1
|
Buckley TJ, Egeghy PP, Isaacs K, Richard AM, Ring C, Sayre RR, Sobus JR, Thomas RS, Ulrich EM, Wambaugh JF, Williams AJ. Cutting-edge computational chemical exposure research at the U.S. Environmental Protection Agency. ENVIRONMENT INTERNATIONAL 2023; 178:108097. [PMID: 37478680 PMCID: PMC10588682 DOI: 10.1016/j.envint.2023.108097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Exposure science is evolving from its traditional "after the fact" and "one chemical at a time" approach to forecasting chemical exposures rapidly enough to keep pace with the constantly expanding landscape of chemicals and exposures. In this article, we provide an overview of the approaches, accomplishments, and plans for advancing computational exposure science within the U.S. Environmental Protection Agency's Office of Research and Development (EPA/ORD). First, to characterize the universe of chemicals in commerce and the environment, a carefully curated, web-accessible chemical resource has been created. This DSSTox database unambiguously identifies >1.2 million unique substances reflecting potential environmental and human exposures and includes computationally accessible links to each compound's corresponding data resources. Next, EPA is developing, applying, and evaluating predictive exposure models. These models increasingly rely on data, computational tools like quantitative structure activity relationship (QSAR) models, and machine learning/artificial intelligence to provide timely and efficient prediction of chemical exposure (and associated uncertainty) for thousands of chemicals at a time. Integral to this modeling effort, EPA is developing data resources across the exposure continuum that includes application of high-resolution mass spectrometry (HRMS) non-targeted analysis (NTA) methods providing measurement capability at scale with the number of chemicals in commerce. These research efforts are integrated and well-tailored to support population exposure assessment to prioritize chemicals for exposure as a critical input to risk management. In addition, the exposure forecasts will allow a wide variety of stakeholders to explore sustainable initiatives like green chemistry to achieve economic, social, and environmental prosperity and protection of future generations.
Collapse
Affiliation(s)
- Timothy J Buckley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States.
| | - Peter P Egeghy
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Kristin Isaacs
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Ann M Richard
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Caroline Ring
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Risa R Sayre
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Russell S Thomas
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Elin M Ulrich
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - John F Wambaugh
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Antony J Williams
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology & Exposure (CCTE), 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| |
Collapse
|
2
|
Yang S, Wu H. The Performance Impact of New Ventures in Working Environment and Innovation Behavior From the Perspective of Personality Psychology. Front Psychol 2021; 12:734014. [PMID: 34803812 PMCID: PMC8595093 DOI: 10.3389/fpsyg.2021.734014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
A new venture barely makes a profit in its initial stage, and its success depends on innovation. Innovation is related to the work environment, and the innovation behavior of employees is of great significance to the performance improvement of new venture. Based on the previous research, in this study, hypotheses on the correlation between work environment, employee innovation behavior, and corporate performance are put forward first. Then, with team cooperation, organizational incentive, leadership support, sufficient resources, and work pressure as the factors of the work environment, the bosses, middle and senior managers involved in entrepreneurship, and the main members of the entrepreneurial team of 202 newly established enterprises in developed regions are surveyed online or in scene. Multivariate hierarchical regression analysis is performed to analyze the data collected from the questionnaire. The results show that the effective recovery rate of the questionnaire is 86.4%; the number of traditional enterprises is 108 (53.47%), and that of R&D enterprises is 68 (33.66%); teamwork, leadership support, and work pressure are all correlated with employees’ innovative behavior (P < 0.05), while organizational motivation and sufficient resources are not correlated with employees’ innovative behavior (P > 0.05); employee innovation behavior is positively correlated with enterprise performance (β = 0.375, P ≤ 0.01); the working environment and employee innovation behavior promote enterprise performance (β = 0.433, P ≤ 0.01); and the working environment affects the relationship between employee innovation behavior and enterprise performance (β = 0.399, P ≤ 0.05). The study theoretically enriches the research on the relationship between innovation behavior, work environment, and enterprise performance of new ventures. In practice, it is suggested that start-up enterprises provide good working environment for employees and attach importance to innovation activities at the individual level of employees, which provides useful guidance and reference for the development of Chinese start-up enterprises.
Collapse
Affiliation(s)
- Shufang Yang
- School of Business, Changshu Institute of Technology, Suzhou, China
| | - Hainan Wu
- School of Finance and Public Administration, Anhui University of Finance and Economics, Bengbu, China
| |
Collapse
|
3
|
Li J, Zhang J, Chen L, Zhang G, Liao J. Surface Properties and Liquid Crystal Properties of Alkyltetra(oxyethyl) β-d-Glucopyranoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10617-10629. [PMID: 34473514 DOI: 10.1021/acs.jafc.1c03630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrophilic alkyl polyglycosides (APGs) and alkyl glycosides (AGs) with anomeric pure are a class of important substitutes for petroleum-based surfactants. Improving their water solubility should make such hydrophilic glycosurfactants have more excellent potential application value. To solve the inherent problem of poor water solubility of traditional alkyl β-d-glucopyranoside (5), a series of alkyltetra(oxyethyl) β-d-glucopyranosides (4a-4g, n = 7-18) were successfully synthesized by introducing tetra(oxyethylene) fragments to carry out the structural modification. The relationship between the related structure and the physicochemical properties was further investigated, including their hydrophilic-lipophilic balance (HLB), water-solubility, foaming performance, emulsification, hygroscopicity, surface activity, and thermotropic/lyotropic liquid crystal phase behavior. The results showed that the water solubility gradually decreased as the alkyl chain length increased due to the gradual decrease of their HLB number. Octadecyltetra(oxyethyl) β-d-glucopyranoside (4g, n = 18) was found to be insoluble in water at 25 °C. Taken together, long-chain alkyl glycosides had good foaming properties and excellent emulsifying properties. Among them, dodecyltetra(oxyethyl) β-d-glucopyranoside (4d, n = 12) had the best foaming performance. In the rapeseed oil/water system, cetyltetra(oxyethyl) β-d-glucopyranoside (4f, n = 16) had the best emulsifying ability. With the increase of the alkyl chain length, the critical micelle concentration (Ccmc), γcmc, Γmax, and hygroscopicity of this series of glycosides showed a downward trend. Differential scanning calorimetry (DSC) and polarizing optical microscopy (POM) showed that the thermal stability increased with the increase of the alkyl chain length, and alkyltetra(oxyethyl) β-d-glucopyranosides (4d-4g, n = 12-18) had the corresponding melting points and clearing points. Alkyltetra(oxyethyl) β-d-glucopyranosides (4b-4g, n = 8-18) formed a smectic phase with a typical fan-shaped and focal conic texture during the cooling process. In the water contact experiments, it was found that glycosides (4b-4g, n = 8-18) at high concentrations transformed into various lyotropic liquid crystal including hexagonal phase, bicontinuous cubic phase, and lamellar phase phases. Therefore, such green nonionic glycosurfactants alkyltetra(oxyethyl) β-d-glucopyranosides should have potential practical application prospects.
Collapse
Affiliation(s)
- Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Guochao Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jingyi Liao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| |
Collapse
|