1
|
Yin F, Gao C, Feng D, Sun Y. A review of the pollution signatures of polycyclic aromatic hydrocarbons in the sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124386. [PMID: 38897279 DOI: 10.1016/j.envpol.2024.124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Marine sediments serve as crucial reservoirs for polycyclic aromatic hydrocarbons (PAHs), and their PAH signatures offer valuable historical pollution records. This article provides a comprehensive review of the pollution status of 16 priority PAHs in more than 1000 sediments from the East China Sea (ECS). It focuses on the PAH sources, spatiotemporal distributions, driving factors, and ecological risks, with information derived from peer-reviewed papers published between 2003 and 2023. The results revealed that vehicular emissions, mixed combustion sources of coal, biomass, and coke, as well as petrogenic sources, were the primary contributors to PAH pollution in the ECS sediments, accounting for 50%, 34%, and 16%, respectively. Human activities, hydrodynamic mechanisms, and environmental variables such as particle size and organic matter, collectively influenced the distribution of PAHs. Additionally, the population size and economic development played a key role in the temporal distribution of PAHs in the ECS sediments. The ecotoxicity assessment of PAHs in sediments indicated a low risk level. These outcomes are expected to provide environmentalists with detailed and up-to-date insights into sedimentary PAHs in the ECS, helping to develop suitable monitoring plans and strategies for promoting better management of ECS environment.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Chen Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Yawei Sun
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, PR China.
| |
Collapse
|
2
|
Tulcan RXS, Liu L, Lu X, Ge Z, Fernández Rojas DY, Mora Silva D. PAHs contamination in ports: Status, sources and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134937. [PMID: 38889461 DOI: 10.1016/j.jhazmat.2024.134937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute important organic contaminants that have been degrading coastal ecosystems over the years. Evaluating PAH status in port ecosystems aligns with societal goals of maintaining clean habitats and sustainability. This comprehensive review systematically analyzed 123 articles, exploring the global distribution, sources, and ecological risks linked to PAH contamination in ports, focusing on water, sediment, and biota. The mean concentrations of 16 PAHs in water, sediment, and biota across worldwide ports were 175.63 ± 178.37 ng/L, 1592.65 ± 1836.5 μg/kg, and 268.47 ± 235.84 μg/kg, respectively. In line with PAH emissions and use in Asia, Asian ports had the highest PAH concentrations for water and biota, while African ports had the highest PAH concentrations for sediment. The temporal trend in PAH accumulation in sediments globally suggests stability. However, PAH concentrations in water and biota of global ports exhibit increasing trends, signaling aggravating PAH contamination within port aquatic ecosystems. Some ports exhibited elevated PAH levels, particularly in sediments with 4.5 %, 9.5 %, and 21 % of the ports categorized as very poor, poor, and moderate quality. Some PAH isomers exceeded guidelines, including the carcinogenic Benzo(a)pyrene (BaP). Coal, biomass, and petroleum combustion were major sources for PAHs. The structure of ports significantly influences the concentrations of PAHs. PAH concentrations in sediments of semi-enclosed ports were 3.5 times higher than those in open ports, while PAH concentrations in water and biota of semi-enclosed ports were lower than those in open ports. Finally, risk analyses conducted through Monte Carlo simulation indicated moderate to high risks to aquatic species, with probabilities of 74.8 % in water and 34.4 % in sediments of ports worldwide. This review underscores the imperative to delve deeper into the accumulation of PAHs and similar pollutants in ports for effective management and environmental protection.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Lianhua Liu
- Institute of environment and sustainable development in agriculture, Chinese academy of agricultural sciences, Beijing, China
| | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| | - Zaiming Ge
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Denise Yeazul Fernández Rojas
- Institute of Engineering, National Autonomous University of Mexico, External Circuit, University City, Mayoralty Coyoacan, Mexico City, Mexico
| | - Demmy Mora Silva
- YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, El Coca 220001, Orellana, Ecuador
| |
Collapse
|
3
|
Liu D, Luo Y, Bao WH, Junaid M, Guo ZF, Xu YY. Data-Driven Insights into the Contamination of Polycyclic Aromatic Hydrocarbons in Marine Bays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39138130 DOI: 10.1021/acs.est.4c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The synthesis of polycyclic aromatic hydrocarbon (PAH) data allows us to quantify and gain insights into the spatiotemporal dynamics of PAH contamination in marine bays. Here, a data synthesis framework was developed to understand data-driven insights into the spatiotemporal levels, compositional profiles, and potential sources of PAHs in water and sediment of marine bays. PAHs were detected in 69 bays worldwide, with contamination hotspots located in Asian bays. PAH concentrations in pre-2000 were significantly lower than those in the 2000s and post-2010, while the dominant species in water and sediment were 2-3 ring and 4-6 ring PAHs, respectively. The composition patterns of PAHs included 2-3 ring, 3-5 ring, and 4-5 ring dominant categories, but no significant distance decay relationship was found in the composition similarity due to international energy trade. Temporal dynamic patterns of concentrations included Descending-, Ascending-, and Inverted V-type, whereas over longer time spans, the pattern is more similar to the Inverted V-type owing to the reductions in emission intensity. PAHs were derived from both petrogenic and pyrolytic sources, with combustion from both coal and petroleum being the dominant source. These data-driven discoveries provide quantitative insights into the spatiotemporal patterns in the concentration and composition of PAHs, contributing to the mitigation of PAH contamination.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Yan Luo
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, People's Republic of China
| | - Wei-Hong Bao
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, People's Republic of China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, People's Republic of China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| |
Collapse
|
4
|
Zhong H, Yu L, Lv X, Yu Y, Hu J. A novel approach to assess the health risk of aryl hydrocarbon receptor-bound contaminants via inhalation exposure using CYP1A1 expression as a biomarker. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116466. [PMID: 38759533 DOI: 10.1016/j.ecoenv.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and dioxins are potential causes of multiple diseases by activating the aryl hydrocarbon receptor (AhR) pathway. Health risk assessment of chemicals primarily relies on the relative potency factor (RPF), although its accuracy may be limited when solely using EC50 values. The induction of cytochrome P4501A1 (CYP1A1) serves as a biomarker for AhR activation and is an integrator of dioxin-like toxicity. Here, we present a method for evaluating the risks associated with AhR activation using mathematical models of dose-CYP1A1 induction. The dose-effect curves for certain PAHs and dioxins, including Ant, BghiP, 1,2,3,4,7,8-HxCDD, and others, exhibited a non-classical S-shaped form. The toxic equivalent factor (TEF) profiles revealed a broad range of toxic equivalent factor values. The TEFs for PAHs ranged from approximately 0.01 to 6, with higher values being observed when the concentration was less than 10-10 M, with the exceptions of Ace, Phe, and BghiP. Most congeners of dioxins got the lowest TEF value at around 10-10 M, ranging from 0.04 to 1.00. The binding affinity of AhR to ligands did not display a strong correlation with the EC50 of CYP1A1 expression, suggesting that the AhR-mediated effects of PAHs and dioxins are not fixed but instead fluctuate with the dose. Air samples acquired from a parking area were used to compare the proficiency of RPF and our current approach. In the current method, naphthalene and chrysene were the primary contributors of PAHs to AhR-mediated risks in parking lots air samples, respectively. However, the contributions of naphthalene and chrysene could be disregarded in the RPF approach.
Collapse
Affiliation(s)
- Huixia Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen, 518020, PR China
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
5
|
Imam A, Suman SK, Vasavdutta S, Chatterjee S, Vempatapu BP, Ray A, Kanaujia PK. Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment. Biodegradation 2024; 35:299-313. [PMID: 37792261 DOI: 10.1007/s10532-023-10055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-lifet 1 / 2 of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sonpal Vasavdutta
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Shruti Chatterjee
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Ni X, Liu Z, Wang J, Dong M, Wang R, Qi Z, Xu H, Jiang C, Zhang Q, Wang J. Optimizing the development of contaminated land in China: Exploring machine-learning to identify risk markers. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133057. [PMID: 38043429 DOI: 10.1016/j.jhazmat.2023.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Often available for use, previously developed land, which includes residential and commercial/industrial areas, presents a significant challenge due to the risk to human health. China's 2018 release of health risk assessment standards for land reuse aimed to bridge this gap in soil quality standards. Despite this, the absence of representative indicators strains risk managers economically and operationally. We improved China's land redevelopment approach by leveraging a dataset of 297,275 soil samples from 352 contaminated sites, employing machine learning. Our method incorporating soil quality standards from seven countries to discern patterns for establishing a cost-effective evaluative framework. Our research findings demonstrated that detection costs could be curtailed by 60% while maintaining consistency with international soil standards (prediction accuracy = 90-98%). Our findings deepen insights into soil pollution, proposing a more efficient risk assessment system for land redevelopment, addressing the current dearth of expertise in evaluating land development in China.
Collapse
Affiliation(s)
- Xiufeng Ni
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jizhong Wang
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Mengting Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruwei Wang
- School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Zhulin Qi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haolong Xu
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Chao Jiang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| | - Jinnan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Environmental Pollution Control Technology, Hangzhou 310000, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
7
|
Guo L, Huang T, Ling Z, Zhang J, Lian L, Song S, Ren J, Zhang M, Zhao Y, Mao X, Gao H, Ma J. Global trade-driven transfer of atmospheric polycyclic aromatic hydrocarbon emissions and associated human inhalation exposure risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120438. [PMID: 38422853 DOI: 10.1016/j.jenvman.2024.120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are of significant public concern because of their toxicity and long-range transport potential. Extensive studies have been conducted to explore the source-receptor relationships of PAHs via atmospheric transport. However, the transfer of trade-driven regional and global PAHs is poorly understood. This study estimated the virtual PAHs emission transfer embodied in global trade from 2004 to 2014 and simulated the impact of international trade on global contamination and associated human inhalation exposure risk of PAHs. Results show that trade-driven PAHs flowed primarily from developed to less-developed regions, particularly in those regions with intensive heavy industries and transportation. As the result, international trade resulted in an increasing risk of lung cancer induced by exposure to PAHs (27.8% in China, 14.7% in India, and 11.3% in Southeast Asia). In contrast, we found decreasing risks of PAHs-induced lung cancer in Western Europe (63.2%) and the United States (45.9%) in 2004. Our findings indicate that final demand and emission intensity are the key driving factors contributing to rising and falling consumption-based PAHs emissions and related health risk respectively. The results could provide a useful reference for global collaboration in the reduction of PAHs pollution and related health risks.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Zaili Ling
- College of Agricultural and Forestry Economics & Management, Lanzhou University of Finance and Economics, Lanzhou, 730000, PR China
| | - Jiaxuan Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Lulu Lian
- College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ji Ren
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Menglin Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
8
|
Van Overmeiren P, Demeestere K, De Wispelaere P, Gili S, Mangold A, De Causmaecker K, Mattielli N, Delcloo A, Langenhove HV, Walgraeve C. Four Years of Active Sampling and Measurement of Atmospheric Polycyclic Aromatic Hydrocarbons and Oxygenated Polycyclic Aromatic Hydrocarbons in Dronning Maud Land, East Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1577-1588. [PMID: 38194437 DOI: 10.1021/acs.est.3c06425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Antarctica, protected by its strong polar vortex and sheer distance from anthropogenic activity, was always thought of as pristine. However, as more data on the occurrence of persistent organic pollutants on Antarctica emerge, the question arises of how fast the long-range atmospheric transport takes place. Therefore, polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-)PAHs were sampled from the atmosphere and measured during 4 austral summers from 2017 to 2021 at the Princess Elisabeth station in East Antarctica. The location is suited for this research as it is isolated from other stations and activities, and the local pollution of the station itself is limited. A high-volume sampler was used to collect the gas and particle phase (PM10) separately. Fifteen PAHs and 12 oxy-PAHs were quantified, and concentrations ranging between 6.34 and 131 pg m3 (Σ15PAHs-excluding naphthalene) and between 18.8 and 114 pg m3 (Σ13oxy-PAHs) were found. Phenanthrene, pyrene, and fluoranthene were the most abundant PAHs. The gas-particle partitioning coefficient log(Kp) was determined for 6 compounds and was found to lie between 0.5 and -2.5. Positive matrix factorization modeling was applied to the data set to determine the contribution of different sources to the observed concentrations. A 6-factor model proved a good fit to the data set and showed strong variations in the contribution of different air masses. During the sampling campaign, a number of volcanic eruptions occurred in the southern hemisphere from which the emission plume was detected. The FLEXPART dispersion model was used to confirm that the recorded signal is indeed influenced by volcanic eruptions. The data was used to derive a transport time of between 11 and 33 days from release to arrival at the measurement site on Antarctica.
Collapse
Affiliation(s)
- Preben Van Overmeiren
- EnVOC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kristof Demeestere
- EnVOC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Patrick De Wispelaere
- EnVOC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stefania Gili
- Department of Geosciences, Princeton University, 208 Guyot Hall, Princeton, New Jersey 08544, United States
| | - Alexander Mangold
- Atmospheric Composition, Measurements and Modeling Group, Royal Meteorological Institute of Belgium (RMI), 3 Avenue Circulaire, 1180 Brussels, Belgium
| | - Karen De Causmaecker
- Atmospheric Composition, Measurements and Modeling Group, Royal Meteorological Institute of Belgium (RMI), 3 Avenue Circulaire, 1180 Brussels, Belgium
| | - Nadine Mattielli
- G-Time Laboratory, Département des Géosciences, Environnement et Société, Université Libre de Bruxelles, Av. A. Depage 30, 1050 Brussels, Belgium
| | - Andy Delcloo
- Atmospheric Composition, Measurements and Modeling Group, Royal Meteorological Institute of Belgium (RMI), 3 Avenue Circulaire, 1180 Brussels, Belgium
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, Ghent 9000, Belgium
| | - Herman Van Langenhove
- EnVOC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christophe Walgraeve
- EnVOC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Lee K, Raverty S, Cottrell P, Zoveidadianpour Z, Cottrell B, Price D, Alava JJ. Polycyclic aromatic hydrocarbon (PAH) source identification and a maternal transfer case study in threatened killer whales (Orcinus orca) of British Columbia, Canada. Sci Rep 2023; 13:22580. [PMID: 38114485 PMCID: PMC10730697 DOI: 10.1038/s41598-023-45306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/18/2023] [Indexed: 12/21/2023] Open
Abstract
The northeastern Pacific (NEP) Ocean spans the coast of British Columbia (Canada) and is impacted by anthropogenic activities including oil pipeline developments, maritime fossil fuel tanker traffic, industrial chemical effluents, agricultural and urban emissions in tandem with stormwater and wastewater discharges, and forest wildfires. Such events may expose surrounding marine environments to toxic polycyclic aromatic hydrocarbons (PAHs) and impact critical habitats of threatened killer whales (Orcinus orca). We analyzed skeletal muscle and liver samples from stranded Bigg's killer whales and endangered Southern Resident killer whales (SRKWs) for PAH contamination using LRMS. C3-phenanthrenes/anthracenes (mean: 632 ng/g lw), C4-dibenzothiophenes (mean: 334 ng/g lw), and C4-phenanthrenes/anthracenes (mean: 248 ng/g lw) presented the highest concentrations across all tissue samples. Diagnostic ratios indicated petrogenic-sourced contamination for SRKWs and pyrogenic-sourced burdens for Bigg's killer whales; differences between ecotypes may be attributed to habitat range, prey selection, and metabolism. A mother-fetus skeletal muscle pair provided evidence of PAH maternal transfer; low molecular weight compounds C3-fluorenes, dibenzothiophene, and naphthalene showed efficient and preferential exposure to the fetus. This indicates in-utero exposure of PAH-contamination to the fetus. Our results show that hydrocarbon-related anthropogenic activities are negatively impacting these top predators; preliminary data found here can be used to improve oil spill and other PAH pollution management and regulation efforts, and inform policy to conserve killer whale habitats in the NEP.
Collapse
Affiliation(s)
- Kiah Lee
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada.
- Toxicology and Environmental Sciences, Department of Bioscience, University of Oslo, Oslo, Norway.
| | - Stephen Raverty
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
- Animal Health Centre, British Columbia Ministry of Agriculture, Food and Fisheries, Abbotsford, British Columbia, Canada
| | - Paul Cottrell
- Fisheries and Oceans Canada (DFO), Fisheries and Aquaculture Management, Vancouver, British Columbia, Canada
| | - Zeinab Zoveidadianpour
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brendan Cottrell
- Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Dana Price
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
10
|
Galbán-Malagón CJ, Zapata J, Perez-Venegas DJ, Vargas R, Latorre-Padilla N, Luarte T, Ahrendt C, Hirmas-Olivares A, Gómez-Aburto V, Tapia P, Isamit V, Arce P, Sánchez C, Pozo K. Occurrence, source estimation, and risk assessment of Polycyclic Aromatic Hydrocarbons in coastal seawaters from the Quintero Industrial Complex (Valparaíso, Chile). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162957. [PMID: 36958545 DOI: 10.1016/j.scitotenv.2023.162957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/19/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
In the 1960s, the Quintero industrial complex was inaugurated in Chile. This began a history of dramatic anthropogenic impacts on the Chilean coast. Among the known, we could mention high atmospheric emissions of chemicals due to combustion processes and frequent oil spills. For this reason, we surveyed the concentrations of fifteen EPAPAHs in the surface coastal waters of the Quintero Bay area in 2015. The levels found are in the range of the highest levels when reviewing the literature (0.97 μg L-1 up to 9.84 μg L-1). The highest levels were found in the vicinity of the industrial complex and decreased in the other two zones. The concentration of individual compounds significantly exceeds the levels recommended by the EPA (Environmental Protection Agency) and the EU water framework directive (WFD). The risk estimations revealed that PAH concentrations represent high-risk for wildlife. Molecular ratios of PAHs were used to identify the possible sources, being these were mainly of pyrogenic origin, agreeing with an origin in the combustion of wood, coal, grass, and fossil fuels. This study contributes to the first data for surface water in a country's highly impacted industrial coastal area.
Collapse
Affiliation(s)
- C J Galbán-Malagón
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| | - J Zapata
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile; Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D J Perez-Venegas
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - R Vargas
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - N Latorre-Padilla
- Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidada Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés, Bello, Quintay, Valparaíso 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - T Luarte
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidada Andrés Bello, Santiago, Chile
| | - C Ahrendt
- Fundación Acción Natural, Laguna, Valparaíso, Chile
| | - A Hirmas-Olivares
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - V Gómez-Aburto
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - P Tapia
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - V Isamit
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - P Arce
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - C Sánchez
- Escuela de Geología, Universidad Mayor, San Pío X 2422, 7510041 Providencia, Región Metropolitana, Chile
| | - K Pozo
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic; Universidad San Sebastián, Facultad de Ingeniería, Arquitectura y diseño, Lientur 1457, 4030000 Concepción, Chile.
| |
Collapse
|
11
|
Sadiktsis I, de Oliveira Galvão MF, Mustafa M, Toublanc M, Ünlü Endirlik B, Silvergren S, Johansson C, Dreij K. A yearlong monitoring campaign of polycyclic aromatic compounds and other air pollutants at three sites in Sweden: Source identification, in vitro toxicity and human health risk assessment. CHEMOSPHERE 2023; 332:138862. [PMID: 37150457 DOI: 10.1016/j.chemosphere.2023.138862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Air pollution is a complex mixture of gases and particulate matter (PM) with local and non-local emission sources, resulting in spatiotemporal variability in concentrations and composition, and thus associated health risks. To study this in the greater Stockholm area, a yearlong monitoring campaign with in situ measurements of PM10, PM1, black carbon, NOx, O3, and PM10-sampling was performed. The locations included an Urban and a Rural background site and a Highway site. Chemical analysis of PM10 was performed to quantify monthly levels of polycyclic aromatic compounds (PACs), which together with other air pollution data were used for source apportionment and health risk assessment. Organic extracts from PM10 were tested for oxidative potential in human bronchial epithelial cells. Strong seasonal patterns were found for most air pollutants including PACs, with higher levels during the winter months than summer e.g., highest levels of PM10 were detected in March at the Highway site (33.2 μg/m3) and lowest in May at the Rural site (3.6 μg/m3). In general, air pollutant levels at the sites were in the order Highway > Urban > Rural. Multivariate analysis identified several polar PACs, including 6H-Benzo[cd]pyren-6-one, as possible discriminatory markers for these sites. The main sources of particulate pollution for all sites were vehicle exhaust and biomass burning emissions, although diesel exhaust was an important source at the Highway site. In vitro results agreed with air pollutant levels, with higher oxidative potential from the winter samples. Estimated lung cancer cases were in the order PM10 > NO2 > PACs for all sites, and with less evident seasonal differences than in vitro results. In conclusion, our study presents novel seasonal data for many PACs together with air pollutants more traditionally included in air quality monitoring. Moreover, seasonal differences in air pollutant levels correlated with differences in toxicity in vitro.
Collapse
Affiliation(s)
- Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Musatak Mustafa
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Michaël Toublanc
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Burcu Ünlü Endirlik
- Institute of Environmental Medicine, Karolinska Institute, Box 210, 171 77, Stockholm, Sweden; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Sanna Silvergren
- Environment and Health Administration, SLB, 104 20, Stockholm, Sweden
| | - Christer Johansson
- Environment and Health Administration, SLB, 104 20, Stockholm, Sweden; Department of Environmental Science, Stockholm University, 114 19, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institute, Box 210, 171 77, Stockholm, Sweden.
| |
Collapse
|
12
|
Wu Z, Lin T, Sun H, Li R, Liu X, Guo Z, Ma X, Yao Z. Polycyclic aromatic hydrocarbons in Fildes Peninsula, maritime Antarctica: Effects of human disturbance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120768. [PMID: 36473643 DOI: 10.1016/j.envpol.2022.120768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
This study provides the first data on the distribution, sources, and transport dynamics of polycyclic aromatic hydrocarbons (PAHs) in Fildes Peninsula, Antarctica via summertime analyses of lakes, seawater, snow, and air in 2013. Relatively high PAH levels and similar composition profiles (dominance of two- and three-ring PAHs) in the investigated marine and terrestrial environmental matrices were found, indicating substantial primary emissions of petrogenic PAHs. This result was corroborated by nonequilibrium partitioning of atmospheric PAHs caused by release of anthropically-derived lighter PAHs and air mass movement trajectories mainly originated from the Antarctic marginal seas. Notable geographical disparities of PAH pollution in the various types of samples consistently suggested impacts of station-related activities, rather than long-range atmospheric transport, on PAHs in Fildes Peninsula. The lack for temperature dependence for gas-phase concentrations and various molecular diagnostic ratios of atmospheric PAHs demonstrated that the impact of local anthropogenic inputs on air PAH variability supersedes the re-emission effect. The derived air-water and air-snow exchanges of PAHs in this remote region indicated a disequilibrium state, partially associated with intense local emissions of PAHs. PAH outgassing from, and absorption into, lake and marine waters were both observed, probably due to differences in anthropogenic influences among sites, while the net deposition of gaseous PAHs into snow prevailed. The results of this study shed lights on the major importance of native anthropogenic sources in the footprint and fate of PAHs in the Fildes Peninsula, which merits further monitoring.
Collapse
Affiliation(s)
- Zilan Wu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Xing Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xindong Ma
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
13
|
Feng S, Li Y, Zhang R, Zhang Q, Wang W. Origin of metabolites diversity and selectivity of P450 catalyzed benzo[a]pyrene metabolic activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129008. [PMID: 35490637 DOI: 10.1016/j.jhazmat.2022.129008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic Aromatic Hydrocarbon (PAHs) presents one of the most abundant class of environmental pollutants. Recent study shows a lab-synthesized PAHs derivative, helicenium, can selectively kill cancer cells rather than normal cells, calling for the in-depth understanding of the metabolic process. However, the origin of metabolites diversity and selectivity of P450 catalyzed PAHs metabolic activation is still unclear to a great extent. Here we systematically investigated P450 enzymes catalyzed activation mechanism of a representative PAHs, benzo[a]pyrene (BaP), and found the corresponding activation process mainly involves two elementary steps: electrophilic addition and epoxidation. Electrophilic addition step is evidenced to be rate determining step. Two representative binding modes of BaP with P450 were found, which enables the electrophilic addition of Heme (FeO) to almost all the carbons of BaP. This electrophilic addition was proposed to be accelerated by the P450 enzyme environment when compared with the gas phase and water solvent. To dig deeper on the origin of metabolites diversity, we built several linear regression models to explore the structural-energy relationships. The selectivity was eventually attributed to the integrated effects of structural (e.g. O-C distance and O-C-Fe angle) and electrostatic parameters (e.g. charge of C and O) from both BaP and P450.
Collapse
Affiliation(s)
- Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
14
|
Li R, Zhang J, Krebs P. Global trade drives transboundary transfer of the health impacts of polycyclic aromatic hydrocarbon emissions. COMMUNICATIONS EARTH & ENVIRONMENT 2022; 3:170. [PMID: 35935537 PMCID: PMC9340739 DOI: 10.1038/s43247-022-00500-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
International trade leads to a redistribution of pollutant emissions related to the production of goods and services and subsequently affects their severe health impacts. Here, we present a framework of emissions inventories, input-output model, numerical atmospheric chemistry model, and estimates of the global burden of disease. Specifically, we assess emissions and health impacts of polycyclic aromatic hydrocarbons (PAH), a carcinogenic byproduct of production activities, and consider income, production, final sale, and consumption stages of the global supply chain between 2012 and 2015. We find that in 2015, global anthropogenic PAH emissions were 304 Gg (95% CI: 213~421 Gg) and estimated related lifetime lung cancer deaths were 6.9 × 104 (95% CI: 1.8 × 104~1.5 × 105 deaths). The role of trade in driving the PAH-related health risks was greater than that in driving the emissions. Our findings indicate that international cooperation is needed to optimise the global supply chains and mitigate PAH emissions and health impacts.
Collapse
Affiliation(s)
- Ruifei Li
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 210098 Nanjing, China
- Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|