1
|
Ming J, Ni SQ, Guo Z, Wang ZB, Xie L. Photocatalytic material-microorganism hybrid systems in water decontamination. Trends Biotechnol 2025; 43:1031-1047. [PMID: 39645524 DOI: 10.1016/j.tibtech.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Biological processes are widely used technologies for water decontamination, but they are often limited by insufficient bioavailable carbon sources or biorecalcitrant contaminants. The recently developed photocatalytic material-microorganism hybrid (PMH) system combines the light-harvesting capacities of photocatalytic materials with specific enzymatic activities of whole cells, efficiently achieving solar-to-chemical conversion. By integrating the benefits of both photocatalysis and biological processes, the PMH system shows great potential for water decontamination. While recent reviews have focused primarily on its application in green energy development, this review emphasizes the latest advancements in PMH systems for water decontamination, covering various applications, key considerations, and synergistic mechanisms. This review aims to provide a fundamental understanding of the PMH system and explore its broader potential in environmental remediation.
Collapse
Affiliation(s)
- Jie Ming
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Ziyu Guo
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhi-Bin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangke Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Bian J, An X, Zhao J, Liao Y, Lan X, Liu R, Hu C, Chen JJ, Liu H, Qu J. Directional Electron Transfer in Enzymatic Nano-Bio Hybrids for Selective Photobiocatalytic Conversion of Nitrate. Angew Chem Int Ed Engl 2024; 63:e202412194. [PMID: 39383008 DOI: 10.1002/anie.202412194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Semi-artificial photosynthetic system (SAPS) that combines enzymes or cellular organisms with light-absorbing semiconductors, has emerged as an attractive approach for nitrogen conversion, yet faces the challenge of reaction pathway regulation. Herein, we find that photoelectrons can transfer from the -C≡N groups at the edge of cyano-rich carbon nitride (g-C3N4-CN) to nitrate reductase (NarGH), while the direct electron transfer to nitrite reductase (cd1NiR) is inhibited due to the physiological distance limit of active sites (>14 Å). By means of the directional electron transfer between g-C3N4-CN and extracted biological enzymes, the product of the denitrification reaction was switched from inert N2 to usable nitrite with an unprecedented selectivity of up to 95.3 %. The converted nitrite could be further utilized by anammox microbiota and dissimilatory nitrate reduction to ammonia (DNRA) microorganisms, doubling the efficiency of total nitrogen removal (96.5±2.3 %) for biological nitrogen removal and ammonia generation (12.6 mg NH4 +-N L-1 h-1), respectively. Thus, our work paves an appealing way for the sustainable treatment and utilization of nitrate for ammonia fuel production by strategically regulating the electron transfer pathway across the biotic-abiotic interface.
Collapse
Affiliation(s)
- Jiyong Bian
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Yang Liao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Xianen Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Jie-Jie Chen
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| |
Collapse
|
3
|
Zhu X, Zhang X, Gao B, Ji L, Zhao R, Wu P. A critical review of Mnammox coupled with the NDMO for innovative nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175453. [PMID: 39137844 DOI: 10.1016/j.scitotenv.2024.175453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In the context of increasing global nitrogen pollution, traditional biological nitrogen removal technologies like nitrification and denitrification are hindered by high energy consumption. Additionally, the deployment of anaerobic ammonium oxidation (Anammox) technology is constrained due to the slow growth rate of Anammox bacteria and there is a bottleneck in nitrogen removal efficiency. To overcome these technical bottlenecks, researchers have discovered a revolutionary nitrogen removal technology that cleverly combines the redox cycling of manganese with nitrification and denitrification reactions. In this new process, manganese dependent anaerobic ammonium oxidation (Mnammox) bacteria can convert NH4+ to N2 under anaerobic conditions, while nitrate/nitrite dependent manganese oxidation (NDMO) bacteria use NO3-/NO2- as electron acceptors to oxidize Mn2+ to Mn4+. Mn4+ acts as an electron acceptor in Mnammox reaction, thereby realizing the autotrophic nitrogen removal process. This innovative method not only simplifies the steps of biological denitrification, but also significantly reduces the consumption of oxygen and organic carbon, providing a more efficient and environmentally friendly solution to the problem of nitrogen pollution. The article initially provides a concise overview of prevalent nitrogen removal technologies and the application of manganese in these processes, and discusses the role of manganese in biogeochemical cycles, including its discovery, mechanism of action, microbial communities involved, and its impact on these key factors in the process. Subsequently, metabolic principles, benefits, advantages, and environmental considerations of Mnammox coupled with the NDMO process are analyzed in detail. Finally, this article summarizes the shortcomings of current research and looks forward to future research directions. The goal of this article is to provide a valuable reference for researchers to fully understand the application of manganese in nitrogen removal processes.
Collapse
Affiliation(s)
- Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Gao T, Li Y, Dai K, Meng F. Electric syntrophy-driven modulation of Fe 0-dependent microbial denitrification. WATER RESEARCH 2024; 268:122722. [PMID: 39504696 DOI: 10.1016/j.watres.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
In natural or engineered anaerobic environments, iron oxidation-driven microbial denitrification plays a critical role in the water or wastewater treatment. Herein, we report a previously unidentified metallic iron (Fe0)-dependent denitrification mode driven by the electro-syntrophic interaction between electroactive microorganism and denitrifier. In a model denitrifying consortium of Shewanella oneidensis and Pseudomonas aeruginosa, we find that P. aeruginosa can accept electrons for nitrate reduction via the constructed electron transfer system of Fe0-S. oneidensis-P. aeruginosa. In the electro-syntrophic consortium, the membrane-bound CymA-OmcA-MtrC protein complexes of S. oneidensis drive the generation, transfer and consumption of electrons, thus enabling modulation of microbial metabolic activity. Specially, using Fe0 as the sole electron donor, S. oneidensis can act as a bio-engine to harvest electrons and conserve energy from Fe0 biocorrosion. Electrons released by S. oneidensis are utilized by P. aeruginosa for accomplishing microbial denitrification. Metatranscriptomics analysis demonstrated that the direct electron cross-feeding process facilitates the expression of genes encoding for denitrification enzymes, intracellular electron transfer proteins, and quorum sensing of P. aeruginosa. The Fe0-dependent electronic syntrophy in this work could provide a metabolic window for the growth of denitrifiers that is a new insight into nitrate removal or global nitrogen cycle.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Ying Li
- Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
6
|
Liu Z, Cui Z, Guo Z, Li D, He Z, Liu W, Yue X, Zhou A. Insights into the effect of nitrate photolysis on short-chain fatty acids production from waste activated sludge in anaerobic fermentation system: Performance and mechanisms. WATER RESEARCH 2024; 258:121772. [PMID: 38761600 DOI: 10.1016/j.watres.2024.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Nitrate photolysis has become an efficient, low-cost and promising technology for emerging contaminants removal, while its performance and mechanism for waste activated sludge (WAS) treatment is still unknown. This study innovatively introduced nitrate photolysis for WAS disintegration, and investigated the effect of nitrate addition (150-375 mg N/L) for short-chain fatty acids (SCFAs) production during anaerobic fermentation (AF). The results showed that nitrate photolysis significantly promoted the SCFAs production from WAS, and peaked at 280.7 mg/g VSS with 7-d fermentation with 150 mg N/L addition (150N-UV), which increased by 8.8-35.0 % and 10.7-23.3 % compared with other photolysis groups and sole nitrate groups. Effective release of the soluble organics was observed in the nitrate photolysis groups during AF, especially soluble proteins, reaching 1505.4 mg COD/L at 9 d in 150N-UV group, promoted by 7.0∼15.7 % than nitrate/nitrate photolysis groups. The model compounds simulation experiment further demonstrated the positive effect of nitrate photolysis on organics hydrolysis and SCFAs accumulation. The result of the radical capture and quenching verified the reactive oxygen species contributed more compared with reactive nitrogen species. Functional group analysis confirmed the effective bioconversion of the macromolecular organics during the fermentation. Moreover, the nitrate photolysis enhanced the enrichment of the functional consortia, including anaerobic fermentation bacteria (AFB), e.g., Fnoticella, Romboutsia, Gracilibacter and Sedimentibacter, and nitrate reducing bacteria (NRB), e.g., Acinerobacter and Ahniella. The macrogenetic analysis further revealed that glycolysis, amino acid metabolism, acetate metabolism and nitrogen metabolism were the dominating metabolic pathways during fermentation, and the abundance of the relevant genes were enhanced in 150N-UV group.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030024, China
| | - Zhixuan Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zhengtong Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Dengfei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Shanxi 710055, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China.
| |
Collapse
|
7
|
Tang S, Li Y, Zhu Z, Wang Y, Peng Y, Zhang J, Nong P, Pan S, Fan Y, Zhu Y. Biotransformation of Chlorpyrifos Shewanella oneidensis MR-1 in the Presence of Goethite: Experimental Optimization and Degradation Products. TOXICS 2024; 12:402. [PMID: 38922082 PMCID: PMC11209498 DOI: 10.3390/toxics12060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.
Collapse
Affiliation(s)
- Shen Tang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yanhong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
| | - Yaru Wang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yuqing Peng
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Jing Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Peijie Nong
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Shufen Pan
- College of Environmental Science and Engineering, Guilin University of Technology, No. 319, Yanshan District, Guilin 541004, China; (S.T.); (Y.W.); (Y.P.); (J.Z.); (P.N.); (S.P.)
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;
| |
Collapse
|
8
|
Liu L, Zheng N, Yu Y, Zheng Z, Yao H. Soil carbon and nitrogen cycles driven by iron redox: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170660. [PMID: 38325492 DOI: 10.1016/j.scitotenv.2024.170660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Soil carbon and nitrogen cycles affect agricultural production, environmental quality, and global climate. Iron (Fe), regarded as the most abundant redox-active metal element in the Earth's crust, is involved in a biogeochemical cycle that includes Fe(III) reduction and Fe(II) oxidation. The redox reactions of Fe can be linked to the carbon and nitrogen cycles in soil in various ways. Investigating the transformation processes and mechanisms of soil carbon and nitrogen species driven by Fe redox can provide theoretical guidance for improving soil fertility, and addressing global environmental pollution as well as climate change. Although the widespread occurrence of these coupling processes in soils has been revealed, explorations of the effects of Fe redox on soil carbon and nitrogen cycles remain in the early stages, particularly when considering the broader context of global climate and environmental changes. The key functional microorganisms, mechanisms, and contributions of these coupling processes to soil carbon and nitrogen cycles have not been fully elucidated. Here, we present a systematic review of the research progress on soil carbon and nitrogen cycles mediated by Fe redox, including the underlying reaction processes, the key microorganisms involved, the influencing factors, and their environmental significance. Finally, some unresolved issues and future perspectives are addressed. This knowledge expands our understanding of the interconnected cycles of Fe, carbon and nitrogen in soils.
Collapse
Affiliation(s)
- Lihu Liu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Zhaozhi Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
9
|
Chen JJ. Interfacial Electron Transfer in Chemical and Biological Transformation of Pollutants in Environmental Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21540-21549. [PMID: 38086095 DOI: 10.1021/acs.est.3c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Interfacial electron transfer (IET) is essential for chemical and biological transformation of pollutants, operative across diverse lengths and time scales. This Perspective presents an array of multiscale molecular simulation methodologies, supplemented by in situ monitoring and imaging techniques, serving as robust tools to decode IET enhancement mechanisms such as interface molecular modification, catalyst coordination mode, and atomic composition regulation. In addition, three IET-based pollutant transformation systems, an electrocatalytic oxidation system, a bioelectrochemical spatial coupling system, and an enzyme-inspired electrocatalytic system, were developed, demonstrating a high effect in transforming and degrading pollutants. To improve the effectiveness and scalability of IET-based strategies, the refinement of these systems is necessitated through rigorous research and theoretical exploration, particularly in the context of practical wastewater treatment scenarios. Future endeavors aim to elucidate the synergy between biological and chemical modules, edit the environmental functional microorganisms, and harness machine learning for designing advanced environmental catalysts to boost efficiency. This Perspective highlights the powerful potential of IET-focused environmental remediation strategies, emphasizing the critical role of interdisciplinary research in addressing the urgent global challenge of water pollution.
Collapse
Affiliation(s)
- Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Xing B, Graham NJD, Zhao B, Li X, Tang Y, Kappler A, Dong H, Winkler M, Yu W. Goethite Formed in the Periplasmic Space of Pseudomonas sp. JM-7 during Fe Cycling Enhances Its Denitrification in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11096-11107. [PMID: 37467428 DOI: 10.1021/acs.est.3c02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 μA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.
Collapse
Affiliation(s)
- Bobo Xing
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Binghao Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xian Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-5014, United States
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
11
|
Yang G, Hou T, Lin A, Xia X, Quan X, Chen Z, Zhuang L. Sub-inhibitory concentrations of ampicillin affect microbial Fe(III) oxide reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131131. [PMID: 36917911 DOI: 10.1016/j.jhazmat.2023.131131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are ubiquitous in the iron-rich environments but their roles in microbial reduction of Fe(III) oxides are still unclear. Using ampicillin and Geobacter soli, this study investigated the underlying mechanism by which antibiotic regulated microbial reduction of Fe(III) oxides. Results showed that sub-minimal inhibitory concentrations (sub-MIC) of ampicillin significantly affected ferrihydrite reduction by G. soli, with a stimulatory effect at 1/64 and 1/32 MIC and an inhibitory effect at 1/8 MIC. Increasing ampicillin concentration resulted in increasing cell length and decreasing bacterial zeta potential that were beneficial for ferrihydrite reduction, and decreasing outer membrane permeability that was unfavorable for ferrihydrite reduction. The respiratory metabolism ability was enhanced by 1/64 and 1/32 MIC ampicillin and reduced by 1/8 MIC ampicillin, which was also responsible for regulation of ferrihydrite reduction by ampicillin. The ferrihydrite reduction showed a positive correlation with the redox activity of extracellular polymeric substances (EPS) which was tied to the cytochrome/polysaccharide ratio and the content of α-helices and β-sheet in EPS. These results suggested that ampicillin regulated microbial Fe(III) oxide reduction through modulating the bacterial morphology, metabolism activity and extracellular electron transfer ability. Our findings provide new insights into the environmental factors regulating biogeochemical cycling of iron.
Collapse
Affiliation(s)
- Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Tiqun Hou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Annian Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xue Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Quan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhili Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Gao Z, Bai Y, Su J, Ali A, Huang T, Zhai Z, Wang Y. Deciphering microbial syntrophic mechanisms for simultaneous removal of nitrate and Cr(VI) by Mn@Corn cob immobilized bioreactor: Performance, enhancement mechanisms and community assembly. BIORESOURCE TECHNOLOGY 2022; 364:128017. [PMID: 36174388 DOI: 10.1016/j.biortech.2022.128017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
When bioremediation is applied to Cr(VI) and NO3--N contaminated groundwater, the lack of carbon sources and weak physiological activity dramatically affect the treatment efficacy. Hence, a bioreactor consisting of cellulose degradation-manganese (Mn) cycling bilayer carrier and two core strains was established. After 270 operating days, the experimental group (EG) achieved 96.34 and 95.37% of NO3--N and Cr(VI) removal efficiency, respectively. When the C/N ratio was reduced to 1.0, cellulose-degrading strain CDZ9 produced significantly hydrolyzed cellulose from the corn cob substrate. Meanwhile, the balance between microbial metabolic activity and carbon supply was manipulated by the dissimilatory Mn-reducing strain MFG10. Dissolved organic matter response in EG provided evidence for enhanced carbon utilization and electron transfer processes. The syntrophic relationship between EG core strains significantly enhanced bioreactor metabolism and bioactivity. It drove the coupling of different elemental cycles with contaminant removal including carbon metabolism, nitrogen metabolism, Mn cycle and Cr(VI) reduction.
Collapse
Affiliation(s)
- Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
13
|
Wang Z, Sun C, Zhou Y, Yu Q, Xu X, Zhao Z, Zhang Y. Anaerobic ammonium oxidation driven by dissimilatory iron reduction in autotrophic Anammox consortia. BIORESOURCE TECHNOLOGY 2022; 364:128077. [PMID: 36216281 DOI: 10.1016/j.biortech.2022.128077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Feammox has been applied to wastewater biological nitrogen removal. However, few studies have reported that Fe(III)(hydr)oxides induced Anammox consortia to remove NH4+ via the Feammox pathway. In this study, Fe(OH)3 was added to Anammox systems to investigate its effect on nitrogen removal via Feammox. The specific Anammox activity increased by 39 % by Fe(OH)3. Ammonia oxidation was observed to occur along with Fe(III) reduction and Fe(II) generation, which was further confirmed by the isotope test with feeding 15NH4+-N to detect 30N2. The cyclic voltammetry test showed that electron-storage capacity of Anammox sludge increased with Fe(OH)3. In situ Fourier transform infrared spectroscopy suggested that Fe(OH)3 enhanced the polarization of functional groups of outer membrane cytochrome of Anammox consortia to benefit extracellular electron transfer. This study demonstrated that Fe(OH)3 could induce Anammox consortia to perform extracellular respiration to enhance NH4+-N removal in the Anammox sludge system.
Collapse
Affiliation(s)
- Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
14
|
Wang G, Jiang Y, Tang K, Zhang Y, Andersen HR. Efficient recovery of dissolved Fe(II) from near neutral pH Fenton via microbial electrolysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129196. [PMID: 35739726 DOI: 10.1016/j.jhazmat.2022.129196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fe(II) regeneration from ferric sludge via a biocathode and citrate system has recently been proposed to avoid iron-sludge accumulation and iron consumption in homogeneous Fenton treatments. However, poor regeneration rate of Fe(II) from ferric sludge at a near-neutral pH, without an iron-complexing agent, limited its wider practical application. Here, a biocathode augmented with Geobacter sulfurreducens hosted by a microbial electrolysis cell was developed to efficiently regenerate dissolved Fe(II) from ferric sludge at near-neutral pH levels, without using iron-complexing agents. In the Geobacter sulfurreducens-rich biocathode without complexing agents, the regeneration rate of dissolved Fe(II) increased three-fold compared with the biocathode before inoculating Geobacter sulfurreducens. The highest concentration of dissolved Fe(II) increased from 45 mg Fe/L to 199 mg Fe/L at pH 6 when 0.5 V of voltage was applied. Furthermore, 84 mg Fe/L of dissolved Fe(II) was successfully regenerated from ferric sludge during the 123 days' operation of flow-through biocathode. Finally, the regenerated Fe(II) solution without organic matters was successfully applied in a near-neutral pH Fenton treatment to remove recalcitrant pollutants. This Geobacter sulfurreducens-rich biocathode, with its low chemical consumption, high regeneration rate and feasibility for continuous flow operation, offers a more efficient method to realize iron-free in homogeneous Fenton treatments.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yufeng Jiang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
Influence of surface coatings on the adhesion of Shewanella oneidensis MR-1 to hematite. J Colloid Interface Sci 2022; 608:2955-2963. [PMID: 34844734 DOI: 10.1016/j.jcis.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
The adhesion of dissimilatory iron reducing bacteria (DIRB) to iron oxides is an important process to initiate direct extracellular electron transfer. Iron oxides in natural environments are often coated by organic matter or silica (SiO2) which alters their surface physicochemical properties. To investigate the influence of these surface coatings, we characterized the dynamic adhesion processes of Shewanella oneidensis MR-1 to bare hematite, humic acid-coated hematite (hematite-HA), and SiO2-coated hematite (hematite-SiO2) using Quartz Crystal Microbalance with Dissipation (QCM-D). The molecular-level process and mechanism were investigated using in situ Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) spectrometry. We found that MR-1 formed a rigid bacterial layer on bare hematite. Coating with HA or SiO2 decreased the surface cell density during the initial adhesion stage, and compromised the stability of the subsequent bacterial attachment. The FTIR combined with two-dimensional correlation spectroscopy (2D-COS) analysis showed that C-moieties of polysaccharides dominated interactions in initial adhesion on HA and SiO2-coated hematite. In the longer term, the HA coating hindered the adsorption of amide, but promoted the binding of polysaccharide C-moieties to hematite. We concluded that, in general, both the HA and SiO2 coatings reduced the attachment of MR-1 on hematite. These results advance our understanding of the roles of surface coatings on microbe-mineral interactions, which has significant implications for a series of biogeochemical processes in nature.
Collapse
|