1
|
Qiu Z, Wang H, Dai R, Wang Z. Enhancing Silica Scaling Resistance and Perm-Selectivity of Reverse Osmosis Membranes via Increased Charge Density and Suppressed Coordination Capacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5370-5381. [PMID: 40052783 DOI: 10.1021/acs.est.4c13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Silica scaling poses a substantial challenge in the advanced treatment of industrial wastewater by reverse osmosis (RO) membranes, while the existing methods modifying RO membranes to enhance antisilica scaling performance often compromise water permeance. Herein, we fabricated a sulfonated RO membrane (SLRO) using sodium lignosulfonate as a comonomer, achieving an enhanced charge density and reduced coordination capacity. SLRO exhibited superior antisilica scaling performance, reducing scaling rates by ∼145, ∼166, and ∼157% under acidic, neutral, and alkaline conditions compared to the control. Reduced density gradient analysis confirmed that sulfonic acid groups (-SO3H) on the SLRO surface increased the repulsion of silicic acid. Moreover, the SLRO demonstrated reductions of ∼112, ∼137, and ∼133% in cation-mediated silica scaling rates under the same conditions, attributed to the weaker coordination between -SO3H and cations, which diminished the cation-bridging effect. Furthermore, SLRO membranes exhibited high pure water permeance (3.3 L m-2 h-1 bar-1) and NaCl rejection (99.2%), with a water/NaCl selectivity (7.8 bar-1) three times greater than that of the control (2.6 bar-1), primarily attributed to increased surface roughness and reduced apparent thickness of the PA layer. Our work provides a robust strategy for fabricating silica scaling-resistant RO membranes with improved perm-selectivity.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Hailan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
2
|
Kaneda M, Cao T, Dong D, Zhang X, Chen Y, Zhang J, Bryantsev VS, Zhong M, Elimelech M. Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature. WATER RESEARCH 2024; 258:121705. [PMID: 38776744 DOI: 10.1016/j.watres.2024.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
High concentrations of dissolved silica in saline industrial wastewaters and brines cause silica scale formation, significantly hampering the efficacy of diverse engineered systems. Applying functional polymers as scale inhibitors in process feedwater is a common strategy to mitigate silica scaling. However, feedwater characteristics often vary widely, depending on the specific processes, making the inhibition of silica scaling challenging and complex. In this study, we systematically investigate the role of ionic composition, specifically ionic strength and divalent ions, and solution temperature, in inhibiting silica scaling using molecularly designed amine/amide polymers. The inhibitor demonstrates effective stabilization of silicic acid, with inhibition efficiency of 74 and 55 % in the absence and presence of 20,000 ppm NaCl, respectively. However, further increasing the ionic strength of oversaturated silicic acid solutions significantly diminishes inhibition performance, rendering it ineffective at 180,000 ppm NaCl. Divalent inorganic cations exhibit a stronger impact on reducing inhibition efficiency compared to sodium ions. Molecular dynamics simulations reveal a competition mechanism between anionic silicic acid reactants (i.e., H3SiO4-) and chlorides for binding to ammonium groups within the polymeric inhibitor. Additionally, cations form clusters with H3SiO4- ions, hindering their stabilization with polymeric inhibitor. Notably, at elevated temperatures, the inhibitor achieves near-perfect inhibition for 500 ppm silicic acid solutions. This comprehensive assessment provides important insights into the effectiveness of silica scaling inhibitors under solution conditions relevant to real-world applications, addressing the challenges posed by varying solution parameters in diverse industrial processes.
Collapse
Affiliation(s)
- Masashi Kaneda
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaowei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yinan Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | | | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA.
| |
Collapse
|
3
|
Ma W, Patel SK, Marcos Hernández M, Wang X, Zhou X, Pan W, Shin Y, Villagrán D, Elimelech M. Rapid, Selective, and Chemical-Free Removal of Dissolved Silica from Water via Electrosorption: Feasibility and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:947-959. [PMID: 38153969 DOI: 10.1021/acs.est.3c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The unavoidable and detrimental formation of silica scale in engineered processes necessitates the urgent development of effective, economic, and sustainable strategies for dissolved silica removal from water. Herein, we demonstrate a rapid, chemical-free, and selective silica removal method using electrosorption. Specifically, we confirm the feasibility of exploiting local pH dynamics at the electrodes in flow-through electrosorption, achieved through a counterintuitive cell configuration design, to induce ionization and concomitant electrosorption of dissolved silica. In addition, to improve the feasibility of silica electrosorption under high-salinity solutions, we developed a silica-selective anode by functionalizing porous activated carbon cloths with aluminum hydroxide nanoparticles (Al(OH)3-p-ACC). The modification markedly enhances silica sorption capacity (2.8 vs 1.1 mgsilica ganode-1) and reduces the specific energy consumption (13.3 vs 19.8 kWh kgsilica-1). Notably, the modified electrode retains remarkable silica sorption capacity even in the presence of high concentrations of co-occurring ions (up to 100 mM NaCl). The mechanisms underlying the superior silica removal stability and selectivity with the Al(OH)3-p-ACC electrode are also elucidated, revealing a synergistic interaction involving outer-sphere and inner-sphere complexation between dissolved silica and Al(OH)3 nanoparticles on the electrodes. Moreover, we find that effective regeneration of the electrodes may be achieved by applying a reverse potential during discharge, although complete regeneration of the modified electrodes may necessitate alternative materials or process optimization. We recommend the adoption of feedwater-specific designs for the development of future silica-selective electrodes in electrosorption capable of meeting silica removal demands across a wide range of engineered systems.
Collapse
Affiliation(s)
- Wen Ma
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Sohum K Patel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mariana Marcos Hernández
- Department of Chemistry and Biochemistry and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Xiaoxiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Weiyi Pan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Yonguk Shin
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Dino Villagrán
- Department of Chemistry and Biochemistry and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Nanosystems Engineering Research Center for Nanotechnology─Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Kaneda M, Dong D, Chen Y, Zhang X, Xue Y, Bryantsev VS, Elimelech M, Zhong M. Molecular Design of Functional Polymers for Silica Scale Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:871-882. [PMID: 38150403 DOI: 10.1021/acs.est.3c06504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Silica polymerization, which involves the condensation reaction of silicic acid, is a fundamental process with wide-ranging implications in biological systems, material synthesis, and scale formation. The formation of a silica-based scale poses significant technological challenges to energy-efficient operations in various industrial processes, including heat exchangers and water treatment membranes. Despite the common strategy of applying functional polymers for inhibiting silica polymerization, the underlying mechanisms of inhibition remain elusive. In this study, we synthesized a series of nitrogen-containing polymers as silica inhibitors and elucidated the role of their molecular structures in stabilizing silicic acids. Polymers with both charged amine and uncharged amide groups in their backbones exhibit superior inhibition performance, retaining up to 430 ppm of reactive silica intact for 8 h under neutral pH conditions. In contrast, monomers of these amine/amide-containing polymers as well as polymers containing only amine or amide functionalities present insignificant inhibition. Molecular dynamics simulations reveal strong binding between the deprotonated silicic acid and a polymer when the amine groups in the polymer are protonated. Notably, an extended chain conformation of the polymer is crucial to prevent proximity between the interacting monomeric silica species, thereby facilitating effective silica inhibition. Furthermore, the hydrophobic nature of alkyl segments in polymer chains disrupts the hydration shell around the polymer, resulting in enhanced binding with ionized silicic acid precursors compared to monomers. Our findings provide novel mechanistic insights into the stabilization of silicic acids with functional polymers, highlighting the molecular design principles of effective inhibitors for silica polymerization.
Collapse
Affiliation(s)
- Masashi Kaneda
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Dengpan Dong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yinan Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xiaowei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Yazhen Xue
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Zheng S, Song C, Curria MC, Ren ZJ, White CE. Ca-Based Layered Double Hydroxides for Environmentally Sustainable Carbon Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17212-17224. [PMID: 37916778 DOI: 10.1021/acs.est.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The process of carbon dioxide capture typically requires a large amount of energy for the separation of carbon dioxide from other gases, which has been a major barrier to the widespread deployment of carbon capture technologies. Innovation of carbon dioxide adsorbents is herein vital for the attainment of a sustainable carbon capture process. In this study, we investigated the electrified synthesis and rejuvenation of calcium-based layered double hydroxides (Ca-based LDHs) as solid adsorbents for CO2. We discovered that the particle morphology and phase purity of the LDHs, along with the presence of secondary phases, can be controlled by tuning the current density during electrodeposition on a porous carbon substrate. The change in phase composition during carbonation and calcination was investigated to unveil the effect of different intercalated anions on the surface basicity and thermal stability of Ca-based LDHs. By decoupling the adsorption of water and CO2, we showed that the adsorbed water largely promoted CO2 adsorption, most likely through a sequential dissolution and reaction pathway. A carbon capture capacity of 4.3 ± 0.5 mmol/g was measured at 30 °C and relative humidity of 40% using 10 vol % CO2 in nitrogen as the feed stream. After CO2 capture occurred, the thermal regeneration step was carried out by directly passing an electric current through the conductive carbon substrate, known as the Joule-heating effect. CO2 was found to start desorbing from the Ca-based LDHs at a temperature as low as 220 °C as opposed to the temperature above 700 °C required for calcium carbonate that forms as part of the Ca-looping capture process. Finally, we evaluated the cumulative energy demand and environmental impact of the LDH-based capture process using a life cycle assessment. We identified the most environmentally concerning step in the process and concluded that the postcombustion CO2 capture using LDH could be advantageous compared with existing technologies.
Collapse
Affiliation(s)
- Sunxiang Zheng
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Cuihong Song
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Maria C Curria
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E White
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|