1
|
Liu P, Jia S, Li S, Ma P, Ma Y, Liu Y, Liao Z, Wang Y, Chu B, Ma Q, Quan J, Mu Y, He H. Unexpectedly High Levels of H 2O 2 Drive Sulfate Formation over the Residual Layer in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4551-4559. [PMID: 39893672 DOI: 10.1021/acs.est.4c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hydrogen peroxide (H2O2) plays a key role in atmospheric chemistry, but knowledge of its variation, sources, and impact on sulfate formation remains incomplete, especially in the urban boundary layer aloft. Here, we conducted a field campaign with measurements of H2O2 and related species at a tower-based site (∼528 m above the ground surface) of Beijing in spring of 2022. The observed hourly H2O2 concentration reached up to 21.2 ppbv with an average value of 3.4 ± 3.7 ppbv during the entire observation period, which was higher than values from previous observations throughout the world. The H2O2 budget revealed that the two known sources (self-reaction of HO2 radicals and ozonolysis of alkenes) could not account for the significant formation of H2O2, leading to a considerable unknown source strength (∼0.14-0.53 ppbv h-1) of H2O2 at noon and after sunset. Based on the levoglucosan signal, distribution of fire points, and backward trajectories, biomass burning emissions from the southwest of Beijing (e.g., North China Plain) were found to contribute greatly to H2O2 formation. Besides, photochemical aging of PM2.5 might also have a potential impact on H2O2 production at noon. The unexpectedly high concentrations of H2O2 aloft made a vital contribution to sulfate production (0.2-1.1 μg m-3 h-1), which could be transported to the ground surface during the turbulent mixing. Our findings provide an improved understanding of the H2O2 chemistry in the boundary layer aloft in a megacity, as well as its impact on sulfate formation.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuyuan Jia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuying Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengkun Ma
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yongjing Ma
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiheng Liao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannong Quan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhao X, Song M, Zhao X, Xue C, Liu P, Ye C, He X, Mu Y, Hu B. Improvement of model simulation for summer PM 2.5 and O 3 through coupling with two new potential HONO sources in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175168. [PMID: 39094653 DOI: 10.1016/j.scitotenv.2024.175168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A large fraction of fine particulate matter (PM2.5) and ozone (O3) in the troposphere originates from secondary formation through photochemical processes, which remarkably contributes to the deterioration of regional air quality in China. The photochemical reactions initiated by hydroxyl radicals (OH) play vital roles in secondary PM2.5 and O3 formation. In contrast, the OH levels in polluted areas are underestimated by current chemical transport models (CTMs) because of the strongly unknown daytime sources of tropospheric nitric acid (HONO), which has been recognized as the dominant source of primary OH in polluted areas of China. In this study, the atmospheric HONO levels at two urban sites were found to be significantly underestimated by the WRF-Chem model based on available information on HONO sources. The HONO levels could be well reproduced by the WRF-Chem model after incorporating two new potential HONO sources from the photochemical reactions of NOx, as proposed in our previous study based on chamber experiment results. Comparing the simulations with available information of HONO sources, the simulated levels of atmospheric OH, secondary inorganic and organic aerosols (SIA and SOA), PM2.5 and daily maximum 8-h average (MDA8) O3 were evidently elevated or were closer to the observations over the North China Plain (NCP), with elevation percentages of 0.48-20.1 %, and a decrement percentage of -5.79 % for pNO3-. Additionally, the compensating errors in modeling PM2.5 and the gap in MDA8 O3 levels between observation and simulation in 2 + 26 cities became evidently smaller. The results of this study indicated that the empirical parameterization of two new potential HONO sources through photochemical reactions of NOx improved the model performance in modeling PM2.5 and O3 by narrowing the gap in daytime HONO levels between simulation and observation, although their detailed chemical mechanisms are still unknown and should be further investigated and explicitly parameterized.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Min Song
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Xiujuan Zhao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Chaoyang Xue
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Pengfei Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Ye
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaowei He
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo Hu
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang Y, Wang S, Kang P, Sun C, Yang W, Wang M, Yin S, Zhang R. Atmospheric H 2O 2 during haze episodes in a Chinese megacity: Concentration, source, and implication on sulfate production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174391. [PMID: 38955272 DOI: 10.1016/j.scitotenv.2024.174391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Atmospheric hydrogen peroxide (H2O2), as an important oxidant, plays a key role in atmospheric chemistry. To reveal its characteristics in polluted areas, comprehensive observations were conducted in Zhengzhou, China from February 22 to March 4, 2019, including heavy pollution days (HP) and light pollution days (LP). High NO concentrations (18 ± 26 ppbv) were recorded in HP, preventing the recombination reaction of two HO2• radicals. Surprisingly, higher concentrations of H2O2 were observed in HP (1.5 ± 0.6 ppbv) than those in LP (1.2 ± 0.6 ppbv). In addition to low wind speed and relative humidity, the elevated H2O2 in HP could be mainly attributed to intensified particle-phase photoreactions and biomass burning. In terms of sulfate formation, transition-metal ions (TMI)-catalyzed oxidation emerged as the predominant oxidant pathway in both HP and LP. Note that the average H2O2 oxidation rate increased from 3.6 × 10-2 in LP to 1.1 × 10-1 μg m-3 h-1 in HP. Moreover, the oxidation by H2O2 might exceed that of TMI catalysis under specific conditions, emerging as the primary driver of sulfate formation.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Shenbo Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China.
| | - Panru Kang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuifu Sun
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Wenjuan Yang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Mingkai Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Shasha Yin
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Ruiqin Zhang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
4
|
Wang Y, Kong L, Tan J, Liu B, An Y, Xia L, Lu Y, Li Q, Wang L. Photochemistry of Imidazole-2-carbaldehyde in Droplets as a Potential Source of H 2O 2 and Its Oxidation of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11096-11104. [PMID: 38865480 DOI: 10.1021/acs.est.3c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role as an oxidizing agent within the tropospheric environment, making a substantial contribution to sulfate formation in hydrated aerosols and cloud and fog droplets. Field observations show that high levels of H2O2 are often observed in heavy haze events and polluted air. However, the source of H2O2 remains unclear. Here, using the droplets formed in situ by the deliquescence of hygroscopic compounds under a high relative humidity (RH), the formation of H2O2 by the photochemistry of imidazole-2-carbaldehyde (2-IC) under ultraviolet irradiation was explored. The results indicate that 2-IC produces IM-C•-OH and IM-C•═O radicals via H transfer itself to its excited triplet state and generates H2O2 and organic peroxides in the presence of O2, which has an evident oxidizing effect on SO2, suggesting the potential involvement of this pathway in the formation of atmospheric sulfate. H2O2 formation is limited in acidic droplets or droplets containing ammonium ions, and no H2O2 is detected in droplets containing nitrate, whereas droplets containing citric acid have an obvious promotion effect on H2O2 formation. These findings provide valuable insights into the behaviors of atmospheric photosensitizers, the source of H2O2, and the formation of sulfate in atmospheric droplets.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Beibei Liu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yixuan An
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yu Lu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qing Li
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
5
|
Gao J, Wang H, Liu W, Xu H, Wei Y, Tian X, Feng Y, Song S, Shi G. Hydrogen peroxide serves as pivotal fountainhead for aerosol aqueous sulfate formation from a global perspective. Nat Commun 2024; 15:4625. [PMID: 38816351 PMCID: PMC11139875 DOI: 10.1038/s41467-024-48793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Traditional atmospheric chemistry posits that sulfur dioxide (SO2) can be oxidized to sulfate (SO42-) through aqueous-phase reactions in clouds and gas-phase oxidation. Despite adequate knowledge of traditional mechanisms, several studies have highlighted the potential for SO2 oxidation within aerosol water. Given the widespread presence of tropospheric aerosols, SO42- production through aqueous-phase oxidation in aerosol water could have a pervasive global impact. Here, we quantify the potential contributions of aerosol aqueous pathways to global sulfate formation based on the GEOS-Chem simulations and subsequent theoretical calculations. Hydrogen peroxide (H2O2) oxidation significantly influences continental regions both horizontally and vertically. Over the past two decades, shifts in the formation pathways within typical cities reveal an intriguing trend: despite reductions in SO2 emissions, the increased atmospheric oxidation capacities, like rising H2O2 levels, prevent a steady decline in SO42- concentrations. Abating oxidants would facilitate the benefit of SO2 reduction and the positive feedback in sulfate mitigation.
Collapse
Affiliation(s)
- Jie Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haoqi Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wenqi Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Han Xu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuting Wei
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiao Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, China Meteorological Administration-Nankai University Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Rao Z, Fang YG, Pan Y, Yu W, Chen B, Francisco JS, Zhu C, Chu C. Accelerated Photolysis of H 2O 2 at the Air-Water Interface of a Microdroplet. J Am Chem Soc 2023. [PMID: 37914533 DOI: 10.1021/jacs.3c08101] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Photochemical homolysis of hydrogen peroxide (H2O2) occurs widely in nature and is a key source of hydroxyl radicals (·OH). The kinetics of H2O2 photolysis play a pivotal role in determining the efficiency of ·OH production, which is currently mainly investigated in bulk systems. Here, we report considerably accelerated H2O2 photolysis at the air-water interface of microdroplets, with a rate 1.9 × 103 times faster than that in bulk water. Our simulations show that due to the trans quasiplanar conformational preference of H2O2 at the air-water interface compared to the bulk or gas phase, the absorption peak in the spectrum of H2O2 is significantly redshifted by 45 nm, corresponding to greater absorbance of photons in the sunlight spectrum and faster photolysis of H2O2. This discovery has great potential to solve current problems associated with ·OH-centered heterogeneous photochemical processes in aerosols. For instance, we show that accelerated H2O2 photolysis in microdroplets could lead to markedly enhanced oxidation of SO2 and volatile organic compounds.
Collapse
Affiliation(s)
- Zepeng Rao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ye-Guang Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875 China
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 China
| | - Yishuai Pan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875 China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Ye C, Lu K, Song H, Mu Y, Chen J, Zhang Y. A critical review of sulfate aerosol formation mechanisms during winter polluted periods. J Environ Sci (China) 2023; 123:387-399. [PMID: 36522000 DOI: 10.1016/j.jes.2022.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/17/2023]
Abstract
Sulfate aerosol contributes to particulate matter pollution and plays a key role in aerosol radiative forcing, impacting human health and climate change. Atmospheric models tend to substantially underestimate sulfate concentrations during haze episodes, indicating that there are still missing mechanisms not considered by the models. Despite recent good progress in understanding the missing sulfate sources, knowledge on different sulfate formation pathways during polluted periods still involves large uncertainties and the dominant mechanism is under heated debate, calling for more field, laboratory, and modeling work. Here, we review the traditional sulfate formation mechanisms in cloud water and also discuss the potential factors affecting multiphase S(Ⅳ) oxidation. Then recent progress in multiphase S(Ⅳ) oxidation mechanisms is summarized. Sulfate formation rates by different prevailing oxidation pathways under typical winter-haze conditions are also calculated and compared. Based on the literature reviewed, we put forward control of the atmospheric oxidation capacity as a means to abate sulfate aerosol pollution. Finally, we conclude with a concise set of research priorities for improving our understanding of sulfate formation mechanisms during polluted periods.
Collapse
Affiliation(s)
- Can Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huan Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Qin X, Chen Z, Gong Y, Dong P, Cao Z, Hu J, Xu J. Persistent Uptake of H 2O 2 onto Ambient PM 2.5 via Dark-Fenton Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9978-9987. [PMID: 35758291 DOI: 10.1021/acs.est.2c03630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) and gaseous hydrogen peroxide (H2O2) interact ubiquitously to influence atmospheric oxidizing capacity. However, quantitative information on H2O2 loss and its fate on urban aerosols remain unclear. This study investigated the kinetics of heterogeneous reactions of H2O2 on PM2.5 and explored how these processes are affected by various experimental conditions (i.e., relative humidity, temperature, and H2O2 concentration). We observed a persistent uptake of H2O2 by PM2.5 (with the uptake coefficients (γ) of 10-4-10-3) exacerbated by aerosol liquid water and temperature, confirming the critical role of water-assisted chemical decomposition during the uptake process. A positive correlation between the γ values and the ratio of dissolved iron concentration to H2O2 concentration suggests that Fenton catalytic decomposition may be an important pathway for H2O2 conversion on PM2.5 under dark conditions. Furthermore, on the basis of kinetic data gained, the parameterization of H2O2 uptake on PM2.5 was developed and was applied into a box model. The good agreement between simulated and measured H2O2 uncovered the significant role that heterogeneous uptake plays in the sink of H2O2 in the atmosphere. These findings suggest that the composition-dependent particle reactivity toward H2O2 should be considered in atmospheric models for elucidating the environmental and health effects of H2O2 uptake by ambient aerosols.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ping Dong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijiong Cao
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jingcheng Hu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiayun Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Xu R, Li X, Dong H, Lv D, Kim N, Yang S, Wang W, Chen J, Shao M, Lu S, Wu Z, Chen S, Guo S, Hu M, Liu Y, Zeng L, Zhang Y. Field observations and quantifications of atmospheric formaldehyde partitioning in gaseous and particulate phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152122. [PMID: 34871687 DOI: 10.1016/j.scitotenv.2021.152122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO) can possibly be taken by atmospheric particles due to its moderate solubility. Although previous model studies have proposed that uptake by particles was a large sink for HCHO, direct observation of HCHO partitioning and estimation of HCHO uptake coefficient (γ) for tropospheric conditions are still limited. In this work, online measurements of gaseous HCHO (HCHOg) and particulate HCHO (HCHOp) were carried out simultaneously at an urban site in Beijing in winter and spring. The results indicated that the average concentrations of HCHOp ranged from 0.15 to 0.4 μg m-3, accounting for 1.2% to 10% of the total HCHO (i.e., HCHOg + HCHOp). The median values of estimated γ based on the measured data were in the range of about 1.09 ∗ 10-5-2.42 ∗ 10-4, with lower values during PM2.5 pollution episodes. Besides, the pH and liquid water content of aerosols that are mainly determined by ambient relative humidity (RH) and inorganic salt composition were identified as the main influencing factors of γ. We propose that the HCHO uptake process was mainly driven by hydrone and hydrogen ions in particles.
Collapse
Affiliation(s)
- Rongjuan Xu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Xin Li
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Huabin Dong
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daqi Lv
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Najin Kim
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Suding Yang
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjie Wang
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Jinfeng Chen
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Min Shao
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Sihua Lu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shiyi Chen
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Min Hu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Liu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuanhang Zhang
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
10
|
HASEBE Y, WANG Y. Electrochemical Flow Injection Analysis Biosensors Using Biomolecules-immobilized Carbon Felt. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yasushi HASEBE
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology
| | - Yue WANG
- School of Chemical Engineering, University of Science and Technology Liaoning
| |
Collapse
|