1
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
2
|
Zhang J, Ge Q. Recycling scale inhibitor wastes into pH-responsive complexes to treat wastewater produced from spent lithium-ion battery disposal. WATER RESEARCH 2024; 260:121939. [PMID: 38901308 DOI: 10.1016/j.watres.2024.121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
A large amount of organophosphorus-containing wastewater is produced in spent lithium-ion battery disposal. Forward osmosis (FO) offers unique advantages in purifying this kind of wastewater if suitable draw solutes - the core of FO technology, are available. Herein we synthesize several pH-sensitive zinc complexes, namely ZnATMP-iNa (i = 0, 1, 2, 3, 4), from ZnSO4 and amino tris(methylene phosphonic acid) (ATMP) obtained from scale inhibitor wastes for organophosphorus-containing wastewater remediation. Among these ZnATMP-iNa, ZnATMP-3Na best meets the standards of an ideal draw solute. This makes ZnATMP-3Na outperform other reported draw solutes. 0.6 M ZnATMP-3Na produces a water flux of 12.7 LMH, 136 % higher than that of NaCl and a solute loss of 0.015 g/L, lower than that of NH4HCO3 (0.83 g/L). In organophosphorus-containing wastewater treatment, ZnATMP-3Na has higher water recovery efficiency (8.3 LMH) and sustainability than NaCl and NH4HCO3, and is sufficient to handle large quantities of wastewater. Remarkably, the pH-responsive property allows ZnATMP-3Na to be readily recovered through pH-control and reused in FO. The ionic property, expanded cage-like structure and easy-recycling make ZnATMP-3Na achieve sustainable FO separation and superior to other draw solutes. This study provides inspiration for draw solute design from wastes and extends FO application to organophosphorus-containing wastewater remediation.
Collapse
Affiliation(s)
- Jiawen Zhang
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China.
| |
Collapse
|
3
|
Ramezani M, Ellis SN, Riabtseva A, Cunningham MF, Jessop PG. CO 2-Responsive Low Molecular Weight Polymer with High Osmotic Pressure as a Draw Solute for Forward Osmosis. ACS OMEGA 2023; 8:49259-49269. [PMID: 38162778 PMCID: PMC10753694 DOI: 10.1021/acsomega.3c07644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
A key challenge in the development of forward osmosis (FO) technology is to identify a suitable draw solute that can generate a large osmotic pressure with favorable water flux while being easy to recover after the FO process with a minimum of energy expenditure. While the CO2- and thermo-responsive linear poly(N,N-dimethylallylamine) polymer (l-PDMAAm) has been reported as a promising draw agent for forward osmosis desalination, the draw solutions sufficiently concentrated to have high osmotic pressure were too viscous to be usable in industrial operations. We now compare the viscosities and osmotic pressures of solutions of these polymers at low and high molecular weights and with/without branching. The best combination of high osmotic pressures with low viscosity can be obtained by using low molecular weights rather than branching. Aqueous solutions of the synthesized polymer showed a high osmotic pressure of 170 bar under CO2 (πCO2) at 50 wt% loading, generating a high water flux against NaCl feed solutions in the FO process. Under air, however, the same polymer showed a low osmotic pressure and a cloud point between 26 and 33 °C (depending on concentration), which facilitates the recovery of the polymer after it has been used as a draw agent in the FO process upon removal of CO2 from the system.
Collapse
Affiliation(s)
- Maedeh Ramezani
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
- Department
of Chemical Engineering, Queen’s
University, Kingston, ON K7L 3N6,Canada
| | - Sarah N. Ellis
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
| | - Anna Riabtseva
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
- Department
of Chemical Engineering, Queen’s
University, Kingston, ON K7L 3N6,Canada
| | | | - Philip G. Jessop
- Department
of Chemistry, Queen’s University, Kingston, ON K7L 3N6,Canada
| |
Collapse
|
4
|
Zou Y, Ge Q. Smart Organic-Inorganic Polyoxomolybdates in Forward Osmosis for Antiviral-Drug Wastewater Treatment and Drug Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5872-5880. [PMID: 36976836 DOI: 10.1021/acs.est.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The demand to effectively treat medical wastewater has escalated with the much greater use of antiviral drugs since the COVID-19 pandemic. Forward osmosis (FO) has great potential in wastewater treatment only when appropriate draw solutes are available. Here, we synthesize a series of smart organic-inorganic polyoxomolybdates (POMs), namely, (NH4)6[Mo7O24], (PrNH3)6[Mo7O24], (iPrNH3)6[Mo7O24], and (BuNH3)6[Mo7O24], for FO to treat antiviral-drug wastewater. Influential factors of separation performance have been systematically studied by tailoring the structure, organic characteristics, and cation chain length of POMs. POMs at 0.4 M produce water fluxes ranging from 14.0 to 16.4 LMH with negligible solute losses, at least 116% higher than those of NaCl, NH4HCO3, and other draw solutes. (NH4)6[Mo7O24] creates a water flux of 11.2 LMH, increased by more than 200% compared to that of NaCl and NH4HCO3 in long-term antiviral-drug wastewater reclamation. Remarkably, the drugs treated with NH4HCO3 and NaCl are either contaminated or denatured, while those with (NH4)6[Mo7O24] remain intact. Moreover, these POMs are recovered by sunlight-assisted acidification owing to their light and pH dual sensitivity and reusability for FO. POMs prove their suitability as draw solutes and demonstrate their superiority over the commonly studied draw solutes in wastewater treatment.
Collapse
Affiliation(s)
- Yiting Zou
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| | - Qingchun Ge
- College of Environment and Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Fujian 350116, China
| |
Collapse
|
5
|
Moon J, Kang H. Effect of cation alkyl chain length on 3-sulfopropylmethacrylate-based draw solutes having lower critical solution temperature. RSC Adv 2023; 13:8291-8298. [PMID: 36926002 PMCID: PMC10011973 DOI: 10.1039/d2ra08068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
We investigated the effect of change in alkyl chain length of cation in tributylalkylphosphonium 3-sulfopropyl methacrylate ([P444#][C3S], # = 4, 6, and 8) ionic liquids (ILs) on their osmolality and recovery properties as the draw solute in the forward osmosis (FO) process. The ILs aqueous solutions exhibited a characteristic of the lower critical solution temperature (LCST)-type phase separation, which allowed for the easy recovery of the draw solute or clean water from the diluted draw solution. The LCSTs of 31, 26, 22, and 18 °C were obtained from 2.5, 5.0, 7.5, and 10.0 wt% aqueous solutions of [P4446][C3S]. When deionized water, 2000 ppm NaCl solution, and 10.0 wt% orange juice aqueous solution were used as feed solution, the water fluxes of the aqueous [P4446][C3S] solutions were approximately 4.49, 3.87, and 1.55 LMH, respectively, in the active layer facing the draw solution mode at 7.5 wt% of draw solution. This study demonstrates the applicability of a thermoresponsive ionic structure material as a draw solute for the FO process.
Collapse
Affiliation(s)
- Jihyeon Moon
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University 37 Nakdong-Daero 550 Beon-gil, Saha-gu Busan 49315 Republic of Korea +82 51 200 7728 +82 51 200 7720
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University 37 Nakdong-Daero 550 Beon-gil, Saha-gu Busan 49315 Republic of Korea +82 51 200 7728 +82 51 200 7720
| |
Collapse
|
6
|
Zhao Q, Zhao DL. Thermoresponsive Magnetic Ionic Liquids as Forward Osmosis Draw Solutes for Seawater Desalination. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
7
|
Zhang S, Liu Y, Ma R, Jia D, Wen T, Ai Y, Zhao G, Fang F, Hu B, Wang X. Molybdenum (VI)‐oxo Clusters Incorporation Activates g‐C 3N 4 with Simultaneously Regulating Charge Transfer and Reaction Centers for Boosting Photocatalytic Performance. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: doi.org/10.1002/adfm.202204175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/25/2023]
Abstract
AbstractEstablishing local built‐in electric field of 2D semiconductors is one of the promising strategies to regulate the oriented charge delivery to active centers for enhancing photocatalytic performance. Herein, a novel heptamolybdate polyanions‐intercalated porous g‐C3N4 ([Mo7O24]6−‐pCN) catalyst with integrating highly desirable visible‐light photocatalytic features is reported. After intercalation, the apparent reaction rate constants (kapp) of [Mo7O24]6−‐pCN for bisphenol A (BPA) and 4‐chlorophenol (4‐CP) photodegradation are remarkably enhanced, which are 9.0 and 6.4 times faster than those of pCN, respectively. Analogously, the kapp values of [Mo7O24]6–‐CN for BPA and 4‐CP removal are also improved by contrast with CN. The experimental results and density functional theory calculations indicate that a local built‐in electric field is formed in [Mo7O24]6−‐pCN with a polarization direction from aromatic rings of g‐C3N4 to the inserted [Mo7O24]6− clusters. Driven by the electric field, photogenerated carriers can be efficiently separated for better reactive oxidative species (ROSs) production. These O atoms are also proved as adsorption sites for phenols, greatly reducing the migration distance of ROSs and thus improving photocatalytic performances. This work offers a reliable strategy to construct local built‐in electric field via polyoxometalates intercalation for effective solar energy conversion and phenolic wastewater remediation.
Collapse
Affiliation(s)
- Sai Zhang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Yang Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Ran Ma
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Dashuang Jia
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Tao Wen
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Yuejie Ai
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Guixia Zhao
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Fang Fang
- School of Control and Computer Engineering North China Electric Power University Beijing 102206 P. R. China
| | - Baowei Hu
- School of Life Science Shaoxing University Huancheng West Road 508 Shaoxing 312000 P. R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P. R. China
| |
Collapse
|
8
|
Salehi H, Shakeri A, Lammertink RG. Thermo-responsive graft copolymer PSf-g-PNIPM: Reducing the structure parameter via morphology control of forward osmosis membrane substrates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Wu S, An Y, Lu J, Yu Q, He Z. EDTA-Na 2 as a recoverable draw solute for water extraction in forward osmosis. ENVIRONMENTAL RESEARCH 2022; 205:112521. [PMID: 34902380 DOI: 10.1016/j.envres.2021.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Regeneration and reuse of draw solute (DS) is a key challenge in the application of forward osmosis (FO) technologies. Herein, EDTA-Na2 was studied as a recoverable DS for water extraction by taking advantages of its pH-responsive property. The FO system using EDTA DS achieved a higher water flux of 2.22 ± 0.06 L m-2 h-1 and a significantly lower reverse salt flux (RSF) of 0.06 ± 0.01 g m-2 h-1, compared to that with NaCl DS having either the same DS concentration or the same Na+ concentration. The suitable pH range for the application of EDTA DS was between 4.0 and 10.5. A simple recovery method via combined pH adjustment and microfiltration was employed to recover EDTA DS and could achieve the recovery efficiency (at pH 2) of 96.26 ± 0.48%, 97.13 ± 1.03% and 98.56 ± 1.40% by using H2SO4, H3PO4 and HCl, respectively. The lowest acid cost for DS recovery was estimated from 0.0012 ± 0.0001 to 0.0162 ± 0.0003 $ g-1 by using H2SO4. The recovered EDTA DS could be reused in the subsequent FO operation and the overall recovery efficiency was 94.4% for four reuse cycles. These results have demonstrated the feasible of EDTA-Na2 DS and a potentially cost-effective recovery approach, and encouraged further exploration of using EDTA-based compounds as a draw solute for FO applications.
Collapse
Affiliation(s)
- Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China.
| | - Ying An
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Jilai Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|