1
|
Wu Y, Niu Q, Liu Y, Zheng X, Long M, Chen Y. Chlorinated organophosphorus flame retardants induce the propagation of antibiotic resistance genes in sludge fermentation systems: Insight of chromosomal mutation and microbial traits. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134971. [PMID: 38908181 DOI: 10.1016/j.jhazmat.2024.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Waste activated sludge (WAS) is a critical reservoir for antibiotic resistance genes (ARGs) due to the prevalent misuse of antibiotics. Horizontal gene transfer (HGT) is the primary mechanism for ARGs spread through mobile genetic elements (MGEs). However, the role of non-antibiotic organophosphorus flame retardants (Cl-OFRs) in ARG transmission in the WAS fermentation system remains unclear. This study examines the effects of tris(2-chloroethyl) phosphate (TCEP), a representative Cl-OFR, on ARG dynamics in WAS fermentation using molecular docking and metagenomic analysis. The results showed a 33.4 % increase in ARG abundance in the presence of TCEP. Interestingly, HGT did not appear to be the primary mechanism of ARG dissemination under TCEP stress, as evidenced by a 2.51 % decrease in MGE abundance. TCEP binds to sludge through hydrogen bonds with a binding energy of - 3.6 kJ/mol, leading to microbial damage and an increase in the proportion of non-viable cells. This interaction prompts a microbial shift toward Firmicutes with thick cell walls, which are significant ARG carriers. Additionally, TCEP induces chromosomal mutations through oxidative stress and the SOS response, contributing to ARG formation. Microorganisms also develop multidrug resistance mechanisms to expel TCEP and mitigate its toxicity. This study provides a comprehensive understanding of Cl-OFRs effects on the ARGs fates in WAS fermentation system and offers guidance for the safe and efficient treatment of Cl-OFRs and WAS.
Collapse
Affiliation(s)
- Yang Wu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiuqi Niu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiwei Liu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Min Long
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Sun Y, Zuo Y, Shao Y, Wang L, Jiang LM, Hu J, Zhou C, Lu X, Huang S, Zhou Z. Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction. WATER RESEARCH X 2024; 24:100243. [PMID: 39188329 PMCID: PMC11345402 DOI: 10.1016/j.wroa.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
The goal of this study was to assess the impacts or benefits of sludge in situ reduction (SIR) within wastewater treatment processes with relation to global warming potential in wastewater treatment plants, with a comprehensive consideration of wastewater and sludge treatment. The anaerobic side-stream reactor (ASSR) and the sludge process reduction activated sludge (SPRAS), two typical SIR technologies, were used to compare the carbon footprint analysis results with the conventional anaerobic - anoxic - oxic (AAO) process. Compared to the AAO, the ASSR with a typical sludge reduction efficiency (SRE) of 30 % increased greenhouse gas (GHG) emissions by 1.1 - 1.7 %, while the SPRAS with a SRE of 74 % reduced GHG emissions by 12.3 - 17.6 %. Electricity consumption (0.025 - 0.027 kg CO2-eq/m3), CO2 emissions (0.016 - 0.059 kg CO2-eq/m3), and N2O emissions (0.009 - 0.023 kg CO2-eq/m3) for the removal of secondary substrates released from sludge decay in the SIR processes were the major contributor to the increased GHG emissions from the wastewater treatment system. By lowering sludge production and the organic matter content in the sludge, the SIR processes significantly decreased the carbon footprints associated with sludge treatment and disposal. The threshold SREs of the ASSR for GHG reduction were 27.7 % and 34.6 % for the advanced dewatering - sanitary landfill and conventional dewatering - drying-incinerating routes, respectively. Overall, the SPRAS process could be considered as a cost-effective and sustainable low-carbon SIR technology for wastewater treatment.
Collapse
Affiliation(s)
- Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaming Hu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Xi Lu
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Song Huang
- Shanghai Investigation Design and Research Institute Co., Ltd, Shanghai 200335, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
3
|
Kong Z, Wang Z, Lu X, Song Y, Yuan Z, Hu S. Significant in situ sludge yield reduction in an acidic activated sludge system. WATER RESEARCH 2024; 261:122042. [PMID: 38986284 DOI: 10.1016/j.watres.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.
Collapse
Affiliation(s)
- Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, PR China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Dong H, Tian Y, Lu J, Zhao J, Tong Y, Niu J. Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater. BIORESOURCE TECHNOLOGY 2024; 404:130916. [PMID: 38823560 DOI: 10.1016/j.biortech.2024.130916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ± 0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.
Collapse
Affiliation(s)
- Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China.
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
5
|
Liu S, Wu J, Hu Z, Jiang M. Changes in microbial community during hydrolyzed sludge reduction. Front Microbiol 2023; 14:1239218. [PMID: 37720154 PMCID: PMC10502510 DOI: 10.3389/fmicb.2023.1239218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
In this study, the effects of different enzymes (lysozyme, α-amylase and neutral protease) on sludge hydrolysis efficiency and microbial community in sequencing batch reactor (SBR) were introduced. The results showed that the hydrolysis efficiencies of the three enzymes were 48.5, 22.5 and 31%, respectively, compared with the accumulated sludge discharge of the blank control group. However, it has varying degrees of impact on the effluent quality, and the denitrification and phosphorus removal effect of the system deteriorates. The lysozyme that achieves the optimal sludge hydrolysis effect of 48.5% has the greatest impact on the chemical oxygen demand (COD), total nitrogen (TN), and nitrate nitrogen (NO3--N) of the effluent. The sludge samples of the control group and the groups supplemented with different enzyme preparations were subjected to high-throughput sequencing. It was found that the number of OTUs (Operational Taxonomic Units) of the samples was lysozyme > α-amylase > blank control > neutral protease. Moreover, the abundance grade curve of the sludge samples supplemented with lysozyme and α-amylase was smoother, and the community richness and diversity were improved by lysozyme and α-amylase. The species diversity of the sludge supplemented with lysozyme and neutral protease was great, and the community succession was obvious. The introduction of enzymes did not change the main microbial communities of the sludge, which were mainly Proteobacteria, Actinobacteria and Bacteroidetes. The effects of three enzyme preparations on sludge reduction and microbial diversity during pilot operation were analyzed, the gap in microbial research was filled, which provided theoretical value for the practical operation of enzymatic sludge reduction.
Collapse
Affiliation(s)
- Shaomin Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Jiating Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Ziyan Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| | - Mengyu Jiang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Anhui University of Science and Technology), Huainan, China
| |
Collapse
|
6
|
Zhou Z, Sun Y, Fu L, Zuo Y, Shao Y, Wang L, Zhou C, An Y. Unravelling roles of the intermediate settler in a microaerobic hydrolysis sludge in situ reduction process. BIORESOURCE TECHNOLOGY 2023:129228. [PMID: 37244312 DOI: 10.1016/j.biortech.2023.129228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
The roles of the intermediate settler in the sludge process reduction activated sludge process (SPRAS), and the influences of its hydraulic retention time (HRTST) on pollutant removal and sludge reduction were investigated. Prolonging HRTST from 3.0 to 4.5 and 6.0 h resulted in sludge reduction efficiencies increased from 46.8% to 61.5% and 62.7%. The sludge accumulation in the intermediate settler formed an anaerobic zone but inhibited methane production, and the alternating microaerobic and anaerobic environment in the sludge process reduction (SPR) module increased the microbial diversity and enriched the hydrolytic and fermentative bacteria. Prolonging HRTST accelerated dissolved organic matter release and elevated the degradation of refractory fraction, and improved the sludge properties of the SPRAS. Metagenomic analysis showed that the SPR module enhanced the glycolysis pathway and decoupling metabolism for sludge reduction. The results revealed that the intermediate settler plays dual roles in solid-liquid separation and sludge reduction metabolism.
Collapse
Affiliation(s)
- Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Li Fu
- Powerchina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
7
|
Jiang LM, Zhang Z, Li Y, Xu J, Wang K, Ding X, He J, Qiu Z, Zhou H, Zhou Z. Under-loaded operation of an anaerobic-anoxic-aerobic system in dry and wet weather dynamics to prevent overflow pollution: Impacts on process performance and microbial community. BIORESOURCE TECHNOLOGY 2023; 376:128837. [PMID: 36898557 DOI: 10.1016/j.biortech.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Effects of low hydraulic loading rate (HLR) in dry weather and high HLR in wet weather on pollutant removal, microbial community, and sludge properties of a full-scale wastewater treatment plant (WWTP) were extensively studied to explore the risk of under-loaded operation for overflow pollution control. Long-term low HLR operation had an insignificant effect on the pollutant removal performance of the full-scale WWTP, and the system could withstand high-load shocks in wet weather. Low HLR resulted in higher oxygen and nitrate uptake rate due to the storage mechanism under the alternating feast/famine condition, and lower nitrifying rate. Low HLR operation enlarged particle size, deteriorated floc aggregation and sludge settleability, and reduced sludge viscosity due to the overgrowth of filamentous bacteria and inhibition of floc-forming bacteria. The remarkable increase in Thuricola and the contract morphology of Vorticella in microfauna observation confirmed the risk of flocs disintegration in low HLR operation.
Collapse
Affiliation(s)
- Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhenjian Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunhui Li
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Jialei Xu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Kun Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinya Ding
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Hua Zhou
- Shanghai Chengtou Water (Group) Co., Ltd, Shanghai 200002, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
8
|
Wang K, Zhou C, Zhou H, Jiang M, Chen G, Wang C, Zhang Z, Zhao X, Jiang LM, Zhou Z. Comparison on biological nutrient removal and microbial community between full-scale anaerobic/anoxic/aerobic process and its upgrading processes. BIORESOURCE TECHNOLOGY 2023; 374:128757. [PMID: 36801443 DOI: 10.1016/j.biortech.2023.128757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A comparative study was conducted for the anaerobic/anoxic/aerobic (AAO) process and its two upgrading processes, five-stage Bardenpho and AAO coupling moving bed bioreactors (AAO + MBBR), using long-term operation data of six full-scale wastewater treatment plants. The three processes all had good COD and phosphorus removal performance. The reinforcing effects of carriers on nitrification were moderate at full-scale applications, while the Bardenpho was advantageous in nitrogen removal. The AAO + MBBR and Bardenpho processes both had higher microbial richness and diversity than the AAO. The AAO + MBBR favored bacteria to degrade complex organics (Ottowia and Mycobacterium) and to form biofilms (Novosphingobium), and preferentially enriched denitrifying phosphorus-accumulating bacteria (DPB) (norank_o__Run-SP154) with the highest anoxic to aerobic phosphorus uptake rates of 65.3 % - 83.9 %. The Bardenpho enriched bacteria tolerant to varied environments (Norank_f__Blastocatellaceae, norank_o__Saccharimonadales, and norank_o__SBR103), and was more suitable for the upgrading of the AAO because of its excellent pollutant removal performance and flexible operation mode.
Collapse
Affiliation(s)
- Kun Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
| | - Hua Zhou
- Shanghai Chengtou Water Group Co., Ltd., Shanghai 201203, China
| | - Ming Jiang
- Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
| | - Guang Chen
- Shanghai Chengtou Water Group Co., Ltd., Shanghai 201203, China
| | - Cong Wang
- Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
| | - Zhenjian Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Dan Q, Li J, Du R, Sun T, Li X, Zhang Q, Peng Y. Highly Enriched Anammox Bacteria with a Novel Granulation Model Regulated by Epistylis spp. in Domestic Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3571-3580. [PMID: 36811889 DOI: 10.1021/acs.est.2c06706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Anammox granulation is an efficient solution proffered to enrich slow-growing anammox bacteria (AnAOB), but the lack of effective granulation strategies for low-strength domestic wastewater impedes its application. In this study, a novel granulation model regulated by Epistylis spp. for highly enriched AnAOB was revealed for the first time. Notably, anammox granulation was achieved within 65 d of domestic wastewater treatment. The stalks of Epistylis spp. were found to act as the skeleton of granules and provide attachment points for bacterial colonization, and the expanded biomass layer in turn provided more area for the unstalked free-swimming zooids. Additionally, Epistylis spp. exerted much less predation stress on AnAOB than on nitrifying bacteria, and AnAOB tended to grow in aggregates in the interior of granules, thus favoring the growth and retention of AnAOB. Ultimately, the relative abundance of AnAOB reached up to a maximum of 8.2% in granules (doubling time of 9.9 d) compared to 1.1% in flocs (doubling time of 23.1 d), representing the most substantial disparity between granules and flocs. Overall, our findings advance the current understanding of interactions involved in granulation between protozoa and microbial communities and offer new insight into the specific enrichment of AnAOB under the novel granulation model.
Collapse
Affiliation(s)
- Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tiantian Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
10
|
Zuo Y, Shao Y, Wang L, Sun Y, An Y, Jiang LM, Yu N, Hao R, Zhou C, Tao J, Zhou Z. Simultaneous sludge minimization and membrane fouling mitigation in membrane bioreactors by using a microaerobic - Settling pretreatment module. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116977. [PMID: 36495823 DOI: 10.1016/j.jenvman.2022.116977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Membrane fouling is the major obstacle for membrane bioreactors operated at a long sludge retention time to reduce sludge production. In this study, a sludge process reduction (SPR) module, consisting of a microaerobic tank and a settler, was inserted before an anoxic/oxic MBR (AO-MBR) to achieve dual objectives of fouling alleviation and sludge reduction. Three SPR-MBRs were operated to investigate influences of sludge recirculation ratios from the SPR settler to the microaerobic tank on process performance. Compared to AO-MBR, the SPR-MBRs reduced sludge production by 43.1-56.4% by maintaining sludge retention times above 175 d, and decreased foulant layer resistance and pore clogging resistance. Inserting SPR reduced the accumulation of dissolved organic matters and extracellular polymeric substances, enlarged sludge flocs, and decreased sludge viscoelasticity. However, increasing RSPR stimulated outward diffusion of extracellular polymeric substances and increased sludge viscosity. SPR-MBRs achieved effective sludge reduction by enriching hydrolytic (Trichococcus and Aeromonas) and fermentative genera (Lactococcus, Paludibacter, Macellibacteroides, and Acinetobacter) in the SPR, and alleviated membrane fouling by prohibiting the growth of extracellular polymeric substance-secreting bacteria and enriching filamentous bacteria to enlarge particle size. The results revealed that the SPR-MBR maximized sludge reduction with a very long sludge retention time, and alleviated membrane fouling synchronously.
Collapse
Affiliation(s)
- Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nan Yu
- Jinluo Water Co., Ltd, Linyi, 276600, China
| | - Rujie Hao
- Jinluo Water Co., Ltd, Linyi, 276600, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Jun Tao
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
11
|
Shao Y, Zhou Z, Zuo Y, Jiang J, Wang L, Sun Y, He J, Qiu J, An Y, Jiang LM. Sludge decay kinetics and metagenomic analysis uncover discrepant metabolic mechanisms in two different sludge in situ reduction systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158346. [PMID: 36041603 DOI: 10.1016/j.scitotenv.2022.158346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
A comparative study was conducted between an anaerobic side-stream reactor (ASSR) process and a sludge process reduction (SPR) activated sludge (SPRAS) process for uncovering crucial metabolic mechanisms governing sludge reduction. Both of two processes were efficient in removing pollutants, while the SPRAS (62.3 %) obtained much higher sludge reduction than the ASSR (27.9 %). The highest rate coefficients of sludge decay, heterotroph lysis and particles hydrolysis were 0.106, 0.219 and 0.054 d-1 in the SPR module, followed by ASSR with coefficients of 0.060, 0.135 and 0.047 d-1. The SPR module achieved an 81.9 % higher sludge decay mass with a 32.8 % smaller volume than the ASSR module. The SPR module preferentially enriched hydrolytic/fermentative and slow-growing bacteria. Metagenomic analysis revealed that SPR strengthened the key hydrolases and L-lactate dehydrogenase in the glycolysis pathways and weakened the citrate cycle, inducing metabolic uncoupling due to the reduced biosynthesis of ATP. Inserting ASSR only altered the ATP biosynthesis pathway, but maintenance metabolism was dominant for sludge reduction, with a long sludge retention time prolonging the food chain for predation.
Collapse
Affiliation(s)
- Yanjun Shao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yi Zuo
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jie Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lihua Wang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Yiyue Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junli He
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Qiu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|