1
|
Yang L, Yu H, Zhao H, Xia C, Yu Q, Chen X, Cao G, Cai L, Meng S, Tang CY. Degradation of polyamide nanofiltration membranes by free chlorine and halide ions: Kinetics, mechanisms, and implications. WATER RESEARCH 2025; 272:122963. [PMID: 39689551 DOI: 10.1016/j.watres.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br- and Cl-) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and H3BO3 permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond). The more reactive but less abundant brominating agents (Br2O, BrOCl, BrCl, and Br2) played significant roles in membrane degradation, contradicting the conventional belief that HOBr is the only reactive species. BrCl at pH 4.0 and BrOCl and Br2O at pH 7.0 made significantly higher contributions to membrane degradation than HOBr (>76 % vs. <13 %). The increased contribution of BrCl and Br2 with the increased [Cl-] and [Br-]ex (the excess bromide, defined as [Br-]o - [HOCl]o when [Br-]o > [HOCl]o), respectively, was responsible for the greater reduction of water permeability coefficient. The innovative and simple approach developed in this study provides important insights to evaluate and predict membrane degradation.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Huihui Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Caiping Xia
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinyu Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lankun Cai
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China
| |
Collapse
|
2
|
Zhao H, Yang L, Chen X, Wang J, Bai L, Cao G, Cai L, Tang CY. Reactivity of various brominating agents toward polyamide nanofiltration membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Tomczak W. The Application of the Nanofiltration Membrane NF270 for Separation of Fermentation Broths. MEMBRANES 2022; 12:1263. [PMID: 36557170 PMCID: PMC9781066 DOI: 10.3390/membranes12121263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The potential for nanofiltration (NF) in removing both relatively low molecular weight (MW) organic species and charged solutes from complex media is noteworthy. The main aim of the current work was to improve understanding of the separation mechanisms of fermentation broths components in the NF process. For this purpose, the experimental investigations were performed using the commercial polyamide NF270 membrane. The feed solution was ultrafiltered 1,3-propanediol (1,3-PD) broths. The separation results were analyzed and discussed in light of the detailed characteristics of both the membrane and the broth components. It has been noted that the membrane ensured the complete 1,3-PD permeability and significant rejection of some feed components. A thorough analysis showed that the retention of carboxylic acids was based on both the Donnan effect and sieve mechanism, according to the following order: succinic acid > lactic acid > acetic acid > formic acid. Indeed, acids retention increased with increasing charged acids ions valency, Stokes radius (rS) as well as MW, and decreasing diffusion coefficient (D). In turn, for ions, the following orders retention was determined: SO42− = PO43− > Cl− and Ca2+ > Na+ > NH4+ ~ K+. It indicated that the ions retention increased with increasing ions charge density, hydrated radius (rH), and hydration energy (Eh). It showed that the separation of the ions was based on the Donnan exclusion, sieving effect, and dielectric exclusion.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
| |
Collapse
|
4
|
Cheng W, Wang P, Zhang Y, Wang H, Ma J, Zhang T. Oxidation resistances of polyamide nanofiltration membranes to hydroxyl and sulfate radicals. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Xie Y, Yang L, Chen X, Zhao H, Cao G, Li X, Bai L, Meng S, Wang R. The role of iron present in water environment in degradation of polyamide membranes by free chlorine. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lasisi KH, Ajibade TF, Zhang K. Degradation impact of low pH mineral acids and long exposure period on the active layer of semi-aromatic polyamine-based nanofiltration membrane. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Żyłła R, Foszpańczyk M, Kamińska I, Kudzin M, Balcerzak J, Ledakowicz S. Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals. MEMBRANES 2022; 12:150. [PMID: 35207072 PMCID: PMC8874440 DOI: 10.3390/membranes12020150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA). The influence of the structure and properties of the tested compounds on the retention coefficient and filtration rate was investigated. The influence of pH on the filtration parameters was also checked. The properties of selected membranes influencing the retention of pharmaceuticals and filtrate flux were analysed. An extensive analysis of the retention coefficients dependence on the contact angle and surface free energy was performed. It was found that there is a correlation between the hydrophilicity of the membrane and the effectiveness and efficiency of the membrane. As the contact angle of membrane increased, the flow rate of the filtrate stream increased, while the retention coefficient decreased. The studies showed that the best separation efficiency was achieved for compounds with a molecular weight (MW) greater than 300 g/mol. During the filtration of pharmaceuticals with MW ranging from 300 to 450 g/mol, the type of membrane used practically did not affect the filtration efficiency and a high degree of retention was achieved. In the case of low MW molecules (SA and ASA), a significant decrease in the separation efficiency during the process was noted.
Collapse
Affiliation(s)
- Renata Żyłła
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Magdalena Foszpańczyk
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Irena Kamińska
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Marcin Kudzin
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland;
| | - Stanisław Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland;
| |
Collapse
|
8
|
Tian J, Zhao X, Gao S, Wang X, Zhang R. Progress in Research and Application of Nanofiltration (NF) Technology for Brackish Water Treatment. MEMBRANES 2021; 11:662. [PMID: 34564479 PMCID: PMC8468185 DOI: 10.3390/membranes11090662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/07/2022]
Abstract
Brackish water is a potential fresh water resource with lower salt content than seawater. Desalination of brackish water is an important option to alleviate the prevalent water crisis around the world. As a membrane technology ranging between UF and RO, NF can achieve the partial desalination via size exclusion and charge exclusion. So, it has been widely concerned and applied in treatment of brackish water during the past several decades. Hereon, an overview of the progress in research on and application of NF technology for brackish water treatment is provided. On the basis of expounding the features of brackish water, the factors affecting NF efficiency, including the feed water characteristics, operating conditions and NF membrane properties, are analyzed. For the ubiquitous membrane fouling problem, three preventive fouling control strategies including feed water pretreatment, optimization of operating conditions and selection of anti-fouling membranes are summarized. In addition, membrane cleaning methods for restoring the fouled membrane are discussed. Furthermore, the combined utilization of NF with other membrane technologies is reviewed. Finally, future research prospects are proposed to deal with the current existing problems. Lessons gained from this review are expected to promote the sustainable development of brackish water treatment with NF technology.
Collapse
Affiliation(s)
- Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Xingrui Zhao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| | - Xiaoying Wang
- School of Architectural Engineering, Sanming University, Sanming 365004, China;
| | - Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; (J.T.); (X.Z.); (S.G.)
| |
Collapse
|