1
|
Iakovides IC, Beretsou VG, Christou A, Gkotsis G, Michael C, Mina T, Nika MC, Thomaidis NS, Fatta-Kassinos D. Impact of the wastewater treatment technology and storage on micropollutant profiles during reclaimed water irrigation: A wide-scope HRMS screening in a water-soil-lettuce-leachate system. WATER RESEARCH 2025; 279:123319. [PMID: 40132301 DOI: 10.1016/j.watres.2025.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025]
Abstract
In recent decades, climate change and global warming have intensified water scarcity, while the growing global population demands have increased. Reclaimed water (RW) has become essential, offering a viable alternative for crop irrigation in line with circular economy principles. However, although RW reuse is crucial for addressing water shortages, the presence of micropollutants still poses a challenge. The potential for micropollutants to be taken up by crops and enter the food chain still raises significant scientific concern. This work studies RW treated by conventional activated sludge followed by sand filtration and chlorination (CAS+SFC-RW) and membrane-bioreactor-treated RW (MBR-RW) in terms of micropollutant concentrations, providing insights into the differences in micropollutant profiles between the two treatments. The results demonstrate that MBR-RW generally exhibits lower cumulative concentrations of target analytes. However, the study also indicates that the storage of RW for irrigation significantly affects the presence of micropollutants, contributing to their degradation, increase or persistence. Soil analysis revealed fewer detectable micropollutants in the topsoil (0-20 cm) compared to RW, likely attributed to attenuation processes, and more micropollutants (both with respect to concentration and number) compared to deeper soil layers. Carbamazepine, 10,11-epoxide-carbamazepine, and telmisartan were found to migrate to deeper soil levels. The analysis revealed 13 micropollutants in lettuce irrigated with CAS+SFC-RW and 8 with MBR-RW, with carbamazepine and sulfamethoxazole being the most abundant. These differences are likely driven by the physicochemical properties of the compounds and plant-specific factors. Leachates examination showed the potential for contaminants to leach through soil, posing a risk for groundwater contamination. The study showed that the presence of micropollutants in RW is not directly associated with their presence in soil or lettuce, underscoring the need for regulatory policies that address not only their presence in RW but their eventual fate within the agricultural and environmental context.
Collapse
Affiliation(s)
- Iakovos C Iakovides
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Anastasis Christou
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Department of Natural Resources and Environment, Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, Nicosia1516, Cyprus
| | - Georgios Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Costas Michael
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Theoni Mina
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus.
| |
Collapse
|
2
|
Adeniyi A, Bello I, Mukaila T, Sarker NC, Hammed A. Trends in Biological Ammonia Production. BIOTECH 2023; 12:41. [PMID: 37218758 PMCID: PMC10204498 DOI: 10.3390/biotech12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Food production heavily depends on ammonia-containing fertilizers to improve crop yield and profitability. However, ammonia production is challenged by huge energy demands and the release of ~2% of global CO2. To mitigate this challenge, many research efforts have been made to develop bioprocessing technologies to make biological ammonia. This review presents three different biological approaches that drive the biochemical mechanisms to convert nitrogen gas, bioresources, or waste to bio-ammonia. The use of advanced technologies-enzyme immobilization and microbial bioengineering-enhanced bio-ammonia production. This review also highlighted some challenges and research gaps that require researchers' attention for bio-ammonia to be industrially pragmatic.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Niloy Chandra Sarker
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
3
|
Rios-Miguel AB, Jhm van Bergen T, Zillien C, Mj Ragas A, van Zelm R, Sm Jetten M, Jan Hendriks A, Welte CU. Predicting and improving the microbial removal of organic micropollutants during wastewater treatment: A review. CHEMOSPHERE 2023; 333:138908. [PMID: 37187378 DOI: 10.1016/j.chemosphere.2023.138908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.
Collapse
Affiliation(s)
- Ana B Rios-Miguel
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Tamara Jhm van Bergen
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands.
| | - Caterina Zillien
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Ad Mj Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Mike Sm Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Vanzin GF, Wrighton KC, Sedlak DL, Sharp JO. Methane-Oxidizing Activity Enhances Sulfamethoxazole Biotransformation in a Benthic Constructed Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7240-7253. [PMID: 37099683 DOI: 10.1021/acs.est.2c09314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Guo N, Liu M, Yang Z, Wu D, Chen F, Wang J, Zhu Z, Wang L. The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. ENVIRONMENTAL RESEARCH 2023; 216:114419. [PMID: 36174754 DOI: 10.1016/j.envres.2022.114419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.
Collapse
Affiliation(s)
- Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Mengmeng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Jinhe Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
6
|
Scholes RC. Emerging investigator series: contributions of reactive nitrogen species to transformations of organic compounds in water: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:851-869. [PMID: 35546580 DOI: 10.1039/d2em00102k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reactive nitrogen species (RNS) pose a potential risk to drinking water quality because they react with organic compounds to form toxic byproducts. Since the discovery of RNS formation in sunlit surface waters, these reactive intermediates have been detected in numerous sunlit natural waters and engineered water treatment systems. This critical review summarizes what is known regarding RNS, including their formation, contributions to contaminant transformation, and products resulting from RNS reactions. Reaction mechanisms and rate constants have been described for nitrogen dioxide (˙NO2) reacting with phenolic compounds. However, significant knowledge gaps remain regarding reactions of RNS with other types of organic compounds. Promising methods to quantify RNS concentrations and reaction rates include the use of selective quenchers and probe compounds as well as electron paramagnetic resonance spectroscopy. Additionally, high resolution mass spectrometry methods have enabled the identification of nitr(os)ated byproducts that form via RNS reactions in sunlit surface waters, UV-based treatment systems, treatment systems that employ chemical oxidants such as chlorine and ozone, and certain types of biological treatment processes. Recommendations are provided for future research to increase understanding of RNS reactions and products, and the implications for drinking water toxicity.
Collapse
Affiliation(s)
- Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
7
|
Athanasakoglou A, Fenner K. Toward Characterizing the Genetic Basis of Trace Organic Contaminant Biotransformation in Activated Sludge: The Role of Multicopper Oxidases as a Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:313-324. [PMID: 34932304 DOI: 10.1021/acs.est.1c05803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activated sludge treatment leverages the ability of microbes to uptake and (co)-metabolize chemicals and has shown promise in eliminating trace organic contaminants (TrOCs) during wastewater treatment. However, targeted interventions to optimize the process are limited as the fundamental drivers of the observed reactions remain elusive. In this work, we present a comprehensive workflow for the identification and characterization of key enzymes involved in TrOCs biotransformation pathways in complex microbial communities. To demonstrate the applicability of the workflow, we investigated the role of the enzymatic group of multicopper oxidases (MCOs) as one putatively relevant driver of TrOCs biotransformation. To this end, we analyzed activated sludge metatranscriptomic data and selected, synthesized, and heterologously expressed three phylogenetically distinct MCO-encoding genes expressed in communities with different TrOCs oxidation potentials. Following the purification of the encoded enzymes, we screened their activities against different substrates. We saw that MCOs exhibit significant activities against selected TrOCs in the presence of the mediator compound 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and, in some cases, also in the presence of the wastewater contaminant 4'-hydroxy-benzotriazole. In the first case, we identified oxidation products previously reported from activated sludge communities and concluded that in the presence of appropriate mediators, bacterial MCOs could contribute to the biological removal of TrOCs. Similar investigations of other key enzyme systems may significantly advance our understanding of TrOCs biodegradation and assist the rational design of biology-based water treatment strategies in the future.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
8
|
Su Q, Schittich AR, Smets BF. Response to "Comment on 'Role of Ammonia Oxidation in Organic Micropollutant Transformation during Wastewater Treatment': Overlooked Evidence to the Contrary". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16783-16784. [PMID: 34850629 DOI: 10.1021/acs.est.1c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Qingxian Su
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anna-Ricarda Schittich
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|