1
|
Huang Y, Zhang Y, Zhao M, Yan S, Yin D, Song W. Solar-Induced Phototransformation of Peracetic Acid in Chromophoric Dissolved Organic Matter Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9321-9331. [PMID: 40313032 DOI: 10.1021/acs.est.5c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Peracetic acid (PAA) has been extensively investigated as an alternative disinfectant for water and wastewater treatments. However, the photochemical transformation of PAA in sunlit surface waters has not been previously investigated. For the first time, the photosensitized transformation of PAA was here observed in chromophoric dissolved organic matter (CDOM)-enriched solutions under simulated solar irradiation. Triplet CDOM (3CDOM*) is here proposed to play a key role in the phototransformation processes. Using triplet model compounds, the reaction rate constant of 3CDOM* with PAA can be estimated to around 1.1 × 108 M-1 s-1. The reaction mechanism of triplet with PAA involves both energy- and electron-transfer. CH3COO• was generated from the reaction between PAA and excited triplets. Furthermore, HO• and organic reactive species (i.e., CH3COOO• and CH3COO•) are involved in the photochemical transformation of PAA in sunlit CDOM-enriched solutions. These reactive species (including HO•, CH3COOO•, and CH3COO•) also play a role in the removal of contaminants of emerging concerns (CECs). Overall, the current study provided new insights into the photochemical transformation of PAA in CDOM-enriched solutions. The solar irradiation of wastewater with PAA enhancement could be a useful and economically beneficial advanced oxidation process for CEC abatement.
Collapse
Affiliation(s)
- Yixin Huang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Yihui Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Mengzhe Zhao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
2
|
Pan Y, Zhang F, Tan W, Feng X. New insight into wastewater treatment by activation of sulfite with humic acid under visible light irradiation. WATER RESEARCH 2024; 258:121773. [PMID: 38796910 DOI: 10.1016/j.watres.2024.121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Sulfite (S(IV)), as an alternative to persulfate, has demonstrated its cost-effectiveness and environmentally friendly nature, garnering increasing attention in Advanced Oxidation Processes (AOPs). Dissolved organic matter (DOM) commonly occurred in diverse environments and was often regarded as an interfering factor in sulfite-based AOPs. However, less attention has been paid to the promotion of the activation of sulfite by excited DOM, which could produce various reactive intermediates. The study focused on the activation of sulfite using visible light (VL) - excited humic acid (HA) to efficiently degrade many common organic pollutants, which was better than peroxydisulfate (PDS) and peroxymonosulfate (PMS) systems. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed that the triplet states of HA (3HA*) activated sulfite through energy transfer, resulting in the production of SO4·-, O2·-, and 1O2. The most significant active species found in the degradation of roxarsone (ROX) was 1O2, which was a non-radical pathway and exhibits high selectivity for pollutant degradation. This non-radical pathway was not commonly observed in traditional sulfite-based AOPs. Additionally, the coexistence of various inorganic anions, such as NO3-, Cl-, SO42-, CO32-, and PO43-, had little effect on the degradation of ROX. Furthermore, DOM from different natural water demonstrated efficient activation of S(IV) under light conditions, opening up new possibilities for applying sulfite-based advanced oxidation to the remediation of organic pollution in diverse sites and water bodies. In summary, this research offered promising insights into the potential application of sulfite-based AOPs, facilitated by photo-excited HA, as a new strategy for efficiently degrading organic pollutants in various environmental settings.
Collapse
Affiliation(s)
- Yanting Pan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Liao M, Li Y, Chen X, Ding S, Su S, Sun W, Gan Z. Photodegradation of anthelmintic drugs under natural sunlight and simulated irradiation: kinetics, mechanisms, transformation products, and toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8828-8841. [PMID: 38182950 DOI: 10.1007/s11356-023-31778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Albendazole (ALB) and bithionol (BIT) are two anthelmintic drugs (ADs) with high consumption from benzimidazole group and diphenylsulfide group, respectively. However, information on the transformation of the two anthelmintics under environmental condition is scare. Therefore, in the present study, we investigated the natural attenuation of the two ADs in the aquatic environment, including biodegradation, hydrolysis, and direct and indirect photodegradation. The direct photodegradation occupied a vast portion among other degradation pathways of the two ADs in natural water, with near-surface summer half-lives of 0.272-0.387 h and 0.110-0.520 h for ALB and BIT, respectively. Suspended particles in water were found to facilitate the photodegradation of the two ADs. Study on the indirect photodegradation demonstrated the positive roles of singlet oxygen (1O2) and excited triplet dissolved organic matter (3DOM*) in the photolysis of the two ADs, whereas the hydroxyl radical (•OH) affected little on the overall photodegradation procedures of ALB due to the scavenging effect of HCO3-. Dual effects of DO, DOM, HCO3-, NO3-, and NO2- on the photodegradation of ALB and BIT were perceived. Transformation intermediates (TIs) of the two ADs during photodegradation were analyzed by UHPLC-QTOF-MS. Six TIs of ALB were identified, including a broad-spectrum fungicide carbendazim and another common AD ricobendazole. Two TIs of BIT yielded from dechlorination were also detected. Probable transformation mechanism and predicted aquatic ecotoxicity based on the identified TIs were unveiled.
Collapse
Affiliation(s)
- Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xi Chen
- SCIEX, Analytical Instrument Trading Co., Shanghai, 200335, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Liu Y, Liu X, Wen Y, Sun J. A snapshot on vertical variability of dissolved organic matter in the epilagic zone of the eastern Indian Ocean. MARINE POLLUTION BULLETIN 2023; 192:114985. [PMID: 37167664 DOI: 10.1016/j.marpolbul.2023.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Marine dissolved organic matter (DOM) plays an important role in aquatic ecosystems and is an essential reservoir of organic carbon in the marine carbon cycle. In this study, seawater DOM samples from 33 stations were collected in spring 2022 (April to May, 20 stations) and autumn 2020 (October to November, 13 stations) to better characterize and compare DOM variability within 200 m water layer in the eastern Indian Ocean (EIO). Hydrological parameters, nutrients and spectroscopic indices were calculated and evaluated for two cruises. In addition, excitation emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) was used to directly analyse seawater DOM samples. The sources and processes of DOM in the EIO were assessed by fluorescence index (FI), freshness index (β/α), Biological index (BIX), and humification index (HIX). Three fluorescent components were identified in DOM samples from two cruises, including: C1 (tryptophan- and tyrosine-like), C2 (marine and/or terrestrial humic-like), and C3 (terrestrial humic-like). The components of C1 accounted for 39.45 % ± 8.79 %, C2 for 33.05 % ± 6.42 %, and C3 for 27.20 % ± 4.47 % within 200 m water layer. The intensity of the DOM fluorescence seems to varied due to seasonal differences. In particular, the source of the DOM fraction varied at <100 m layer, which may also be related to the structure of the microbial community. Further, there is a strong correlation between the depth of seawater and hydrographic parameters, fluorescence indices and fluorescence components. Nutrients (nitrate, dissolved inorganic phosphate, and dissolved silicate) and humic-like fractions are more likely to accumulate in the deeper layers of the ocean. Thus, these results provide some data support for the variability of DOM fractions on a vertical scale in the EIO.
Collapse
Affiliation(s)
- Yang Liu
- Institute for Advance Marine Research, China University of Geosciences, Guangzhou 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xiaofang Liu
- Institute for Advance Marine Research, China University of Geosciences, Guangzhou 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yujian Wen
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Sun
- Institute for Advance Marine Research, China University of Geosciences, Guangzhou 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
5
|
Sha H, Yan S, Deng Y, Song W. Photosensitized Transformation of Hydrogen Peroxide in Dissolved Organic Matter Solutions under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14080-14090. [PMID: 36121751 DOI: 10.1021/acs.est.2c04819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays an important role in photochemical processes in aquatic environments. However, whether it can be transformed by photoexcited chromophoric dissolved organic matter (CDOM) remains unclear. Therefore, this study examined the photosensitized degradation of H2O2 in CDOM-enriched solutions under simulated solar irradiation. Our results suggest that the presence of CDOM enhances the photodegradation rate of H2O2 via the photosensitization process and ·OH is generated stoichiometrically with H2O2 attenuation. Experimental results with model photosensitizers indicate that one-electron reducing species of CDOM (CDOM·-), not triplet CDOM, is the primary reactive species that reduces H2O2 to yield ·OH. By monitoring the variation of CDOM·-, the reaction rate constant of CDOM·- with H2O2 was estimated to be 1.5-fold greater than that with O2. Furthermore, a wastewater effluent was exposed to simulated solar irradiation with the addition of H2O2, and the results demonstrated that the photodegradation of trace organic contaminants (TrOCs) was significantly enhanced by the increased ·OH level. Overall, the current study provided new insights into the photochemical formation of ·OH via the one-electron reduction of H2O2 by CDOM·-. The solar irradiation of wastewater with H2O2 enhancement could be a useful and economically beneficial advanced oxidation process for TrOC abatement.
Collapse
Affiliation(s)
- Haitao Sha
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, United States
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
6
|
Pang H, Wang Y, Wu Y, He J, Deng H, Li P, Xu J, Yu Z, Gligorovski S. Unveiling the pH-Dependent Yields of H 2O 2 and OH by Aqueous-Phase Ozonolysis of m-Cresol in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7618-7628. [PMID: 35608856 DOI: 10.1021/acs.est.1c08962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) and hydroxyl radical (OH) are important oxidants in the atmospheric aqueous phase such as cloud droplets and deliquescent aerosol particles, playing a significant role in the chemical transformation of organic and inorganic pollutants in the atmosphere. Atmospheric aqueous-phase chemistry has been considered to be a source of H2O2 and OH. However, our understanding of the mechanisms of their formation in atmospheric waters is still incomplete. Here, we show that the aqueous-phase reaction of dissolved ozone (O3) with substituted phenols such as m-cresol represents an important source of H2O2 and OH exhibiting pH-dependent yields. Intriguingly, the formation of H2O2 through the ring-opening mechanism is strongly promoted under lower pH conditions (pH 2.5-3.5), while higher pH favors the ring-retaining pathways yielding OH. The rate constant of the reaction of O3 with m-cresol increases with increasing pH. The reaction products formed during the ozonolysis of m-cresol are analyzed by an Orbitrap mass spectrometer, and reaction pathways are suggested based on the identified product compounds. This study indicates that aqueous-phase ozonolysis of phenolic compounds might be an alternative source of H2O2 and OH in the cloud, rain, and liquid water of aerosol particles; thus, it should be considered in future model studies.
Collapse
Affiliation(s)
- Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiazhuo He
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Nie J, Zou J, Yan S, Song W. Photosensitized Transformation of Peroxymonosulfate in Dissolved Organic Matter Solutions under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1963-1972. [PMID: 35050612 DOI: 10.1021/acs.est.1c07411] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate radical (SO4•-)-mediated advanced oxidation processes via peroxymonosulfate (PMS) activation have been extensively investigated. However, the phototransformation of PMS in sunlit dissolved organic matter (DOM) solution has not been previously examined. For the first time, the photosensitized transformation of PMS in DOM-enriched solutions under simulated solar irradiation was observed. The generation of reactive species, including 1O2, SO4•-, and •OH, was confirmed by electron paramagnetic resonance and quantified by chemical probes. SO4•- was the primary reactive species generated via the reaction of excited triplet DOM (3DOM*) with PMS. 3DOM* acted as a reactive reductant and was quickly oxidized by PMS, with an estimated reaction rate constant of (4.09 ± 0.21) × 108 M-1 s-1. Compared to 3DOM*, one-electron-reducing DOM (DOM•-) was a minor contributor to the photosensitized transformation of PMS, and the contribution of DOM•- relied on the phenolic constituents. In addition, a series of different types of DOM, including terrestrial DOM, autochthonous DOM, and effluent organic matter and its fractions, were employed to examine the photosensitized transformation kinetics of PMS. Overall, the photosensitized transformation of PMS by irradiated DOM could be a useful and economical approach to generate SO4•- under environmentally relevant conditions.
Collapse
Affiliation(s)
- Jianxin Nie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Jianmin Zou
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Palma D, Khaled A, Sleiman M, Voyard G, Richard C. Effect of UVC pre-irradiation on the Suwannee river Natural Organic Matter (SRNOM) photooxidant properties. WATER RESEARCH 2021; 202:117395. [PMID: 34273776 DOI: 10.1016/j.watres.2021.117395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to investigate the changes in the chemical composition, and in the optical and photooxidant properties of Suwannee River Natural Organic Matter (SRNOM) induced by UVC (254 nm) treatment. The extent of the photodegradation was first assessed by UV-visible/fluorescence spectroscopies and organic carbon analysis. An in-depth investigation of the chemical changes was also conducted using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry after derivatizations. A series of mono, di and tricarbonyls and mono and dicarboxylic acids in C1C6 were identified in samples irradiated from 1 to 4 h. After 3 h of irradiation, carbonyls accounted for 46% of the organic carbon remaining in solution whereas carboxylic acids represented about 2%. Then, we investigated the modifications of the photooxidant properties of SRNOM induced by these chemical changes. At 254 nm, UVC pre-irradiated SRNOM photodegraded glyphosate 29 times faster than original SRNOM and the reaction was fully inhibited by 2-propanol (5 × 10-3 M). This enhanced photooxidant properties at 254 nm toward glyphosate was therefore reasonably due to •OH radicals formation, as confirmed by additional ESR measurements. A mechanism involving a chain reaction was proposed based on independent experiments conducted on carbonyl compounds, particularly pyruvic acid and acetone. The findings of this study show that UVC pre-treatment of NOM can enhance the removal of water pollutants and suggests a possible integration of a NOM pre-activation step in engineered water treatment sytems.
Collapse
Affiliation(s)
- Davide Palma
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Amina Khaled
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Mohamad Sleiman
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Guillaume Voyard
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Claire Richard
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|