1
|
Wu G, Wu Y, Shan Z, Shen F, Zhang XX, Zhu F. Unveiling transformation processes of cardiovascular pharmaceuticals in wastewater based on nontarget screening. WATER RESEARCH 2025; 278:123425. [PMID: 40058293 DOI: 10.1016/j.watres.2025.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/14/2025]
Abstract
Cardiovascular pharmaceuticals were extensively detected and generally coexist with their transformation products (TPs) in wastewater. However, knowledges on TPs and transformation processes for cardiovascular pharmaceuticals remained largely unclear. To fill this knowledge gap, nontarget screening combined with batch experiments were employed to reveal the transformation of five cardiovascular pharmaceuticals (atenolol, metoprolol, propranolol, bezafibrate and candesartan) in aerobic activated sludge. The removal rate constants per unit of biomass ranged from 0.0105 to 0.0571 L g SS-1 h-1 for five cardiovascular pharmaceuticals. Atenolol and bezafibrate exhibited more excellent removal efficiency (over 99 %) than other three cardiovascular pharmaceuticals. Subsequently, 33 TPs were tentatively identified and 16 of them were not reported in previous studies. Based on identified TPs, transformation pathways of five cardiovascular pharmaceuticals were proposed, which suggested acetylation, ammoniation, carboxylation, dealkylation, decarboxylation, dihydroxylation, demethylation, epoxidation, formylation, hydrogenation, hydrolysis, hydroxylation, methylation and oxidation were involved in the transformation of cardiovascular pharmaceuticals in wastewater. Notably, N- dealkylation at the site of secondary and tertiary amine, acetylation at the site of primary amine and dehydrogenation at the site of linear alkyl were summarized as the specific transformation patterns across different cardiovascular pharmaceuticals. Furthermore, the predicted results suggested that about 30 % TPs have higher persistence and bioaccumulation than parent compounds while about 40 % TPs harbored higher toxicity than parent compounds of cardiovascular pharmaceuticals. Collectively, this study unveiled the fate and transformation pathways of five cardiovascular pharmaceuticals and summarized the specific transformation patterns for them in aerobic activated sludge, which is theoretically useful to effectively remove pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Yufei Wu
- Faculty of Science, The University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Zongya Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230031 Anhui, China
| | - Fei Shen
- Jiangsu Province Center for Disease Control and Prevention, Nanjing 210009 Jiangsu, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China.
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing 210009 Jiangsu, China.
| |
Collapse
|
2
|
Yao L, Hu Y, Yang JH, Wu R, Chen FL, Zhou X. Wastewater surveillance for chronic disease drugs in wastewater treatment plants: Mass load, removal, and sewage epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137661. [PMID: 39986104 DOI: 10.1016/j.jhazmat.2025.137661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
As the number of chronic disease patients continues to climb, vast quantities of chronic disease drugs are continuously discharged into the wastewater treatment plants (WWTPs) and then are released to the receiving environment. However, the situations of pollution, removal, and consumption of chronic disease drugs in China were not studied. Here we investigated the mass load and removal efficiency of 14 chronic disease drugs in seven wastewater treatment plants (WWTPs) of Guangdong Province, China, and estimated the proportional usage of chronic disease drugs and the prevalence of chronic diseases by wastewater-based epidemiology (WBE) method. The results showed that all target chronic disease drugs were detected in the WWTPs, among which gliclazide, valsartan, and bezafibrate were the mainly detected antidiabetic drug, antihypertensive drug, and antihyperlipidemic drug, respectively. The aqueous removal rates of chronic disease drugs ranged from -163 %-100 % in studied WWTPs, and most chronic disease drugs were mainly removed at anaerobic stage in WWTPs that using Anaerobic-Anoxic-Oxic treatment technologies. Mean mass loads of chronic disease drugs in the influent of seven WWTPs ranged at 72-318099 mg·d-1 (valsartan), and mean emission of chronic disease drugs in seven WWTPs ranged at 0-56.3 mg·d-1·1000 inhabitant-1 (valsartan). Based on the WBE method, the prevalence of diabetes, hypertension, and dyslipidemia estimated by gliclazide, glipizide, valsartan, and bezafibrate in this study was consistent with those obtained via cross-sectional survey. The results formulated the contamination characteristics of chronic disease drugs in China and assessed the accuracy of chronic disease drugs used for disease prevalence estimation.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Yang Hu
- Soil and Landscape Science, School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Rui Wu
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Fei-Long Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
3
|
Yu L, Lin Y, Li J, Deng C, Zhang R, Liu A, Wang L, Li Y, Wei X, Lu D, Gao W, Zheng Y. Suspect Screening of Pharmaceuticals and Their Transformation Products (TPs) in Wastewater during COVID-19 Infection Peak: Identification of New TPs and Elevated Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4893-4905. [PMID: 40042095 DOI: 10.1021/acs.est.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pharmaceuticals and their transformation products (TPs) in wastewater are emerging contaminants that pose risks to ecosystems and human health. Here, a typical period marked by the easing of the "zero-COVID" policy in December 2022, resulting in unprecedented infections in China, was chosen to illustrate the environmental impact of pharmaceutical usage during the COVID-19 pandemic. A suspect screening workflow was developed to identify pharmaceuticals and transformation products (TPs) in wastewater influent and effluent from a wastewater treatment plant (WWTP) during the peak and postpeak periods of COVID-19, integrating medication recommendations and TPs' prediction. A total of 114 pharmaceuticals and TPs were identified (13 TPs were detected for the first time in WWTP) by using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Wastewater-based epidemiology analysis showed that the most predominant pharmaceuticals were nonsteroidal anti-inflammatory drugs. Interestingly, the consumption of propafenone increased after the infection peak, possibly linked to long COVID-19 symptoms. Risks were further evaluated based on concentration, detection frequency, and PMT (persistence, mobility, and toxicity) properties, revealing that TPs of aminopyrine, acetaminophen, etc. showed even greater ToxPi scores than their parent compounds. This study highlights the elevated risks posed by pharmaceutical discharge during epidemics and the necessity for TPs' monitoring.
Collapse
Affiliation(s)
- Lihua Yu
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chunyan Deng
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ling Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yiling Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoran Wei
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Yang W, Wang F, Que Q, Fang C, Ao F, Xu Z, Chu W. Urban stormwater discharge contributes more micropollutants to surface water in humid regions of China: Comparison with treated wastewater. WATER RESEARCH 2025; 268:122712. [PMID: 39500004 DOI: 10.1016/j.watres.2024.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/27/2025]
Abstract
Micropollutants have raised increasing concern due to their adverse effect on ecosystems and human health. So far, the effects of micropollutants in urban stormwater discharge on surface water quality or ecosystem health remains unclear. In this study, target and non-target screening methods were used to quantify and identify micropollutants in urban stormwater, wastewater, and surface water in humid regions of China. Results showed that the average concentration of micropollutants in surface waters in wet weather was 1.8 times that in dry weather. The cumulative concentrations of 143 micropollutants in samples from stormwater discharge were in the range of 490-1659 ng/L, which were comparable to or exceeded those from wastewater discharge. In terms of mass load in the studying area, stormwater discharges contained 10.8 kg of micropollutants in the month, a higher level compared to 4.58 kg in treated wastewater. Furthermore, the calculated risk quotients revealed medium to high ecological risk to aquatic organisms from substances such as telmisartan, irbesartan, 1,7-dimethylxanthine, and caffeine at ng/L concentrations, which are in typical levels in urban stormwater and surface waters in wet weathers. Our study reveals that urban stormwater discharge is an important pathway for micropollutants to surface waters, and urges for increased emphasis on, and reinforcement of, urban stormwater monitoring and control measures to minimize the transport of micropollutants to receiving waterbodies.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qidong Que
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feiyang Ao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Muambo KE, Im H, Macha FJ, Oh JE. Reproductive toxicity and molecular responses induced by telmisartan in Daphnia magna at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124525. [PMID: 39004206 DOI: 10.1016/j.envpol.2024.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
With aging population increasing globally, the use of pharmaceutically active compounds is rising. The cardiovascular drug telmisartan has been widely detected in various environmental compartments, including biota, surface waters, and sewage treatment plant effluents at concentrations ranging from ng/L to μg/L levels. This study evaluated the effects of telmisartan on the microcrustacean Daphnia magna at a wide range of concentrations (0.35, 0.70, 1.40, 500, and 1000 μg/L) and revealed significant ecotoxicological implications of this drug, even at environmentally relevant concentration. Acute exposure to telmisartan (1.40, 500, and 1000 μg/L) resulted in a notable decrease in heart rate, while chronic exposure accelerated the time to the first brood by 3 days and reduced neonate body size. Molecular investigations revealed marked downregulation of vitellogenin genes (Vtg1 and Vtg2). Non-monotonic dose responses were observed for gene expression, early-stage body length, and the total number of offspring produced, while the heart rate and time to the first brood showed clear concentration-dependent responses. These findings highlight the potential risks, notably to reproductive capacity, associated with exposure to telmisartan in environmentally relevant concentration, suggesting the need for further studies on the potential long-term ecological consequences.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Fulgence Jacob Macha
- Biocolloids and Surfaces Laboratory, Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Zhang Z, Shi H, Zhang K, An R, Wang C, Wang P, Chan SA, Song Y, Dai J, Zhao Y. Transcriptome-Guided Characterization of the Environmental Toxicity of Metformin: Disruption of Energy Homeostasis and Inhibition of Embryonic Development of Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17580-17591. [PMID: 39319773 DOI: 10.1021/acs.est.4c05052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Metformin has been widely detected in aquatic ecosystems, yet the knowledge of its impact on aquatic organisms, particularly at environmentally relevant concentrations, remains limited. In the present study, we characterized the developmental toxicity of metformin in zebrafish, utilizing a transcriptome-guided toxicological assessment framework. Transcriptomic analysis conducted at metformin concentrations within the μg/L range revealed significant disruptions in biological processes associated with nucleotide, hydrocarbon, and amino acid metabolism, suggesting a significant disturbance in energy homeostasis. This observation was corroborated by energy-targeted metabolomic analysis, wherein a considerable number of metabolites involved in purine metabolism, pyrimidine metabolism, and the citrate cycle displayed significant alterations. Notably, most intermediates in the citrate cycle such as acetyl-CoA exhibited remarkable decreases. Additionally, our study identified significant impediments in zebrafish embryonic development, including decreased yolk extension progress, spontaneous contraction and body length, and increased yolk sac area and yolk/while body lipid content ratio, at metformin concentrations as low as 0.12 μg/L. Furthermore, the disruption of energy homeostasis by metformin was observed to persist into adulthood even after a prolonged recovery period. The present findings highlighted the disruptive effects of metformin on energy homeostasis and embryonic development in teleost at environmentally relevant concentrations, thereby prompting a reevaluation of its environmental risk to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Ziyu Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruiqi An
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shen-An Chan
- Agilent Technologies Incorporated Company, Shanghai 200240, China
| | - Yue Song
- Agilent Technologies Incorporated Company, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Muambo KE, Kim MG, Kim DH, Park S, Oh JE. Pharmaceuticals in raw and treated water from drinking water treatment plants nationwide: Insights into their sources and exposure risk assessment. WATER RESEARCH X 2024; 24:100256. [PMID: 39291270 PMCID: PMC11406100 DOI: 10.1016/j.wroa.2024.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Due to the large amounts of pharmaceuticals and personal care products (PPCPs) currently being consumed and released into the environment, this study provides a comprehensive analysis of pharmaceutical pollution in both raw and treated water from full-scale drinking water treatment plants nationwide. Our investigation revealed that 30 out of 37 PPCPs were present in raw water with mean concentrations ranging from 0.01-131 ng/L. The raw water sources, surface water (ND - 147 ng/L), subsurface water (ND - 123 ng/L) and reservoir sources (ND - 135 ng/L) exhibited higher mean concentration levels of pharmaceutical residues compared to groundwater sources (ND - 1.89 ng/L). Meanwhile, in treated water, 17 of the 37 analyzed PPCPs were present with carbamazepine, clarithromycin, fluconazole, telmisartan, valsartan, and cotinine being the most common (detection frequency > 40 %), and having mean concentrations of 1.22, 0.12, 3.48, 40.1, 6.36, and 3.73 ng/L, respectively. These findings highlight that, while water treatment processes are effective, there are some persistent compounds that prove challenging to fully eliminate. Using Monte Carlo simulations, risk assessment indicated that most of these compounds are likely to have negligible impact on human health, except for the antihypertensives. Telmisartan was identified as posing the highest ecological risk (RQ > 1), warranting further investigation, and monitoring. The study concludes by prioritizing specific 14 pharmaceuticals, including telmisartan, clarithromycin, lamotrigine, cotinine, lidocaine, tramadol, and others, for future monitoring to safeguard both ecological and human health.
Collapse
Affiliation(s)
- Kimberly Etombi Muambo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min-Gyeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Da-Hye Kim
- Institute for Environment and Energy, Pusan National University Busan 46241, Republic of Korea
| | - Sangmin Park
- Department of Environmental Infrastructure Research, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, South Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute for Environment and Energy, Pusan National University Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Mikušová P, Toušová Z, Sehnal L, Kuta J, Grabicová K, Fedorova G, Marek M, Grabic R, Hilscherová K. Identification of new endocrine disruptive transthyretin ligands in polluted waters using pull-down assay coupled to non-target mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134240. [PMID: 38678700 DOI: 10.1016/j.jhazmat.2024.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Surface and treated wastewater are contaminated with highly complex mixtures of micropollutants, which may cause numerous adverse effects, often mediated by endocrine disruption. However, there is limited knowledge regarding some important modes of action, such as interference with thyroid hormone (TH) regulation, and the compounds driving these effects. This study describes an effective approach for the identification of compounds with the potential to bind to transthyretin (TTR; protein distributing TH to target tissues), based on their specific separation in a pull-down assay followed by non-target analysis (NTA). The method was optimized with known TTR ligands and applied to complex water samples. The specific separation of TTR ligands provided a substantial reduction of chromatographic features from the original samples. The applied NTA workflow resulted in the identification of 34 structures. Twelve compounds with available standards were quantified in the original extracts and their TH-displacement potency was confirmed. Eleven compounds were discovered as TTR binders for the first time and linear alkylbenzene sulfonates (LAS) were highlighted as contaminants of concern. Pull-down assay combined with NTA proved to be a well-functioning approach for the identification of unknown bioactive compounds in complex mixtures with great application potential across various biological targets and environmental compartments.
Collapse
Affiliation(s)
- P Mikušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Z Toušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - L Sehnal
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - J Kuta
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - K Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - G Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno 601 77, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 601 77, Czech Republic
| | - R Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - K Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
9
|
Zhou D, Liu H, Wang J, Li Y, Wang N, Li W. Elucidating the enhanced role of carbonate radical in propranolol degradation by UV/peroxymonosulfate system. CHEMOSPHERE 2024; 357:141985. [PMID: 38614404 DOI: 10.1016/j.chemosphere.2024.141985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Carbonate radical (CO3•-) has been proved to be an important secondary radical in advanced oxidation processes due to various radical reactions involved HCO3-/CO32-. However, the roles and contributions of CO3•- in organic micropollutant degradation have not been explored systematically. Here, we quantified the impact of CO3•- on the degradation kinetics of propranolol, a representative pollutant in the UV/peroxymonosulfate (PMS) system, by constructing a steady-state radical model. Substantially, the measured values were coincident with the predictive values, and the contributions of CO3•- on propranolol degradation were the water matrix-dependent. Propranolol degradation increased by 130% in UV/PMS system containing 10 mM HCO3-, and the contribution of CO3•- was as high as 58%. Relatively high pH values are beneficial for propranolol degradation in pure water containing HCO3-, and the contributions of CO3•- also enhanced, while an inverse phenomenon was shown for the effects of propranolol concentrations. Dissolved organic matter exhibited significant scavenging effects on HO•, SO4•-, and CO3•-, substantially retarding the elimination process. The developed model successfully predicted oxidation degradation kinetics of propranolol in actual sewage, and CO3•- contribution was up to 93%, which in indicative of the important role of CO3•- in organic micropollutant removal via AOPs treatment.
Collapse
Affiliation(s)
- Die Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Jin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Nian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Wenjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
10
|
Fu T, Calabrese V, Bancel S, Quéau H, Garnero L, Delorme N, Abbaci K, Salvador A, Chaumot A, Geffard O, Degli-Esposti D, Ayciriex S. ToF-SIMS imaging shows specific lipophilic vitamin alterations in chronic reprotoxicity caused by the emerging contaminant Pravastatin in Gammarus fossarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106935. [PMID: 38723468 DOI: 10.1016/j.aquatox.2024.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Blood lipid-lowering agents, such as Pravastatin, are among the most frequently used pharmaceuticals released into the aquatic environment. Although their effects on humans are very well understood, their consequences on freshwater organisms are not well known, especially in chronic exposure conditions. Gammarus fossarum is commonly used as sentinel species in ecotoxicology because of its sensitivity to a wide range of environmental contaminants and the availability of standardized bioassays. Moreover, there is an increased interest in linking molecular changes in sentinel species, such as gammarids, to observed toxic effects. Here, we performed a reproductive toxicity assay on females exposed to different concentrations of pravastatin (30; 300; 3,000 and 30,000 ng L-1) during two successive reproductive cycles and we applied ToF-SIMS imaging to evaluate the effect of pravastatin on lipid homeostasis in gammarids. Reproductive bioassay showed that pravastatin could affect oocyte development in Gammarus fossarum inducing embryotoxicity in the second reproductive cycle. Mass spectrometry imaging highlighted the disruption in vitamin E production in the oocytes of exposed female gammarids at the second reproductive cycle, while limited alterations were observed in other lipid classes, regarding both production and tissue distribution. The results demonstrated the interest of applying spatially resolved lipidomics by mass spectrometry imaging to assess the molecular effects induced by long-term exposure to environmental pharmaceutical residues in sentinel species.
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Valentina Calabrese
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Sarah Bancel
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Hervé Quéau
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Laura Garnero
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Nicolas Delorme
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Khedidja Abbaci
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Arnaud Chaumot
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | - Olivier Geffard
- INRAEe, UR RiverLy, Ecotoxicology Team, Villeurbanne F-69625, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne F-69100, France.
| |
Collapse
|
11
|
Chen R, Xing C, Shen G, Jones KC, Zhu Y. Indirect Emissions from Organophosphite Antioxidants Result in Significant Organophosphate Ester Contamination in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20304-20314. [PMID: 37978933 DOI: 10.1021/acs.est.3c07782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Organophosphite antioxidants (OPAs) have been seriously neglected as potential sources of organophosphate esters (OPEs) in environments. This study utilizes a modeling approach to quantify for the first time national emissions and multimedia distributions of triphenyl phosphate (TPHP)─a well-known flame retardant─and three novel OPEs: tris(2,4-ditert-butylphenyl) phosphate (AO168═O), bis(2,4-ditert-butylphenyl) pentaerythritol diphosphate (AO626═O2), and trisnonylphenol phosphate (TNPP). Emphasis is on the quantitative assessment of OPA source in China. TPHP has 1.1-9.7 times higher emission (300 Mg/year in 2019 with half from OPA sources) than AO168═O (278 Mg/year), AO626═O2 (53 Mg/year), and TNPP (32 Mg/year), but AO168═O is predominant in environments (63-79%) except freshwaters. About 72-99% of the studied OPEs are emitted via air, with 88-99% ultimately distributed into soils as the major sink. OPA-source emissions contribute 9.5-57% and 4.7-56% of TPHP masses and concentrations (except in sediments) in different media, respectively. Both AO168═O and AO626═O2 exhibit high overall persistence ranging between 2 and 11 years. Source emissions and environmental concentrations are elevated in economically developed areas, while persistence is higher in northern areas, where precipitation and temperature are lower. This study shows the significance of the sources of OPA to OPE contamination, which supports chemical management of these substances.
Collapse
Affiliation(s)
- Rongcan Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changyue Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Zhou J, Zhao Y, Dai J, Zhang K. Environmentally relevant concentrations of antidepressant mirtazapine impair the neurodevelopment of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115335. [PMID: 37567106 DOI: 10.1016/j.ecoenv.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Mirtazapine is a commonly prescribed antidepressant and has been found widespread in aquatic environments. However, its toxicities to aquatic organisms has rarely been explored. Herein, we conducted a comprehensive study on the developmental effects of mirtazapine on early life stages of zebrafish at environmentally relevant concentrations (3.9 ng/L and 43.5 ng/L). Out of the endpoints measured, spontaneous contraction of embryos at 24 h post fertilization (hpf) and hatching rate and heart rate of embryos at 50 hpf and 56 hpf, respectively, were significantly affected. In light-dark transition behavior test, mirtazapine significantly reduced the swimming frequency and swimming speed of embryos at both concentrations of 3.9 ng/L and 43.5 ng/L. Furthermore, the total swimming distances in dark conditions were also significantly reduced. Transcriptomic analysis was further conducted. It demonstrated that the decreased neural activities in embryos may be associated with altered epinephrine and neuregulin signaling. The present results fill a data gap regarding the exposure of fish to mirtazapine at environmentally relevant concentrations and provide new insights into the neurotoxic mechanisms of mirtazapine exposure.
Collapse
Affiliation(s)
- Jie Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
13
|
Barratt AL, Li Y, Gooroovadoo I, Todd A, Dou Y, McAlister S, Semsarian C. Environmental impact of cardiovascular healthcare. Open Heart 2023; 10:openhrt-2023-002279. [PMID: 37130659 PMCID: PMC10163594 DOI: 10.1136/openhrt-2023-002279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
IMPORTANCE The healthcare sector is essential to human health and well-being, yet its significant carbon footprint contributes to climate change-related threats to health. OBJECTIVE To review systematically published studies on environmental impacts, including carbon dioxide equivalent (CO2e) emissions, of contemporary cardiovascular healthcare of all types, from prevention through to treatment. EVIDENCE REVIEW We followed the methods of systematic review and synthesis. We conducted searches in Medline, EMBASE and Scopus for primary studies and systematic reviews measuring environmental impacts of any type of cardiovascular healthcare published in 2011 and onwards. Studies were screened, selected and data were extracted by two independent reviewers. Studies were too heterogeneous for pooling in meta-analysis and were narratively synthesised with insights derived from content analysis. FINDINGS A total of 12 studies estimating environmental impacts, including carbon emissions (8 studies), of cardiac imaging, pacemaker monitoring, pharmaceutical prescribing and in-hospital care including cardiac surgery were found. Of these, three studies used the gold-standard method of Life Cycle Assessment. One of these found the environmental impact of echocardiography was 1%-20% that of cardiac MR (CMR) imaging and Single Photon Emission Tomography (SPECT) scanning. Many opportunities to reduce environmental impacts were identified: carbon emissions can be reduced by choosing echocardiography as the first cardiac test before considering CT or CMR, remote monitoring of pacemaker devices and teleconsultations when clinically appropriate to do so. Several interventions may be effective for reducing waste, including rinsing bypass circuitry after cardiac surgery. Cobenefits included reduced costs, health benefits such as cell salvage blood available for perfusion, and social benefits such as reduced time away from work for patients and carers. Content analysis revealed concern about the environmental impact of cardiovascular healthcare, particularly carbon emissions and a desire for change. CONCLUSIONS AND RELEVANCE Cardiac imaging, pharmaceutical prescribing and in-hospital care including cardiac surgery have significant environmental impacts, including CO2e emissions which contribute to climate-related threats to human health. Importantly, many opportunities to effectively reduce environmental impacts exist within cardiac care, and can provide economic, health and social cobenefits.
Collapse
Affiliation(s)
- Alexandra L Barratt
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Wiser Healthcare, The University of Sydney, Sydney, New South Wales, Australia
| | - Yan Li
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Isabelle Gooroovadoo
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Allyson Todd
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuanlong Dou
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott McAlister
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Wiser Healthcare, The University of Sydney, Sydney, New South Wales, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Semsarian
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Wiser Healthcare, The University of Sydney, Sydney, New South Wales, Australia
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Shi H, Li M, Meng H, Zheng X, Zhang K, Fent K, Dai J, Zhao Y. Reduced Transcriptome Analysis of Zebrafish Embryos Prioritizes Environmental Compounds with Adverse Cardiovascular Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4959-4970. [PMID: 36935584 DOI: 10.1021/acs.est.2c08920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cardiovascular diseases are the leading cause of premature death in humans and remain a global public health challenge. While age, sex, family history, and false nutrition make a contribution, our understanding of compounds acting as cardiovascular disruptors is far from complete. Here, we aim to identify cardiovascular disruptors via a reduced transcriptome atlas (RTA) approach, which integrates large-scale transcriptome data sets of zebrafish and compiles a specific gene panel related to cardiovascular diseases. Among 767 gene expression profiles covering 81 environmental compounds, 11 priority compounds are identified with the greatest effects on the cardiovascular system at the transcriptional level. Among them, metals (AgNO3, Ag nanoparticles, arsenic) and pesticides/biocides (linuron, methylparaben, triclosan, and trimethylchlorotin) are identified with the most significant effects. Distinct transcriptional signatures are further identified by the percentage values, indicating that different physiological endpoints exist among prioritized compounds. In addition, cardiovascular dysregulations are experimentally confirmed for the prioritized compounds via alterations of cardiovascular physiology and lipid profiles of zebrafish. The accuracy rate of experimental verification reaches up to 62.9%. The web-based RTA analysis tool, Cardionet, for rapid cardiovascular disruptor discovery was further provided at http://www.envh.sjtu.edu.cn/cardionet.jsp. Our integrative approach yields an efficient platform to discover novel cardiovascular-disrupting chemicals in the environment.
Collapse
Affiliation(s)
- Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoyu Meng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuehan Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
Tang H, Zhu L, Zhao X, Jiang X, Zhang J, Pei C, Li L, Kong X. Characterization of CD3γ/δ gene and its immune response in Qihe crucian carp Carassius auratus after challenged by Aeromonas veronii and Poly(I:C). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108550. [PMID: 36646341 DOI: 10.1016/j.fsi.2023.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
CD3γ/δ found in non-mammalian vertebrates is a CD3 homolog with structural characteristics similar to both mammalian CD3γ and CD3δ, and plays important roles in T cell recognization and immune response in fish. In this study, the full-length of CD3γ/δ from Qihe crucian carp (named CaCD3γ/δ) was cloned and characterized, then the expression response profiles and potential immune functions was explored after Aeromonas veronii and Poly(I:C) challenge. The results showed that the full-length of CaCD3γ/δ was 819 bp including a 5'-UTR of 141 bp, a 3'-UTR of 168 bp, and an ORF of 510 bp encoding a putative 169-aa protein with an estimated MW of 18.71 kD and a theoretical pI of 8.77. The protein sequence of CaCD3γ/δ contained a Leu-Leu and a CXXXC motif in the extracellular domain, and an ITAM and a Leu-Ile motif in the cytoplasm, and a residue of Asn in the transmembrane. CaCD3γ/δ was constitutively expressed in the spleen, liver, gill, and blood of Qihe crucian carp. After the carp were challenged with Poly(I:C) and Aeromonas veronii, the mRNA expression levels of CaCD3γ/δ were significantly changed in the spleen, head kidney, intestine and gill, according to the results of qPCR. However, compared with A. veronii, Poly(I:C) challenge can rapidly induce the CaCD3γ/δ expression levels in head kidney, intestine and spleen, which suggested CaCD3γ/δ may be differentially modulated by different pathogens. Moreover, the results of immunohistochemical analysis showed that the CaCD3γ/δ+ secreted cells in the spleen and gills of Qihe crucian were increased after challenged with Poly(I:C), as well as the spleen challenged with A. veronii, but at different levels. Combined with the fact that vascular congestion, necrosis of parenchymal cells, and inflammatory cells including lymphocytes infiltration were also observed in the gill and spleen of Qihe crucian carp treated with A. veronii and Poly(I:C) revealed by pathological analysis, it was predicted that CaCD3γ/δ+ T lymphocytes may participated in the immune response against pathogens. This study will contribute to understand the important role of CaCD3γ/δ+ T lymphocytes in the immune response of Qihe crucian carp, and provide new insights for the prevention and treatment of the diseases of Qihe crucian carp.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
16
|
Alvarez-Mora I, Bolliet V, Lopez-Herguedas N, Castro L, Anakabe E, Monperrus M, Etxebarria N. Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120016. [PMID: 36007789 DOI: 10.1016/j.envpol.2022.120016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain.
| | - Valérie Bolliet
- Université de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Aquapôle INRAE, MIRA, F64310, Saint-Pée-sur-Nivelle, France
| | - Naroa Lopez-Herguedas
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| | - Lyen Castro
- Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| | - Eneritz Anakabe
- Department of Organic and Inorganic Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain
| | - Mathilde Monperrus
- Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Université de Pau et des Pays de l'Adour, 64000 Anglet, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| |
Collapse
|
17
|
Zhang L, Brooks BW, Liu F, Zhou Z, Li H, You J. Human Apparent Volume of Distribution Predicts Bioaccumulation of Ionizable Organic Chemicals in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11547-11558. [PMID: 35896009 DOI: 10.1021/acs.est.2c03421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemicals with elevated bioaccumulation profiles present potential hazards to public health and the environment. Ionizable organic compounds (IOCs) increasingly represent a large proportion of commercial chemicals; however, historical approaches for bioaccumulation determinations are mainly developed for neutral chemicals, which were not appropriate for IOCs. Herein, we employed the zebrafish embryo, a common vertebrate model in environmental and biomedical studies, to elucidate toxicokinetics and bioconcentration of eight IOCs with diverse physicochemical properties and pharmacokinetic parameters. At an environmentally relevant pH (7.5), most IOCs exhibited rapid uptake and depuration in zebrafish, suggesting the ionized forms of IOCs are readily bioavailable. Bioconcentration factors (BCF) of these IOCs ranged from 0.0530 to 250 L·kg-1 wet weight. The human pharmacokinetic proportionality factor, apparent volume of distribution (VD), better predicted the BCF of selected IOCs than more commonly used hydrophobicity-based parameters (e.g., pH-dependent octanol-water distribution ratio, Dow). Predictive bioaccumulation models for IOCs were constructed and validated using VD alone or with Dow. Significant relationships between fish BCF and human VD, which is readily available for pharmaceuticals, highlighted the utility of biologically based "read-across" approaches for predicting bioaccumulative potential of IOCs. Our novel findings thus provided an understanding of the partitioning behavior and improved predictive bioconcentration modeling for IOCs.
Collapse
Affiliation(s)
- Ling Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Bryan W Brooks
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Fen Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|