1
|
Zhang F, Li D, Li G, Xu S. New horizons in smart plant sensors: key technologies, applications, and prospects. FRONTIERS IN PLANT SCIENCE 2025; 15:1490801. [PMID: 39840367 PMCID: PMC11747371 DOI: 10.3389/fpls.2024.1490801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025]
Abstract
As the source of data acquisition, sensors provide basic data support for crop planting decision management and play a foundational role in developing smart planting. Accurate, stable, and deployable on-site sensors make intelligent monitoring of various planting scenarios possible. Recent breakthroughs in plant advanced sensors and the rapid development of intelligent manufacturing and artificial intelligence (AI) have driven sensors towards miniaturization, intelligence, and multi-modality. This review outlines the key technologies in developing new advanced sensors, such as micro-nano technology, flexible electronics technology, and micro-electromechanical system technology. The latest technological frontiers and development trends in sensor principles, fabrication processes, and performance parameters in soil and different segmented crop scenarios are systematically expounded. Finally, future opportunities, challenges, and prospects are discussed. We anticipate that introducing advanced technologies like nanotechnology and AI will rapidly and radically revolutionize the accuracy and intelligence of agricultural sensors, leading to new levels of innovation.
Collapse
Affiliation(s)
- Fucheng Zhang
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Denghua Li
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| | - Ganqiong Li
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| | - Shiwei Xu
- Research Center for Agricultural Monitoring and Early Warning, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing, China
| |
Collapse
|
2
|
Xiang W, Wang X, Zhang M, Aderibigbe AD, Wang F, Zhao Z, Fan Y, Huey BD, McCutcheon JR, Li B. Continuous Monitoring of Lithium Ions in Lithium-Rich Brine Using Ion Selective Electrode Sensors Modified with Polyelectrolyte Multilayers of Poly(allylamine hydrochloride)/Poly(sodium 4-styrenesulfonate). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22442-22455. [PMID: 39626215 DOI: 10.1021/acs.est.4c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Monitoring lithium ions (Li+) in lithium-rich brine (LrB) is critical for metal recovery, yet challenges such as high ionic strength and gypsum-induced surface deterioration hinder the performance of potentiometric ion-selective electrode (ISE) sensors. This study advances the functionality of Li+ ISE sensors and enables continuous monitoring of Li+ concentration in LrB by introducing apolyelectrolyte multilayer (PEM) of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) that serves as an antigypsum scaling material to minimize nucleation on the sensor surface. With 5.5 bilayers of PAH/PSS coating, the Li+ ISE sensors possess a high Nernst slope (59.14 mV/dec), rapid response (<10 s), and superior selectivity against competitive ions (Na+, log Ks = -2.35; K+, log Ks = -2.47; Ca2+, log Ks = -4.05; Mg2+, log Ks = -4.18). The impedance (85.1 kΩ) of (PAH/PSS)5.5-coated sensors is 1 order of magnitude lower than that of electrospray ion-selective membrane (E-ISM) Li+ sensors (830 kΩ), attributed to the ultrathin (45.3 nm) and highly dielectric PAH/PSS bilayers. During a 15-day continuous monitoring test in LrB, the (PAH/PSS)5.5-coated Li+ ISE sensors with their superhydrophilic and smooth surface diminish nucleation sites for scaling agents (e.g., Ca2+ and SO42-) and consequently mitigate gypsum scaling. Moreover, a brine-tailored denoising data processing algorithm (bt-DDPA), coupled with the salinity-adjusted mathematical model with Lagrange interpolation, effectively captures Li+ fluctuation by filtering out anomalies and reducing sensor drift in brine. Bt-DDPA alleviates the discrepancy between the sensor readings and the lab-based validation results by 46.06%. This study demonstrates that the integration of material advancement (PAH/PSS coating) with sensor data processing (bt-DDPA) bolsters continuous and accurate Li+ monitoring in LrB, crucial for brine water treatment and resource recovery.
Collapse
Affiliation(s)
- Wenjun Xiang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abiodun D Aderibigbe
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fei Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhiyuan Zhao
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey R McCutcheon
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Wang Z, Wan Y, Zhang Y, Zhang B, Li M, Jin X, Yang T, Meng G. 3D porous conductive matrix based on phase-transited BSA and covalent coupling-stabilized transition ZnS-CNT for antifouling and on-site detection of nitrite in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134492. [PMID: 38703687 DOI: 10.1016/j.jhazmat.2024.134492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Nitrite plays a critical role in a variety of nitrification and denitrification processes in the nitrogen cycle. Due to the high surface energy, tendency to aggregate, and poor conductivity, current nitrite ZnS-based sensing platform could not meet the need of on-site nitrite detection in smart agriculture. In order to address these issues, the carboxylated carbon nanotube (CNT) was introduced to reduce the surface energy and prevented aggregation of ZnS, while ZnS-carboxylated CNT (ZnS-CNT) composite also provided excellent electrochemical conductivity. Furthermore, the introduction of phase transition BSA (PTB) created a three-dimensional porous conductive matrix without interfering with the mass transfer process of nitrite. The resulting sensing platform exhibited a linear detection range of 10 nM to 0.4 mM for nitrite, with a detection limit of 0.73 nM. And this sensing platform had the excellent antifouling ability to direct detection nitrite in real soil suspension. In addition, the sensing platform demonstrated remarkable resistance to interferences from pH variations, microbial presence, and organic pollutants that usually present in soil environment. Therefore, on-site detection of nitrite ions in soil environment was realized no needing complex pretreatments.
Collapse
Affiliation(s)
- Zhenhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China; BYD Co Ltd, Shenzhen 518122, PR China
| | - Yu Wan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Ben Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Mubing Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Xi Jin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China.
| | - Guozhe Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China.
| |
Collapse
|
4
|
Lu B, Lunn J, Yeung K, Dhandapani S, Carter L, Roose T, Shaw L, Nightingale A, Niu X. Droplet Microfluidic-Based In Situ Analyzer for Monitoring Free Nitrate in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2956-2965. [PMID: 38291787 PMCID: PMC10867830 DOI: 10.1021/acs.est.3c08207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Monitoring nutrients in the soil can provide valuable information for understanding their spatiotemporal variability and informing precise soil management. Here, we describe an autonomous in situ analyzer for the real-time monitoring of nitrate in soil. The analyzer can sample soil nitrate using either microdialysis or ultrafiltration probes placed within the soil and quantify soil nitrate using droplet microfluidics and colorimetric measurement. Compared with traditional manual sampling and lab analysis, the analyzer features low reagent consumption (96 μL per measurement), low maintenance requirement (monthly), and high measurement frequency (2 or 4 measurements per day), providing nondrifting lab-quality data with errors of less than 10% using a microdialysis probe and 2-3% for ultrafiltration. The analyzer was deployed at both the campus garden and forest for different periods of time, being able to capture changes in free nitrate levels in response to manual perturbation by the addition of nitrate standard solutions and natural perturbation by rainfall events.
Collapse
Affiliation(s)
- Bingyuan Lu
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James Lunn
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Ken Yeung
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Selva Dhandapani
- Department
of Geography and Environmental Science, University of Reading, Reading RG6 6AH, United
Kingdom
| | - Liam Carter
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tiina Roose
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Liz Shaw
- Department
of Geography and Environmental Science, University of Reading, Reading RG6 6AH, United
Kingdom
| | - Adrian Nightingale
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Xize Niu
- Mechanical
Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Li Y, Liao Z, Lin X, Ding J, Qin W. In Situ Continuous Measurement of Salinity in Estuarine and Coastal Sediments by All-Solid Potentiometric Sensors. ACS Sens 2023; 8:1568-1578. [PMID: 36926846 DOI: 10.1021/acssensors.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Salinity is crucial for understanding the environmental and ecological processes in estuarine and coastal sediments. In situ measurements in sediments are scarce due to the low water content and particulate adsorption. Here, a new potentiometric sensor principle is proposed for the real-time in situ measurement of salinity in sediments. The sensor system is based on paper sampling and two all-solid electrodes, a cation-selective electrode (copper hexacyanoferrate, CuHCF) and an anion-selective electrode (Ag/AgCl). The spontaneous aqueous electrolyte extraction and redox reaction can produce a Nernstian response on both electrodes that is directly related to salinity. This potentiometric sensor allows for salinity acquisition in a wide salinity range (1-50 ppt), with high resolution (<1 ppt), and at a low water content (<30%), and it has been applied for the in situ measurement of salinity and the interpretation of cycling processes of metals in estuarine and coastal sediments. Moreover, the sensor coupled to a wireless monitoring system exhibited remote-sensing capability and successfully captured the salinity dynamic processes of the overlying water and pore water during the tidal period. This sensor with its low cost, versatility, and applicability represents a valuable tool to advance the comprehension of salinity and the salinity-driven dissolved-matter variations in estuarine and coastal sediments.
Collapse
Affiliation(s)
- Yinhao Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhibo Liao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China
| | - Xindong Lin
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100049, China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Zhou H, Xie W, Guo A, Chen B, Hu S, Zheng M, Yu H, Tian H, Li L. Temperature sensitive nanogels for real-time imaging during transcatheter arterial embolization. Des Monomers Polym 2023; 26:31-44. [PMID: 36684709 PMCID: PMC9858417 DOI: 10.1080/15685551.2022.2164445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several vascular embolization materials are commonly used in clinical practice, however, having application defects of varying degrees, such as poor intraoperative imaging and easy recanalization of embolized blood vessels, they are challenging for application during Transcatheter arterial embolization (TAE). Thus, an intraoperative visible vascular embolization material with good embolization effect and biocompatibility can improve transcatheter arterial embolization clinical efficacy to some extent. Our study aimed to synthesize a novel vascular embolization material that can achieve complete embolization of arterial trunks and peripheral vessels, namely poly (N-isopropyl acrylamide)-co-acrylic acid nanogel (NIPAM-co-AA). Iohexol 200 mg/mL was co-assembled with 7 wt% NIPAM-co-AA nanogel to create an intelligent thermosensitive radiopaque nanogel (INCA), which achieves a good intraoperative imaging effect and is convenient for transcatheter arterial bolus injection due to its good fluidity and temperature-sensitive sol-gel phase transition. The normal rabbit kidney embolism model further confirmed that INCA could effectively use Digital subtraction angiography (DSA) to achieve intraoperative imaging, and real-time monitoring of the embolization process could avoid mis-embolization and leakage. Meanwhile, in a 42-day study, INCA demonstrated an excellent embolization effect on the right renal artery of New Zealand white rabbits, with no vascular recanalization and ischemic necrosis and calcification remaining. As a result, this radiopaque thermosensitive nanogel has the potential to be an intelligent thermosensitive medical vascular embolization material, providing dual benefits in TAE intraoperative imaging and long-term postoperative embolization while effectively addressing the shortcomings and challenges of commonly used clinical vascular embolization agents.
Collapse
Affiliation(s)
- Hongfu Zhou
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Wenjing Xie
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Anran Guo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Bin Chen
- Department of Radiology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, P.R. China
| | - Sanming Hu
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Min Zheng
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Houqiang Yu
- Department of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, PR China
| | - Hongan Tian
- Department of Radiology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, P.R. China,CONTACT Hongan Tian Department of Radiology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, PR China
| | - Ling Li
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China,Ling Li School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| |
Collapse
|
7
|
Synthesis and characterization of citric acid and itaconic acid-based two-pack polyurethane antimicrobial coatings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-022-04638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Fan Y, Wang X, Funk T, Rashid I, Herman B, Bompoti N, Mahmud MS, Chrysochoou M, Yang M, Vadas TM, Lei Y, Li B. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13546-13564. [PMID: 36121207 DOI: 10.1021/acs.est.2c03562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most soil quality measurements have been limited to laboratory-based methods that suffer from time delay, high cost, intensive labor requirement, discrete data collection, and tedious sample pretreatment. Real-time continuous soil monitoring (RTCSM) possesses a great potential to revolutionize field measurements by providing first-hand information for continuously tracking variations of heterogeneous soil parameters and diverse pollutants in a timely manner and thus enable constant updates essential for system control and decision-making. Through a systematic literature search and comprehensive analysis of state-of-the-art RTCSM technologies, extensive discussion of their vital hurdles, and sharing of our future perspectives, this critical review bridges the knowledge gap of spatiotemporal uninterrupted soil monitoring and soil management execution. First, the barriers for reliable RTCSM data acquisition are elucidated by examining typical soil monitoring techniques (e.g., electrochemical and spectroscopic sensors). Next, the prevailing challenges of the RTCSM sensor network, data transmission, data processing, and personalized data management are comprehensively discussed. Furthermore, this review explores RTCSM data application for updating diverse strategies including high-fidelity soil process models, control methodologies, digital soil mapping, soil degradation, food security, and climate change mitigation. Finally, the significance of RTCSM implementation in agricultural and environmental fields is underscored through illuminating future directions and perspectives in this systematic review.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thomas Funk
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ishrat Rashid
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Brianna Herman
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nefeli Bompoti
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Md Shaad Mahmud
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Meijian Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Timothy M Vadas
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|