1
|
Wang X, Ge Y, Lin Y, Craig EA, Chen R, Miller RK, Barrett ES, Thurston SW, O'Connor TG, Rich DQ, Zhang JJ. Benzo[ a]pyrene and phenanthrene hemoglobin adducts as biomarkers of longer-term air pollution exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:146-153. [PMID: 39612168 PMCID: PMC11606450 DOI: 10.1039/d4em00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Urinary hydroxylated-polycyclic aromatic hydrocarbons (PAHs), with half-life less than 2 days, are established biomarkers of short-term exposure to PAHs, a ubiquitous constituent of air pollution mixture. In this study, we explore the use of PAHs-hemoglobin adducts as biomarkers of longer-term exposure to air pollution by leveraging an extant resource of blood samples collected from 235 pregnant women residing in Rochester, NY. We measured red blood cells for benzo[a]pyrene-tetrols (BaPT) and phenanthrene-tetrols (PHET), both of which are hydrolysis products of PAH-hemoglobin adduct. We utilized previously estimated PM2.5 and NO2 concentrations within the 1 km2 grid surrounding each participant's residence, calculated for up to 20 weeks before the blood collection date. Associations between PAHs tetrols and cumulative exposures to ambient PM2.5 or NO2 over different time periods were examined using a linear mixed-effects model with participant-specific random intercepts adjusting for season, gestation age, maternal age, maternal income level, and pre-pregnancy BMI. We observed positive associations between PHET concentration and cumulative PM2.5 exposure over gestational weeks 12-17, and between BaPT concentration and cumulative PM2.5 exposure over gestational weeks 3-16 prior to sample collection. Each interquartile range (IQR) increase in 14 week PM2.5 exposure (1.26 μg m-3) was associated with a 9.02% (95% CI: 0.30%, 17.7%) increase in PHET and a 12.8% (95% CI: 1.09%, 23.5%) increase in BaPT levels. In contrast, no associations were observed between either biomarker and cumulative NO2 exposures. These findings underscore the potential of PAH-hemoglobin adducts as longer-term (weeks to 4 months) exposure biomarkers of ambient PM2.5.
Collapse
Affiliation(s)
- Xiangtian Wang
- Nicholas School of the Environment, Duke University, 308 Research Drive, LSRC Room A309, Durham, NC 27708, NC, USA.
| | - Yihui Ge
- Nicholas School of the Environment, Duke University, 308 Research Drive, LSRC Room A309, Durham, NC 27708, NC, USA.
| | - Yan Lin
- Nicholas School of the Environment, Duke University, 308 Research Drive, LSRC Room A309, Durham, NC 27708, NC, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Emily A Craig
- Nicholas School of the Environment, Duke University, 308 Research Drive, LSRC Room A309, Durham, NC 27708, NC, USA.
| | - Ruoxue Chen
- Nicholas School of the Environment, Duke University, 308 Research Drive, LSRC Room A309, Durham, NC 27708, NC, USA.
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily S Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NY, USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Psychology, University of Rochester, Rochester, NY, USA
| | - David Q Rich
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, 308 Research Drive, LSRC Room A309, Durham, NC 27708, NC, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Zhang YJ, Wang XX, Zeng LJ, Ka-Yam LAM, Dai QY, Chen Y, Chen J, Guo Y, Cai Z. Rewiring the nexus between urban traffic pollution-derived polycyclic aromatic hydrocarbon exposure and DNA injury via urinary metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125188. [PMID: 39486674 DOI: 10.1016/j.envpol.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Urban road traffic environmental stress impacts outdoor population health, with oxidative damage serving as an early indicator of xenobiotic exposure. Polycyclic aromatic hydrocarbons (PAHs) as priority carcinogens pose significant public health burden, yet knowledge remains limited regarding the endogenous metabolic alternations associated with oxidative DNA injury. This cross-sectional study focused on the cohort consisting of 109 sanitation workers ("traffic exposure group") and 112 demographics-matched common residents ("controls") in South China. The goal was to elucidate the occurrence of internal exposure to nine hydroxyl PAHs, and the interrelations with oxidative DNA damage (indicated by 8-hydroxy-2'-deoxyguanosine, 8-OHdG) by linear mixed-effect regression model. T-test and orthogonal partial least squares discriminant analysis were used to determine differential metabolites in non-targeted metabolomics. Results revealed outdoor workers suffered from the heavier PAH exposure burden and exhibited a stronger dose-dependent correlation with 8-OHdG, evidenced by the higher regression coefficient (0.244, 95% CI: 0.154-0.334) than controls (0.203, 95% CI: 0.079-0.328). In total 42 differential endogenous metabolites witnessed significant expression under traffic emission scenario, mainly implicated in phenylalanine, tyrosine and tryptophan biosynthesis. The down-expressed uric acid was the unique metabolite that inversely correlated with the increased intake of ∑8PAH especially in cases. Partially attributed to the traffic-derived PAHs, the dysregulated amino acid, nicotinamide, purine, and steroid hormones metabolic pathways encompassing 11 metabolites were determined as underlying biomarkers in mediating DNA damage. Notably, our findings proposed uric acid may act as a potential antioxidant, as evidenced by the negative correlation with 8-OHdG. The study illustrates outcomes of metabolomics can collaboratively indicate DNA oxidative damage caused by PAHs linked to urban traffic exposure, which holds significant implications for future toxicological research.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Li-Juan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - L A M Ka-Yam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qing-Yuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
3
|
Lin Y, Shi X, Qiu X, Jiang X, Liu J, Zhong P, Ge Y, Tseng CH, Zhang JJ, Zhu T, Araujo JA, Zhu Y. Reduction in polycyclic aromatic hydrocarbon exposure in Beijing following China's clean air actions. Sci Bull (Beijing) 2024; 69:3283-3290. [PMID: 39181785 DOI: 10.1016/j.scib.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the Chinese population was among the highest globally and associated with various adverse effects. This study examines the impact of China's two-phase clean air initiatives, namely the Air Pollution Prevention and Control Action Plan (APPCAP) in 2013-2017 and the Blue-Sky Defense War (BSDW) in 2018-2020, on PAH levels and human exposures in Beijing. To evaluate the effects of APPCAP, we measured 16 PAHs in 287 PM2.5 samples collected in Beijing and 9 PAH metabolites in 358 urine samples obtained from 54 individuals who traveled from Los Angeles to Beijing between 2014 and 2018. The concentration of PM2.5-bound benzo[a]pyrene equivalents (BaPeq) decreased by 88.5% in 2014-2018 due to reduced traffic, coal, and biomass emissions. PAH metabolite concentrations in travelers' urine decreased by 52.3% in Beijing, correlated with changes in PM2.5 and NO2 levels. In contrast, no significant changes were observed in Los Angeles. To evaluate BSDW's effects, we collected 123 additional PM2.5 samples for PAH measurements in 2019-2021. We observed sustained reductions in BaPeq concentrations attributable to reductions in coal and biomass emissions during the BSDW phase, but those from traffic sources remained unchanged. After accounting for meteorological factors, China's two-phase clean air initiatives jointly reduced Beijing's PM2.5-bound BaPeq concentrations by 96.6% from 2014 to 2021. These findings provide compelling evidence for the effectiveness of China's clean air actions in mitigating population exposure to PAHs in Beijing.
Collapse
Affiliation(s)
- Yan Lin
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles 90095, USA; Nicholas School of the Environment and Global Health Institute, Duke University, Durham 27708-0187, USA
| | - Xiaodi Shi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| | - Xing Jiang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jinming Liu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Peiwen Zhong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yihui Ge
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham 27708-0187, USA
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles 90095, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham 27708-0187, USA
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles 90095, USA
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles 90095, USA.
| |
Collapse
|
4
|
Zhang Y, Gong J, Hu X, He L, Lin Y, Zhang J, Meng X, Zhang Y, Mo J, Day DB, Xiang J. Glycerophospholipid metabolism changes association with ozone exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134870. [PMID: 38876019 DOI: 10.1016/j.jhazmat.2024.134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.
Collapse
Affiliation(s)
- Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China.
| | - Xinyan Hu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Linchen He
- College of Health, Lehigh University, Bethlehem, PA 19019, United States; Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Yan Lin
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Junfeng Zhang
- Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jinhan Mo
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- School of Public Health, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Monteiro V, Dias da Silva D, Martins M, Guedes de Pinho P, Pinto J. Metabolomics perspectives of the ecotoxicological risks of polycyclic aromatic hydrocarbons: A scoping review. ENVIRONMENTAL RESEARCH 2024; 249:118394. [PMID: 38307181 DOI: 10.1016/j.envres.2024.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) represent persistent environmental pollutants ubiquitously distributed in the environment. Their presence alongside various other contaminants gives rise to intricate interactions, culminating in profound deleterious consequences. The combination effects of different PAH mixtures on biota remains a relatively unexplored domain. Recent studies have harnessed the exceptional sensitivity of metabolomic techniques to unveil the significant ecotoxicological perils of PAH pollution confronting both human populations and ecosystems. This article furnishes a comprehensive overview of current literature focused on the metabolic repercussions stemming from exposure to complex mixtures of PAHs or PAH-pollution sources using metabolomics approaches. These insights are obtained through a wide range of models, including in vitro assessments, animal studies, investigations on human subjects, botanical specimens, and soil environments. The findings underscore that PAH mixtures induce cellular stress responses and systemic effects, leading to metabolic dysregulations in amino acids, carbohydrates, lipids, and other key metabolites (e.g., organic acids, purines), with specific variations observed based on the organism and PAH compounds involved. Additionally, the ecological consequences of PAH pollutants on plant and soil microbial responses are emphasized, revealing significant changes in stress-related metabolites and nutrient cycling in soil ecosystems. The complex interplay of various PAHs and their metabolic effects on several models, as elucidated through metabolomics, highlight the urgency of further research and the need for comprehensive strategies to mitigate the risks posed by these widespread environmental pollutants.
Collapse
Affiliation(s)
- Vânia Monteiro
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Diana Dias da Silva
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Marta Martins
- MARE ‒ Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Puvvula J, Manz KE, Braun JM, Pennell KD, DeFranco EA, Ho SM, Leung YK, Huang S, Vuong AM, Kim SS, Percy ZP, Bhashyam P, Lee R, Jones DP, Tran V, Kim DV, Chen A. Maternal and newborn metabolomic changes associated with urinary polycyclic aromatic hydrocarbon metabolite concentrations at delivery: an untargeted approach. Metabolomics 2023; 20:6. [PMID: 38095785 DOI: 10.1007/s11306-023-02074-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jagadeesh Puvvula
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kathrine E Manz
- School of Engineering, Brown University, Providence, RI, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Emily A DeFranco
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shouxiong Huang
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Stephani S Kim
- Health Research, Battelle Memorial Institute, Columbus, OH, USA
| | - Zana P Percy
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Priyanka Bhashyam
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymund Lee
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Vilinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Dasom V Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhang H, Liu R, Yang L, Cheng H, Wang S, Zhang B, Shao J, Ma S, Norbäck D, Zhang X, An T. Exposure to polycyclic aromatic hydrocarbons (PAHs) in outdoor air and respiratory health, inflammation and oxidative stress biomarkers: A panel study in healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165582. [PMID: 37467979 DOI: 10.1016/j.scitotenv.2023.165582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) can be associated with different types of health effects. However, the systemic changes of health effects between fluctuations of PAHs exposure have not been established. In this study, urinary hydroxylated PAHs (OH-PAHs) and 12 biomarkers were determined among 36 students from the urban to the suburb in Taiyuan in 2019. The concentration of Σ12OH-PAHs in urban areas (28.2 and 21.4 μg/g Cr) was significantly higher than that in suburban area (16.8 μg/g Cr). The regression showed that hydroxy-phenanthrene (OH-Phe, 1/2/3/4/9-OH-Phe) was significantly positively correlated with lung function (PEF25 and PEF50), 8-hydroxydeoxyguanosine (8-OHdG), interleukin-8 (IL-8), and fractional exhaled nitric oxide (FeNO). Moreover, there were negative associations of 2-hydroxyfluorene (2-OH-Flu) with FVC and FEV1. 1 unit increase of 1-hydroxypyrene (1-OH-Pyr) was negatively associated with 18.8% FVC, 17.3% FEV1, and 26.4% PEF25 in the suburban location, respectively. During urban2, each unit change of 2-OH-Flu was associated with 10.9% FVC and 10.5% FEV1 decrease, which were higher than those in suburban location. 8-OHdG decreased by 32.0% with each unit increase in 3-hydroxyfluorene (3-OH-Flu) during urban2 (p < 0.05), while 1.9% in the suburban location. During the suburban period, the increase in OH-Phe was correlated with the decrease in malondialdehyde (MDA). The respiratory damage caused by PAHs in the urban disappeared after backing to the urban from the suburban area. Notably, despite the total significant liner mixed regression association of FeNO with multiple OH-PAHs, the association of FeNO with OH-PAHs was not significant during different periods except for 2-OH-Flu. Our findings suggested that short-term exposure to different concentrations of PAHs might cause changes in health effects and called for further research to investigate possible alterations between health effects and PAH exposure.
Collapse
Affiliation(s)
- Huilin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ranran Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250062, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liu Yang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Hong Cheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengchun Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Bin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Jiyuan Shao
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, Uppsala SE-751, Sweden
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Wang S, Niu Y, Zhang H, Zhao Z, Zhang X. Metabolomic alterations in healthy adults traveling to low-pollution areas: A natural experiment with ozone exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165501. [PMID: 37442463 DOI: 10.1016/j.scitotenv.2023.165501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Numerous epidemiological studies have demonstrated links between short-term ozone exposure to various adverse health outcomes, but some ozone-induced pathological mechanisms remain unclear. To fill this knowledge gap, we enrolled 36 healthy young adults living in high-ozone areas and performed an untargeted metabolomic analysis in serum collected before, during, and after their travel to a low-ozone scenic area. Reviewing the literature, we found 16 metabolites significantly associated with ozone, pointing to neurological health, type 2 diabetes (T2D) risk, and cardiovascular health. Notably, we observed significant changes in these 16 metabolites from the ozone reduction when participants traveled from the campus to the scenic area (adjusted p-value < 0.05). However, when ozone increased after participants returned to campus from the scenic area, we observed that T2D risk and cardiovascular health-related metabolites returned to their original state (adjusted p-value < 0.05), but neurological health-related metabolites did not change significantly with ozone exposure. Our study showed that ozone exposure was linked to prompt alterations in serum metabolites related to cardiovascular health and T2D risk but less sensitive changes in neurological health-related metabolites. Among many lipids, free fatty acids and acylcarnitines were the most sensitive compounds positively associated with changes in ozone exposure.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yue Niu
- Department of Environmental Health, School of Public Health, Fudan University, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai 200032, China
| | - Huilin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai 200032, China.
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
Peng B, Dong Q, Li F, Wang T, Qiu X, Zhu T. A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15314-15335. [PMID: 37703436 DOI: 10.1021/acs.est.3c03170] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs). A collection of 188 compounds from four categories, 44 NPAHs, 36 OPAHs, 56 APAHs, and 52 XPAHs, has been compiled from 114 studies that documented the environmental presence of PAH derivatives. These compounds exhibited weighted average air concentrations that varied from a lower limit of 0.019 pg/m3 to a higher threshold of 4060 pg/m3. Different analytical methods utilizing comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC × GC-TOF-MS), gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS), comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC-QQQ-MS), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), that adopted untargeted strategies for the identification of PAH derivatives are also reviewed here. Additionally, an in-depth analysis of biotransformation patterns for each category is provided, including the likelihood of specific biotransformation reaction types. For the toxicity, we primarily summarized key metabolic activation pathways, which could result in the formation of reactive metabolites capable of covalently bonding with DNA and tissue proteins, and potential health outcomes such as carcinogenicity and genotoxicity, oxidative stress, inflammation and immunotoxicity, and developmental toxicity that might be mediated by the aryl hydrocarbon receptor (AhR). Finally, we pinpoint research challenges and emphasize the need for further studies on identifying PAH derivatives, tracking external exposure levels, evaluating internal exposure levels and associated toxicity, clarifying exposure routes, and considering mixture exposure effects. This review aims to provide a broad understanding of PAH derivatives' identification, environmental occurrence, human exposure, biotransformation, and toxicity, offering a valuable reference for guiding future research in this underexplored area.
Collapse
Affiliation(s)
- Bo Peng
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Qianli Dong
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Fangzhou Li
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Teng Wang
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Liao J, Goodrich J, Walker DI, Lin Y, Lurmann F, Qiu C, Jones DP, Gilliland F, Chazi L, Chen Z. Metabolic pathways altered by air pollutant exposure in association with lipid profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121522. [PMID: 37019258 PMCID: PMC10243191 DOI: 10.1016/j.envpol.2023.121522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 06/08/2023]
Abstract
Mounting evidence suggests that air pollution influences lipid metabolism and dyslipidemia. However, the metabolic mechanisms linking air pollutant exposure and altered lipid metabolism is not established. In year 2014-2018, we conducted a cross-sectional study on 136 young adults in southern California, and assessed lipid profiles (triglycerides, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, very-low-density lipoprotein (VLDL)-cholesterol), and untargeted serum metabolomics using liquid chromatography-high-resolution mass spectrometry, and one-month and one-year averaged exposures to NO2, O3, PM2.5 and PM10 air pollutants at residential addresses. A metabolome-wide association analysis was conducted to identify metabolomic features associated with each air pollutant. Mummichog pathway enrichment analysis was used to assess altered metabolic pathways. Principal component analysis (PCA) was further conducted to summarize 35 metabolites with confirmed chemical identity. Lastly, linear regression models were used to analyze the associations of metabolomic PC scores with each air pollutant exposure and lipid profile outcome. In total, 9309 metabolomic features were extracted, with 3275 features significantly associated with exposure to one-month or one-year averaged NO2, O3, PM2.5 and PM10 (p < 0.05). Metabolic pathways associated with air pollutants included fatty acid, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism. PCA of 35 metabolites identified three main PCs which together explained 44.4% of the variance, representing free fatty acids and oxidative byproducts, amino acids and organic acids. Linear regression indicated that the free fatty acids and oxidative byproducts-related PC score was associated with air pollutant exposure and outcomes of total cholesterol and LDL-cholesterol (p < 0.05). This study suggests that exposure to NO2, O3, PM2.5 and PM10 contributes to increased level of circulating free fatty acids, likely through increased adipose lipolysis, stress hormone and response to oxidative stress pathways. These alterations were associated with dysregulation of lipid profiles and potentially could contribute to dyslipidemia and other cardiometabolic disorders.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Fred Lurmann
- Sonoma Technology Inc., Petaluma, CA, United States
| | - Chenyu Qiu
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Dean P Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Lida Chazi
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
11
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
12
|
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T. Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics. Metabolomics 2023; 19:30. [PMID: 36991292 PMCID: PMC10057675 DOI: 10.1007/s11306-023-01991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.
Collapse
Affiliation(s)
- Yao Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huan Sun
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxiu Peng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Passive smoking and urinary oxidative biomarkers: A pilot study of healthy travelers from Los Angeles to Beijing. Int J Hyg Environ Health 2022; 246:114048. [PMID: 36308780 DOI: 10.1016/j.ijheh.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/31/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
There is a great heterogeneity in smoking prevalence and tobacco control policy across different countries. However, it is unknown whether this heterogeneity could cause increased passive smoking and adverse health effects among international travelers. In this pilot study, we collected 190 urine samples from 26 Los Angeles residents before (LA-before), during (Beijing), and after (LA-after) a 10-week visit to Beijing to measure biomarkers of passive smoking (cotinine), exposure to polycyclic aromatic hydrocarbons (OH-PAHs), and oxidative stress (malondialdehyde, 8-isoprostane, and uric acid). The geometric mean concentrations of urinary cotinine were 0.14, 1.52, and 0.22 μg/g creatinine in LA-before, Beijing, and LA-after, respectively. Likewise, OH-PAH levels were significantly higher in Beijing as compared to LA-before or LA-after, in association with the urinary cotinine levels. One-fold increase in urinary cotinine levels was associated with 10.1% (95% CI: 5.53-14.8%), 8.75% (95% CI: 2.33-15.6%), and 25.4% (95%CI: 13.1-39.1%) increases in urinary levels of malondialdehyde, 8-isoprotane, and uric acid, respectively. OH-PAHs mediated 9.1-23.3% of the pro-oxidative effects associated with passive smoking. Taken together, our findings indicate that traveling to a city with higher smoking prevalence may increase passive smoking exposure, in association with pro-oxidative effects partially mediated by PAHs.
Collapse
|
14
|
Jia S, Setyawati MI, Liu M, Xu T, Loo J, Yan M, Gong J, Chotirmall SH, Demokritou P, Ng KW, Fang M. Association of nanoparticle exposure with serum metabolic disorders of healthy adults in printing centers. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128710. [PMID: 35325858 DOI: 10.1016/j.jhazmat.2022.128710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Printers are everyday devices in both our homes and workplaces. We have previously found high occupational exposure levels to toner-based printer emitted nanoparticles (PEPs) at printing centers. To elucidate the potential health effects from exposure to PEPs, a total of 124 human serum samples were collected from 32 workers in the printing centers during the repeated follow-up measurements, and global serum metabolomics were analyzed in three ways: correlation between metabolic response and personal exposure (dose response exposure); metabolite response changes between Monday and Friday of a work week (short-term exposure), and metabolite response in relation to length of service in a center (long-term exposure). A total of 52 key metabolites changed significantly in relation to nanoparticle exposure levels. The primary dysregulated pathways included inflammation and immunity related arginine and tryptophan metabolism. Besides, some distinct metabolite expression patterns were found to occur during the transition from short-term to long-term exposures, suggesting cumulative effect of PEPs exposure. These findings, for the first time, highlight the inhalation exposure responses to printer emitted nanoparticles at the metabolite level, potentially serving as pre-requisites for whole organism and population responses, and are inline with emerging findings on potential health effects.
Collapse
Affiliation(s)
- Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Meilin Yan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Jicheng Gong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Kee Woei Ng
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
15
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
16
|
An Z, Li X, Yuan Y, Duan F, Jiang J. Large contribution of non-priority PAHs in atmospheric fine particles: Insights from time-resolved measurement and nontarget analysis. ENVIRONMENT INTERNATIONAL 2022; 163:107193. [PMID: 35339920 DOI: 10.1016/j.envint.2022.107193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), detrimental to human health, are key components contributing to the carcinogenicity of fine particles. The 16 priority PAHs listed by the United States Environment Protection Agency have been studied extensively. However, other than them, there is a large diversity of PAH species, whose atmospheric concentrations, risks, and variations remain elusive. Here, we carried out a time-resolved nontarget measurement in atmospheric PM2.5 using an improved comprehensive two-dimensional gas chromatography mass spectrometry. The measurement conducted during a 5-day pollution episode at an urban site of Beijing with a time resolution of 2 h. The nontarget analysis of time-resolved chromatographic data was performed for screening PAHs. A total number of 85 PAHs were identified and quantified. We found that other than 16 EPA PAHs, other screened PAHs contributed 43.3% of the total PAH mass concentration and 40.8% poential health risks. Dynamic variations of mass concentrations and their potential health risks of the screened PAHs were captured during a short-term heavy pollution episode, during which the instantaneous PAHs concentrations were much higher than their average concentrations. This study shows the potential for application of nontarget analysis for online comprehensive two-dimensional gas chromatography mass spectrometry and highlights the importance of time-resolved measurement of PAHs in PM2.5 and attention on extended PAHs species other than 16 EPA PAHs.
Collapse
Affiliation(s)
- Zhaojin An
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Yuan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|