1
|
Afroz R, Alonzo J, Omar S, Cheng CW, Schneider SR, Zhao R. Impact of Wildfire Smoke PM2.5 on Indoor Air Quality of Public Buildings on a University Campus. ACS ES&T AIR 2025; 2:625-636. [PMID: 40242286 PMCID: PMC11998926 DOI: 10.1021/acsestair.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
With increasing wildfire events impacting many regions worldwide, understanding and mitigating the effects of wildfire smoke on indoor air quality (IAQ) in public buildings are essential for protecting occupant health. This study investigated the impact of wildfire smoke on the IAQ across 24 campus buildings in Alberta, Canada, representing public spaces with varied ventilation systems. Using a network of low-cost sensors to monitor indoor PM2.5, the study identified significant spikes during wildfire smoke events, with 71% of buildings exceeding the Canadian Ambient Air Quality Standards daily limit of 27 μg/m3. The buildings had mechanical ventilation systems with filters with different Minimum Efficiency Reporting Value (MERV) ratings. MERV13 filters were found to be more efficient at capturing PM2.5 particles, resulting in lower indoor/outdoor PM2.5 ratios (0.12 ± 0.07) compared to MERV8 filters (0.28 ± 0.14). Buildings with air change rates (ACH) ranging from 5 to 15 per hour exhibited different infiltration patterns, with higher ACH generally leading to elevated indoor PM2.5 concentrations during wildfire events. This highlights the need to balance ventilation and pollutant infiltration by optimizing ACH rates and filtration efficiency to reduce indoor PM2.5. The trajectory-fire interception method, combined with satellite data, enhanced the identification of wildfire-influenced periods, contributing to a better understanding of smoke infiltration dynamics. These findings underscore that even advanced filtration and ventilation systems alone may not ensure a healthy IAQ during extreme pollution. Real-time pollutant measurements are crucial for effective IAQ management. The findings offer valuable insights for building administrators and policymakers, helping them develop strategies to mitigate the effects of wildfire smoke and to support healthier indoor environments during wildfire seasons.
Collapse
Affiliation(s)
- Rowshon Afroz
- Department
of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| | - Jarred Alonzo
- Department
of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| | - Sohaib Omar
- Department
of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| | - Chu-Wen Cheng
- Department
of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| | - Stephanie R. Schneider
- Department
of Chemistry, McMaster University, 1280 Main Street West ABB 156, L8S 4M1, Hamilton, Ontario, Canada
| | - Ran Zhao
- Department
of Chemistry, University of Alberta, T6G 2G2, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Chan I, Schneider SR, Cheng A, Styler SA. Wildfire Smoke Contributions to Polycyclic Aromatic Hydrocarbon Loadings in Western Canadian Urban Surface Grime. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2745-2753. [PMID: 39882794 DOI: 10.1021/acs.est.4c09630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence. In Calgary, a single wildfire smoke day contributed over 20% of total grime PAH loadings during this study's 3-month sampling period, which implies that wildfire inputs have the potential to dominate the grime composition during a typical wildfire season. In Kamloops, although the PAH congener profile displayed a sustained background wildfire influence, total PAH loadings were dominated by a hyper-local combustion event, which highlights that even small-scale urban combustion activities have the potential to control pollutant loadings on nearby surfaces. In both locations, temporal PAH congener profiles showed no evidence of reactive loss, implying that biomass burning contributes to the presence of a persistent PAH reservoir available for direct exposure or runoff-mediated contamination of downstream environmental compartments.
Collapse
Affiliation(s)
- Iris Chan
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada
| | - Stephanie R Schneider
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada
| | - Annie Cheng
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada
| | - Sarah A Styler
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada
| |
Collapse
|
3
|
Lee H, Jaffe DA. Wildfire Impacts on O 3 in the Continental United States Using PM 2.5 and a Generalized Additive Model (2018-2023). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14764-14774. [PMID: 39120533 PMCID: PMC11340019 DOI: 10.1021/acs.est.4c05870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
We examined PM2.5 and Hazard Mapping System smoke plume satellite data at ∼600 United States (US) air monitoring stations to identify surface smoke on 14.0% of all May-September days for 2018-2023, with large influences in 2020 and 2021, due to California fires, and 2023, due to Canadian fires. Days with smoke have an average of 11 μg m-3 more PM2.5 and 8 ppb higher maximum daily 8 h average (MDA8) O3 concentrations than nonsmoke days, and they also account for 94% of all days that exceed the daily PM2.5 health standard (35 μg m-3) and 36% of all days that exceed the O3 health standard (70 ppb). To estimate the smoke contributions to the O3 MDA8, Generalized Additive Models (GAMs) were built for each site using the nonsmoke day data and up to 8 predictors. The mean and standard deviation of the residuals from the GAMs were 0 ± 6.1 ppb for the nonsmoke day data and 4.3 ± 7.9 ppb for the smoke day data, indicating a significant enhancement in the MDA8 O3 on smoke days. We found positive residuals on 72% of the smoke days and for these days, we calculate an average smoke contribution to the O3 MDA8 of 7.8 ± 6.0 ppb. Over the 6 year period, the percentage of exceedance days due to smoke in the continental US was 25% of all exceedance days, and the highest was in 2023 (38%). In 2023, the Central US experienced an unusually high number of exceedance days, 1522, with 52% of these impacted by smoke, while the Eastern US had fewer exceedance days, 288, with 78% of these impacted by smoke. Our results demonstrate the importance of wildland fires as contributors to exceedances of the health-based national air quality standards for PM2.5 and O3.
Collapse
Affiliation(s)
- Haebum Lee
- School
of Science, Technology, Engineering, and Mathematics, University of Washington, Bothell, Washington 98011, United States
| | - Daniel A. Jaffe
- School
of Science, Technology, Engineering, and Mathematics, University of Washington, Bothell, Washington 98011, United States
- Department
of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Holder AL, Sullivan AP. Emissions, Chemistry, and the Environmental Impacts of Wildland Fire. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39133033 DOI: 10.1021/acs.est.4c07631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
|
5
|
Percy K, Dann T. Long-term trends in British Columbia lower mainland air quality: Criteria air pollutants and VOC. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:261-278. [PMID: 38363818 DOI: 10.1080/10962247.2024.2319770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The lower mainland of British Columbia is a geographic region that comprises the districts of Metro Vancouver and the Lower Fraser Valley. It is situated in a complex topographical and coastal location in southwestern British Columbia. Metro Vancouver is Canada's third largest population center. Accessing the Canadian National Air Pollution Surveillance Program (NAPS) database we calculated air pollutant statistics using the Canadian Ambient Air Quality Standards (CAAQS) averaging times, numerical forms, and numerical levels for the years 2001to 2020. Man Kendall and Sen statistical methods were used to test for the presence of trends and the slope of those trends in fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and volatile organic compound (VOC) ambient air concentrations. We did not determine a significant trend in 98th percentile of the daily 24-hr average PM2.5 concentrations. We did determine significant negative trends in the annual average of the daily 24-hr average PM2.5 concentrations at 6 of the 9 locations. Episodic, multi-day duration elevated PM2.5 concentrations related to forest fires were a significant influence on PM2.5 ambient concentrations. Annual 4th highest daily maximum 8-hr average O3 concentrations showed no trend at 14 of 18 locations, declined at 3 locations, and increased at one location. We determined statistically significant declines in peak and average NO2 and SO2 concentrations, and in time-integrated annual VOC concentrations.Implications: This non-parametric, statistical analysis determines 20-year trends in British Columbia lower mainland ambient air quality for PM2.5, O3, NO2, SO2 and VOC, assesses air quality against Canadian Ambient Air Quality Standards, and highlights the importance of event-based wildfire-sourced PM2.5.
Collapse
Affiliation(s)
- Kevin Percy
- K.E. Percy Air Quality Effects Consulting Ltd, Nasonworth, NB, Canada
| | - Tom Dann
- RS Environmental, Ottawa, ON, Canada
| |
Collapse
|
6
|
Laguerre A, Gall ET. Polycyclic Aromatic Hydrocarbons (PAHs) in Wildfire Smoke Accumulate on Indoor Materials and Create Postsmoke Event Exposure Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:639-648. [PMID: 38111142 DOI: 10.1021/acs.est.3c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Wildfire smoke contains PAHs that, after infiltrating indoors, accumulate on indoor materials through particle deposition and partitioning from air. We report the magnitude and persistence of select surface associated PAHs on three common indoor materials: glass, cotton, and mechanical air filter media. Materials were loaded with PAHs through both spiking with standards and exposure to a wildfire smoke proxy. Loaded materials were aged indoors over ∼4 months to determine PAH persistence. For materials spiked with standards, total PAH decay rates were 0.010 ± 0.002, 0.025 ± 0.005, and 0.051 ± 0.009 day-1, for mechanical air filter media, glass, and cotton, respectively. PAH decay on smoke-exposed samples is consistent with that predicated by decay constants from spiked materials. Decay curves of smoke loaded samples show that PAH surface concentrations are elevated above background for ∼40 days after the smoke clears. Cleaning processes efficiently remove PAHs, with reductions of 71% and 62% after cleaning smoke-exposed glass with ethanol and a commercial cleaner, respectively. Laundering smoke-exposed cotton in a washing machine and heated drying removed 48% of PAHs. An exposure assessment indicates that both inhalation and dermal PAH exposure pathways may be relevant following wildfire smoke events.
Collapse
Affiliation(s)
- Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
7
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Raoelison OD, Valenca R, Lee A, Karim S, Webster JP, Poulin BA, Mohanty SK. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120713. [PMID: 36435284 DOI: 10.1016/j.envpol.2022.120713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality of surface waters. This study aims to analyze reported pre- and post-fire water quality data to inform the data reporting and highlight research opportunities. A comparison of the pre-and post-fire water quality data from 44 studies reveals that wildfire could increase the concentration of many pollutants by two orders of magnitude. However, the concentration increase is sensitive to when the sample was taken after the wildfire, the wildfire burned area, discharge rate in the surface water bodies where samples were collected, and pollutant type. Increases in burned areas disproportionally increased total suspended solids (TSS) concentration, indicating TSS concentration is dependent on the source area. Increases in surface water flow up to 10 m3 s-1 increased TSS concentration but any further increase in flow rate decreased TSS concentration, potentially due to dilution. Nutrients and suspended solids concentrations increase within a year after the wildfire, whereas peaks for heavy metals occur after 1-2 years of wildfire, indicating a delay in the leaching of heavy metals compared to nutrients from wildfire-affected areas. The concentration of polycyclic aromatic hydrocarbons (PAHs) was greatest within a year post-fire but did not exceed the surface water quality limits. The analysis also revealed inconsistency in the existing sampling protocols and provides a guideline for a modified protocol along with highlighting new research opportunities. Overall, this study underlines the need for consistent reporting of post-fire water quality data along with environmental factors that could affect the data so that the post-fire water quality can be assessed or compared between studies.
Collapse
Affiliation(s)
- Onja D Raoelison
- Civil and Environmental Engineering, The University of California, Los Angeles, USA.
| | - Renan Valenca
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Allison Lee
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Samiha Karim
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Jackson P Webster
- Department of Civil Engineering, California State University, Chico, USA
| | - Brett A Poulin
- Department of Environmental Toxicology, The University of California, Davis, USA
| | - Sanjay K Mohanty
- Civil and Environmental Engineering, The University of California, Los Angeles, USA.
| |
Collapse
|
9
|
Childs ML, Li J, Wen J, Heft-Neal S, Driscoll A, Wang S, Gould CF, Qiu M, Burney J, Burke M. Daily Local-Level Estimates of Ambient Wildfire Smoke PM 2.5 for the Contiguous US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13607-13621. [PMID: 36134580 DOI: 10.1021/acs.est.2c02934] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Smoke from wildfires is a growing health risk across the US. Understanding the spatial and temporal patterns of such exposure and its population health impacts requires separating smoke-driven pollutants from non-smoke pollutants and a long time series to quantify patterns and measure health impacts. We develop a parsimonious and accurate machine learning model of daily wildfire-driven PM2.5 concentrations using a combination of ground, satellite, and reanalysis data sources that are easy to update. We apply our model across the contiguous US from 2006 to 2020, generating daily estimates of smoke PM2.5 over a 10 km-by-10 km grid and use these data to characterize levels and trends in smoke PM2.5. Smoke contributions to daily PM2.5 concentrations have increased by up to 5 μg/m3 in the Western US over the last decade, reversing decades of policy-driven improvements in overall air quality, with concentrations growing fastest for higher income populations and predominantly Hispanic populations. The number of people in locations with at least 1 day of smoke PM2.5 above 100 μg/m3 per year has increased 27-fold over the last decade, including nearly 25 million people in 2020 alone. Our data set can bolster efforts to comprehensively understand the drivers and societal impacts of trends and extremes in wildfire smoke.
Collapse
Affiliation(s)
- Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California 94305, United States
| | - Jessica Li
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Jeffrey Wen
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Anne Driscoll
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Sherrie Wang
- Goldman School of Public Policy, UC Berkeley, Berkeley, California 94720, United States
| | - Carlos F Gould
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Jennifer Burney
- Global Policy School, UC San Diego, San Diego, California 92093, United States
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- National Bureau of Economic Research, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Dynamic PCA Based Statistical Monitoring of Air Pollutant Concentrations in Wildfire Scenarios. PATTERN RECOGNITION AND IMAGE ANALYSIS 2022. [DOI: 10.1007/978-3-031-04881-4_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Schneider SR, Abbatt JP. Wildfire atmospheric chemistry: climate and air quality impacts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|