1
|
Liu A, Fu J, Liu Z, Shi S, Zhang WX. Interfacial reactions and speciation identification during arsenic treated with nanoscale zerovalent iron (nZVI) in water: A review. WATER RESEARCH 2025; 283:123829. [PMID: 40414096 DOI: 10.1016/j.watres.2025.123829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
This perspective briefly summarized the progress of inorganic arsenic (As) treated with nanoscale zerovalent iron (nZVI) in water over the past two decades. The intrinsic interfacial reaction between As and nZVI encompassed multiple effects, such as complexation, oxidation, reduction, and co-precipitation, ascribed to core-shell structure of nZVI and environmental behavior of As in water. Surface complexation occurred via ligand exchange of arsenate anions with Fe-OH groups on the iron oxide shell. However, interfacial oxidation of As(III) to As(V) was attributed to form a Fe(III) oxide-Fe(II)-As(III) ternary surface complex under anoxic conditions, as well as generate reactive oxygen species (e.g., H2O2, •OH) from iron reacted with O2 under oxic conditions. Reduction of As(III) to As(0) was followed by subsurface accumulation near the Fe(0) core. Advanced characterization techniques, including high-resolution X-ray photoelectron spectroscopy, in situ X-ray absorption spectroscopy, spherical aberration-corrected scanning transmission electron microscope, and density functional theory combined with quick-scanning extended X-ray absorption fine structure, have unraveled the multi-tiered distributions of As on nZVI at atomic scale. This review highlights critical gaps in understanding As-Fe redox dynamics and advocates for future research to engineer nZVI with tailored surface properties for enhanced As sequestration.
Collapse
Affiliation(s)
- Airong Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Jiahui Fu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Zhaoli Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Shuangjia Shi
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Wei-Xian Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| |
Collapse
|
2
|
Li Q, Yao W, Zhang J, Li Z, Wang W, Du J, Li J. Regulating the interlayer SO 42--induced rebound of SeO 42- in green rust coupled with iron nanoparticles for groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136339. [PMID: 39486323 DOI: 10.1016/j.jhazmat.2024.136339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Green rust (GR) is an interlayer anion-containing Fe(II)/Fe(III) mineral material that is versatile in removing a series of ionic contaminants in water. Taking SeO42- (Se(VI)) as the target contaminant, this study identified that the removal processes of Se(VI) by GR could be divided into three stages: initial rapid interlayer exchange, followed by a rebound, and finally slow removal. In addition, as the percentage of SO42- in GR interlayer increased, the Se(VI) removal by GR gradually decreased. To mediate the SO42--induced rebound of Se(VI), the coupling of GR with iron nanoparticles (nFe0@GR) was proposed in this study and it was found that the removal efficiency of Se(VI) by nFe0@GR was 3.53 folds greater than that of GR. This study further revealed that the enhanced reactivity of nFe0@GR with Se(VI) could be attributed to the re-equilibration of SO42- driven by the formed GR in situ. Since it had a weaker electrostatic repulsion with interlayer SeO42- than pristine GR, the Se(VI) could be quickly removed by nFe0@GR without the rebound. Moreover, the nFe0@GR was demonstrated to be effective in immobilizing Se(VI) from simulated groundwater and has a great potential to reduce the risk of Se(VI) re-release into the environment.
Collapse
Affiliation(s)
- Qingchan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Wenjing Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhen Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Wenhao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiahao Du
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
3
|
Biswakarma J, Matthews M, Byrne JM. Redox Dynamic Interactions of Arsenic(III) with Green Rust Sulfate in the Presence of Citrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1239-1246. [PMID: 39554600 PMCID: PMC11562726 DOI: 10.1021/acs.estlett.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
Arsenic is a global pollutant. Recent studies found that Fe(II) can oxidize As(III), but the extent of oxidation with mixed-valent iron minerals and the mechanisms involved are unknown. In this study, we investigated whether As(III) can be oxidized under reducing conditions using green rust sulfate (GR-SO4), an Fe mineral containing both Fe(II) and Fe(III). Batch sorption experiments showed that GR-SO4 (1 g L-1) effectively sorbs environmentally relevant concentrations of As(III) (50-500 μg L-1) under anoxic, neutral pH conditions with and without citrate (50 μM). X-ray absorption near-edge structure spectroscopy analysis at the As K-edge demonstrated that approximately 76% of As(III) was oxidized to As(V) by GR-SO4. Complete oxidation of As(III) was observed in the presence of citrate. As(III) oxidation can be linked to the phase transformation of GR-SO4 to goethite, resulting in new reactive Fe(III) species that plausibly drive oxidation. Citrate enhanced this process by stabilizing Fe on the mixed GR-SO4/goethite surface, preventing its reduction back to Fe(II) and facilitating further As(III) oxidation without significant Fe loss to the solution. This study highlights the cryptic As(III) oxidation that occurs under reducing conditions, providing new insights into the cycling of arsenic in mixed phases of iron-rich, anoxic environments.
Collapse
Affiliation(s)
- Jagannath Biswakarma
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - Molly Matthews
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - James M. Byrne
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| |
Collapse
|
4
|
Liu Y, Chen W, Huang Y, Li Z, Li C, Liu H, Huangfu X. Mechanisms for thallium(I) adsorption by zinc sulfide minerals under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132745. [PMID: 37827100 DOI: 10.1016/j.jhazmat.2023.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
The highly toxic heavy metal thallium is widely distributed in sulfide ores and released into the environment by sulfide mining. However, the interface between the sulfide minerals and Tl(I) is unclear. In this study, the capacity for adsorption of thallium(I) by a common sulfide mineral (zinc sulfide) was investigated in aerobic and anaerobic environments, which revealed three mechanisms for adsorption on the ZnS surface (surface complexation, electrostatic action and oxidation promotion). Batch experiments indicated that the Tl(I) adsorption capacity of ZnS in an aerobic environment was approximately 9.3% higher than that in an anaerobic environment and was positively correlated with the pH. The adsorption kinetic data showed good fits with the pseudosecond-order model and the Freundlich isotherm model. The Tl(I) adsorption mechanism varied in different oxidative and pH environments. XPS, FTIR, and EDS results implied that complexation with surface hydroxyl groups was involved in the adsorption process. pH experiments and zeta analyses suggested that electrostatic attraction was also involved. Surface complexation and electrostatic attraction were the dominant mechanisms at pH values above 6. Furthermore, oxidative dissolution of ZnS and hydrolysis of Zn2+ enhanced the complexation with hydroxyl groups on the mineral surface and facilitated Tl adsorption. In this study, this interface mechanism provided new insights into thallium migration in sulfurized mineral environments in aerobic and anaerobic transition regions.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Changsheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Farr O, Elzinga EJ, Yee N. Effect of Ni 2+, Zn 2+, and Co 2+ on green rust transformation to magnetite. GEOCHEMICAL TRANSACTIONS 2022; 23:3. [PMID: 36580177 PMCID: PMC9798576 DOI: 10.1186/s12932-022-00080-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/10/2022] [Indexed: 06/07/2023]
Abstract
In this study, we investigated Ni2+, Zn2+, and Co2+ mineralogical incorporation and its effect on green rust transformation to magnetite. Mineral transformation experiments were conducted by heating green rust suspensions at 85 °C in the presence of Ni2+, Zn2+, or Co2+ under strict anoxic conditions. Transmission electron microscopy and powder X-ray diffraction showed the conversion of hexagonal green rust platelets to fine grained cubic magnetite crystals. The addition of Ni2+, Zn2+, and Co2+ resulted in faster rates of mineral transformation. The conversion of green rust to magnetite was concurrent to significant increases in metal uptake, demonstrating a strong affinity for metal sorption/co-precipitation by magnetite. Dissolution ratio curves showed that Ni2+, Zn2+, and Co2+ cations were incorporated into the mineral structure during magnetite crystal growth. The results indicate that the transformation of green rust to magnetite is accelerated by metal impurities, and that magnetite is a highly effective scavenger of trace metals during mineral transformation. The implications for using diagenetic magnetite from green rust precursors as paleo-proxies of Precambrian ocean chemistry are discussed.
Collapse
Affiliation(s)
- Orion Farr
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Evert J Elzinga
- Department of Earth and Environmental Sciences, Rutgers University-Newark, Newark, NJ, 07102, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
6
|
Zhang X, Deng J, Jia Q, Ji B, Dai Y, Huang LZ. Mineralization of tribromophenol under anoxic/oxic conditions in the presence of copper(II) doped green rust: Importance of sequential reduction-oxidation process. WATER RESEARCH 2022; 222:118959. [PMID: 35964514 DOI: 10.1016/j.watres.2022.118959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The groundwater environment often undergoes the transition from anoxic to oxic due to natural processes or human activities, but the influence of this transition on the fate of groundwater contaminates are not entirely understood. In this work, the degradation of tribromophenol (TBP) in the presence of environmentally relevant iron (oxyhydr)oxides (green rust, GR) and trace metal ions Cu(II) under anoxic/oxic-alternating conditions was investigated. Under anoxic conditions, GR-Cu(II) reduced TBP to 4-BP completely within 7 h while GR only had an adsorption effect on TBP. Under oxic conditions, GR-Cu(II) could generate •OH via dioxygen activation, which resulted in the oxidative transformation of TBP. Sixty-five percentage of TBP mineralization was achieved via a sequential reduction-oxidation process, which was not achieved through single reduction or oxidation process. The produced Cu(I) in GR-Cu(II) enhanced not only the reductive dehalogenation under anoxic conditions, but also the O2 activation under oxic conditions. Thus, the fate of TBP in anoxic/oxic-alternating groundwater environment is greatly influenced by the presence of GR-Cu(II). The sequential reduction-oxidation degradation of TBP by GR-Cu(II) is promising for future remediation of TBP-contaminated groundwater.
Collapse
Affiliation(s)
- Xuejie Zhang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, PR China
| | - Jia Deng
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, PR China
| | - Qianqian Jia
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, PR China
| | - Bingbing Ji
- School of Resources and Environmental Science, Wuhan University, Wuhan, PR China
| | - Yitao Dai
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, PR China.
| |
Collapse
|
7
|
Yao W, Zhang J, Gu K, Li J, Qian J. Synthesis, characterization and performances of green rusts for water decontamination: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119205. [PMID: 35341820 DOI: 10.1016/j.envpol.2022.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the application of green rusts (GRs) for water purification has received significant attention, but its full understanding has not been well achieved. Then, the comprehension about the synthesis and characteristics of GRs can highly favor their decontamination performances for the site-specific conditions. This review comprehensively summarized the synthesis, characteristics and performances of GRs including the GR (Cl-), GR (CO32-) and GR (SO42-) for sequestration of various aqueous pollutants (e.g., tetrachloride, Cr(VI), Se(VI), and U(VI), etc.). Generally, the different reactivity of GRs toward contaminants is strongly dependent on the GRs' characteristics (e.g., interlayer distance, specific surface area, and Fe(II) content) and solution chemistry (e.g., pH, background electrolytes, dissolved oxygen, and contaminant concentration, etc.). In addition, the reaction mechanisms of GRs with the contaminants involve the redox reactions, adsorption, catalytic oxidation, interlayer and octahedral incorporation, which can mutually or singly contribute to the decontamination to varying degrees. Particularly, this review addressed the transformation pathways of GRs under various solution chemistry conditions and clarified that the stability of GRs should be the key challenge for the real application. Finally, how to effectively use the GRs for water decontamination was proposed, which will significantly benefit the rational control of environmental pollution.
Collapse
Affiliation(s)
- Wenjing Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Kaili Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| |
Collapse
|