Raha Shirkhani
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Stuart W Krasner
- Metropolitan Water District of Southern California, Water Quality Laboratory, La Verne, California 91750, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
27
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
28
|
Gonzalez RVL, Weis KE, Gonsioroski AV, Flaws JA, Raetzman LT. Iodoacetic Acid, a Water Disinfection Byproduct, Disrupts Hypothalamic, and Pituitary Reproductive Regulatory Factors and Induces Toxicity in the Female Pituitary. Toxicol Sci 2021; 184:46-56. [PMID: 34453833 DOI: 10.1093/toxsci/kfab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Iodoacetic acid (IAA) is a water disinfection byproduct (DBP) formed by reactions between oxidizing disinfectants and iodide. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. In humans, DBPs have been epidemiologically associated with reproductive dysfunction. In mouse ovarian culture, IAA exposure significantly inhibits antral follicle growth and reduces estradiol production. Despite this evidence, little is known about the effects of IAA on the other components of the reproductive axis: the hypothalamus and pituitary. We tested the hypothesis that IAA disrupts expression of key neuroendocrine factors and directly induces cell damage in the mouse pituitary. We exposed adult female mice to IAA in drinking water in vivo and found 0.5 and 10 mg/l IAA concentrations lead to significantly increased mRNA levels of kisspeptin (Kiss1) in the arcuate nucleus although not affecting Kiss1 in the anteroventral periventricular nucleus. Both 10 mg/l IAA exposure in vivo and 20 μM IAA in vitro reduced follicle stimulating hormone (FSHβ)-positive cell number and Fshb mRNA expression. IAA did not alter luteinizing hormone (LHβ) expression in vivo although exposure to 20 μM IAA decreased expression of Lhb and glycoprotein hormones, alpha subunit (Cga) mRNA in vitro. IAA also had toxic effects in the pituitary, inducing DNA damage and P21/Cdkn1a expression in vitro (20 μM IAA) and DNA damage and Cdkn1a expression in vivo (500 mg/l). These data implicate IAA as a hypothalamic-pituitary-gonadal axis toxicant and suggest the pituitary is directly affected by IAA exposure.
Collapse
Affiliation(s)
- Rachel V L Gonzalez
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andressa V Gonsioroski
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jodi A Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
29
|
Li J, Aziz MT, Granger CO, Richardson SD. Are Disinfection Byproducts (DBPs) Formed in My Cup of Tea? Regulated, Priority, and Unknown DBPs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12994-13004. [PMID: 34523331 DOI: 10.1021/acs.est.1c03419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally, tea is the second most consumed nonalcoholic beverage next to drinking water and is an important pathway of disinfection byproduct (DBP) exposure. When boiled tap water is used to brew tea, residual chlorine can produce DBPs by the reaction of chlorine with tea compounds. In this study, 60 regulated and priority DBPs were measured in Twinings green tea, Earl Grey tea, and Lipton tea that was brewed using tap water or simulated tap water (nanopure water with chlorine). In many cases, measured DBP levels in tea were lower than in the tap water itself due to volatilization and sorption onto tea leaves. DBPs formed by the reaction of residual chlorine with tea precursors contributed ∼12% of total DBPs in real tap water brewed tea, with the remaining 88% introduced by the tap water itself. Of that 12%, dichloroacetic acid, trichloroacetic acid, and chloroform were the only contributing DBPs. Total organic halogen in tea nearly doubled relative to tap water, with 96% of the halogenated DBPs unknown. Much of this unknown total organic halogen (TOX) may be high-molecular-weight haloaromatic compounds, formed by the reaction of chlorine with polyphenols present in tea leaves. The identification of 15 haloaromatic DBPs using gas chromatography-high-resolution mass spectrometry indicates that this may be the case. Further studies on the identity and formation of these aromatic DBPs should be conducted since haloaromatic DBPs can have significant toxicity.
Collapse
Affiliation(s)
- Jiafu Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Caroline O Granger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
30
|
Dong S, Page MA, Hur A, Hur K, Bokenkamp KV, Wagner ED, Plewa MJ, Massalha N. Comparison of Estrogenic, Spectroscopic, and Toxicological Analyses of Pilot-Scale Water, Wastewaters, and Processed Wastewaters at Select Military Installations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13103-13112. [PMID: 34533942 DOI: 10.1021/acs.est.1c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reuse of water requires the removal of contaminants to ensure human health. We report the relative estrogenic activity (REA) of reuse treatment design scenarios for water, wastewaters, and processed wastewaters before and after pilot-scale treatment systems tested at select military facilities. The comparative relationships between REA, several composite toxicological endpoints, and spectroscopic indicators were evaluated for different reuse treatment trains. Four treatment processes including conventional and advanced treatments reduced the estrogenicity by at least 33%. Biologically based methods reduced estrogenicity to below detection levels. Conventional treatment scenarios led to significantly less reduction of adverse biological endpoints compared to the advanced treatment scenarios. Incorporating the anaerobic membrane bioreactor reduced more endpoints with higher reduction percentages compared to the sequencing batch reactor design. Membrane technology and advanced oxidation generated reductions across all biological endpoints, from 65% (genotoxicity) to 100% (estrogenicity). The design scenarios featuring a low-cutoff mechanical screen filter, intermittent activated carbon biofilter, and membrane filtration achieved the highest percent reduction and produced water with the lowest negative biological endpoints. Spectroscopic indicators demonstrated case-specific relationships with estrogenicity and toxicity. Estrogenicity consistently correlated with cytotoxicity and thiol reactivity, indicating the potential for preliminary estrogenicity screening using thiol reactivity.
Collapse
Affiliation(s)
- Shengkun Dong
- Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong 519000, China
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
| | - Martin A Page
- US Army Engineer Research and Development Center, 2902 Newmark Dr., Champaign, Illinois 61822, United States
| | - Andy Hur
- US Army Engineer Research and Development Center, 2902 Newmark Dr., Champaign, Illinois 61822, United States
| | - Kyu Hur
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
| | - Katherine V Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
| | - Nedal Massalha
- The Institute of Applied Research, Galilee Society, P.O. Box 437, Shefa-Amr 20200, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
| |
Collapse
|