1
|
Zhang J, Villalobos LF, Lee J, Zhong M, Elimelech M. Ionophore-Based Molecular Layer-by-Layer Polyamide Membranes for Facilitated Single-Ion Transport. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359549 DOI: 10.1021/acsami.5c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Single-ion-selective membranes are indispensable for efficient ion separations in environmental, energy, and biomedical technologies. Inspired by biological ion channels, this work harnessed the selective and reversible ion binding features of ionophores to fabricate an ultrathin, ionophore-based K+-selective polyamide membrane through molecular layer-by-layer (m-LbL) polymerization with 18-crown-6-functionalized monomers. Compared with Cs+, Li+, and Mg2+, K+ exhibited the highest binding energy to 18-crown-6, facilitating its transport over the competing cations across the sub-10 nm polyamide film in a binary salt mixture. The need for competitive binding for selective K+ transport was further demonstrated through investigations of ion selectivity at varying concentration ratios between K+ and competing cations. Additionally, we extended the Nernst-Planck equation to describe individual ion flux in a binary system, identifying factors that govern ion transport. Our findings demonstrate the potential of selective single-ion transport enabled by preferential ion binding, showing promise for the development of biomimetic ion-selective polymeric membranes.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Luis Francisco Villalobos
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Junwoo Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Foo ZH, Lee TR, Wegmueller JM, Heath SM, Lienhard JH. Toward a Circular Lithium Economy with Electrodialysis: Upcycling Spent Battery Leachates with Selective and Bipolar Ion-Exchange Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19486-19500. [PMID: 39420454 PMCID: PMC11526793 DOI: 10.1021/acs.est.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Recycling spent lithium-ion batteries offers a sustainable solution to reduce ecological degradation from mining and mitigate raw material shortages and price volatility. This study investigates using electrodialysis with selective and bipolar ion-exchange membranes to establish a circular economy for lithium-ion batteries. An experimental data set of over 1700 ion concentration measurements across five current densities, two solution compositions, and three pH levels supports the techno-economic analysis. Selective electrodialysis (SED) isolates lithium ions from battery leachates, yielding a 99% Li-pure retentate with 68.8% lithium retention, achieving relative ionic fluxes up to 2.41 for Li+ over transition metal cations and a selectivity of 5.64 over monovalent cations. Bipolar membrane electrodialysis (BMED) converts LiCl into high-purity LiOH and HCl, essential for battery remanufacturing and reducing acid consumption via acid recycling. High current densities reduce ion leakage, achieving lithium leakage as low as 0.03%, though hydronium and hydroxide leakage in BMED remains high at 11-20%. Our analysis projects LiOH production costs between USD 1.1 and 3.6 per kilogram, significantly lower than current prices. Optimal SED and BMED conditions are identified, emphasizing the need to control proton transport in BMED and improve cobalt-lithium separation in SED to enhance cost efficiency.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Trent R. Lee
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jakob M. Wegmueller
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M. Heath
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H. Lienhard
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Kinfu HH, Rahman MM, Schneider ES, Cevallos-Cueva N, Abetz V. Using the Assembly Time as a Tool to Control the Surface Morphology and Separation Performance of Membranes with a Tannic Acid-Fe 3+ Selective Layer. MEMBRANES 2024; 14:133. [PMID: 38921500 PMCID: PMC11205845 DOI: 10.3390/membranes14060133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Thin-film composite (TFC) membranes containing a metal-polyphenol network (MPN)-based selective layer were fabricated on a porous polyacrylonitrile support. The MPN layer was formed through coordination-based self-assembly between plant-based tannic acid (TA) and an Fe3+ ion. For the first time, we demonstrate that TFC membranes containing TA-Fe3+ selective layers can separate small organic solutes in aqueous media from equimolar mixtures of solutes. The effect of the assembly time on the characteristics and performance of the fabricated selective layer was investigated. An increase in the assembly time led to the formation of selective layers with smaller effective pore sizes. The tannic acid-Fe3+ selective layer exhibited a low rejection towards neutral solutes riboflavin and poly(ethylene glycol) while high rejections were observed for anionic dyes of orange II and naphthol green B. Permeation selectivities in the range of 2-27 were achieved between neutral and charged dyes in both single- and mixed-solute experiments, indicating the significant role of Donnan exclusion and the charge-selective nature of the membranes. The rejection efficiency improved with an increasing assembly time. Overall, this study demonstrates that the assembly time is a vital casting parameter for controlling the permeance, rejection and selectivity of thin-film composite membranes with a tannic acid-Fe3+ selective layer.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Md. Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Erik S. Schneider
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Nicolás Cevallos-Cueva
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (H.H.K.); (E.S.S.); (N.C.-C.); (V.A.)
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Yu W, Lu X, Xiong L, Teng J, Chen C, Li B, Liao BQ, Lin H, Shen L. Thiol-Ene Click Reaction in Constructing Liquid Separation Membranes for Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310799. [PMID: 38213014 DOI: 10.1002/smll.202310799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
In the evolving landscape of water treatment, membrane technology has ascended to an instrumental role, underscored by its unmatched efficacy and ubiquity. Diverse synthesis and modification techniques are employed to fabricate state-of-the-art liquid separation membranes. Click reactions, distinguished by their rapid kinetics, minimal byproduct generation, and simple reaction condition, emerge as a potent paradigm for devising eco-functional materials. While the metal-free thiol-ene click reaction is acknowledged as a viable approach for membrane material innovation, a systematic elucidation of its applicability in liquid separation membrane development remains conspicuously absent. This review elucidates the pre-functionalization strategies of substrate materials tailored for thiol-ene reactions, notably highlighting thiolation and introducing unsaturated moieties. The consequential implications of thiol-ene reactions on membrane properties-including trade-off effect, surface wettability, and antifouling property-are discussed. The application of thiol-ene reaction in fabricating various liquid separation membranes for different water treatment processes, including wastewater treatment, oil/water separation, and ion separation, are reviewed. Finally, the prospects of thiol-ene reaction in designing novel liquid separation membrane, including pre-functionalization, products prediction, and solute-solute separation membrane, are proposed. This review endeavors to furnish invaluable insights, paving the way for expanding the horizons of thiol-ene reaction application in liquid separation membrane fabrication.
Collapse
Affiliation(s)
- Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyi Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liping Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
7
|
Li X, Ning X, Li Z. Global research trends of uranium-containing wastewater treatment based on bibliometric review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120310. [PMID: 38377753 DOI: 10.1016/j.jenvman.2024.120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
The generation of uranium-containing wastewater (UCW) during different stages of uranium mining, processing, and utilization presents a significant ecological and biospheric threat. Consequently, it is crucial for both sustainable development and the protection of human health to adopt appropriate methods for the treatment of UCW as well as the separation and enrichment of uranium. This study conducted a comprehensive search of the Web of Science Core Collection (WOSCC) database for publications related to UCW treatment between 1990 and 2022 to gain insight into current trends in the field. Subsequently, the annual publications, WOSCC categories, geographical distribution, major collaborations, prolific authors, influential journals, and highly cited publications were the subjects of a biliometric analysis that was subsequently carried out. The study findings indicate a significant rise in the overall number of publications in the research field between 1990 and 2022. China, India, and the USA emerged as the primary contributors in terms of publication count. The Chinese Academy of Sciences, the East China University of Technology, and the University of South China were identified as the key research institutions in this field. Furthermore, a majority of the publications in this field were distributed through prestigious journals with high impact factors, such as the Journal of Radioanalytical and Nuclear Chemistry. The top 3 journals were Radioanalytical and Nuclear Chemistry, Chemical Engineering Journal, and Journal of Hazardous Materials. The keyword co-occurrence and burst analysis revealed that the current research on UCW treatment mainly focuses on adsorption-based treatment methods, environmentally functional materials, uranium recovery, etc. Furthermore, the study of the adsorption efficiency of different adsorbent materials, as well as the strengthening and improvement of adsorbent material selectivity and capacity for the recovery of uranium, represents a research hotspot in the field of UCW treatment in the future. This study conducts a comprehensive overview of the current status and prospects of the UCW treatment, which can provide a valuable reference for gaining insights into the development trajectory of the UCW treatment.
Collapse
Affiliation(s)
- Xianhong Li
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310028, China; School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Xiaolin Ning
- Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou 310028, China; School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
8
|
Wang R, Lin S. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324772 PMCID: PMC10882969 DOI: 10.1021/acs.est.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
9
|
Shi L, Zhou X, Taylor RF, Xie C, Bian B, Hall DM, Rossi R, Hickner MA, Gorski CA, Logan BE. Thin-Film Composite Membranes for Hydrogen Evolution with a Saline Catholyte Water Feed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1131-1141. [PMID: 38169368 DOI: 10.1021/acs.est.3c07957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hydrogen gas evolution using an impure or saline water feed is a promising strategy to reduce overall energy consumption and investment costs for on-site, large-scale production using renewable energy sources. The chlorine evolution reaction is one of the biggest concerns in hydrogen evolution with impure water feeds. The "alkaline design criterion" in impure water electrolysis was examined here because water oxidation catalysts can exhibit a larger kinetic overpotential without interfering chlorine chemistry under alkaline conditions. Here, we demonstrated that relatively inexpensive thin-film composite (TFC) membranes, currently used for high-pressure reverse osmosis (RO) desalination applications, can have much higher rejection of Cl- (total crossover of 2.9 ± 0.9 mmol) than an anion-exchange membrane (AEM) (51.8 ± 2.3 mmol) with electrolytes of 0.5 M KOH for the anolyte and 0.5 M NaCl for the catholyte with a constant current (100 mA/cm2 for 20 h). The membrane resistances, which were similar for the TFC membrane and the AEM based on electrochemical impedance spectroscopy (EIS) and Ohm's law methods, could be further reduced by increasing the electrolyte concentration or removal of the structural polyester supporting layer (TFC-no PET). TFC membranes could enable pressurized gas production, as this membrane was demonstrated to be mechanically stable with no change in permeate flux at 35 bar. These results show that TFC membranes provide a novel pathway for producing green hydrogen with a saline water feed at elevated pressures compared to systems using AEMs or porous diaphragms.
Collapse
Affiliation(s)
- Le Shi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuechen Zhou
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Rachel F Taylor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Chenghan Xie
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Bin Bian
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Derek M Hall
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael A Hickner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
10
|
Jeong N, Epsztein R, Wang R, Park S, Lin S, Tong T. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17851-17862. [PMID: 36917705 DOI: 10.1021/acs.est.2c08384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent studies have increasingly applied machine learning (ML) to aid in performance and material design associated with membrane separation. However, whether the knowledge attained by ML with a limited number of available data is enough to capture and validate the fundamental principles of membrane science remains elusive. Herein, we applied explainable artificial intelligence (XAI) to thoroughly investigate the knowledge learned by ML on the mechanisms of ion transport across polyamide reverse osmosis (RO) and nanofiltration (NF) membranes by leveraging 1,585 data from 26 membrane types. The Shapley additive explanation method based on cooperative game theory was used to unveil the influences of various ion and membrane properties on the model predictions. XAI shows that the ML can capture the important roles of size exclusion and electrostatic interaction in regulating membrane separation properly. XAI also identifies that the mechanisms governing ion transport possess different relative importance to cation and anion rejections during RO and NF filtration. Overall, we provide a framework to evaluate the knowledge underlying the ML model prediction and demonstrate that ML is able to learn fundamental mechanisms of ion transport across polyamide membranes, highlighting the importance of elucidating model interpretability for more reliable and explainable ML applications to membrane selection and design.
Collapse
Affiliation(s)
- Nohyeong Jeong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Razi Epsztein
- Department of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Foo ZH, Thomas JB, Heath SM, Garcia JA, Lienhard JH. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14747-14759. [PMID: 37721998 DOI: 10.1021/acs.est.3c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John B Thomas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M Heath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason A Garcia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Wang R, Alghanayem R, Lin S. Multipass Nanofiltration for Lithium Separation with High Selectivity and Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14464-14471. [PMID: 37706485 DOI: 10.1021/acs.est.3c04220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Nanofiltration (NF) is a promising and sustainable process to extract Li+ from brine lakes with high Mg2+/Li+ mass ratios. However, a trade-off between Li/Mg selectivity and Li recovery exists at the process scale, and the Li/Mg selectivity of commercially and lab-made NF membranes in a single-pass NF process is insufficient to achieve the industrially required Li purity. To overcome this challenge, we propose a multipass NF process with brine recirculation to achieve high selectivity without sacrificing Li recovery. We experimentally demonstrate that Li/Mg selectivity of a three-pass NF process with a commercial NF membrane can exceed 1000, despite the compromised Li recovery as a result of co-existing cations. Our theoretical analysis further predicts that a four-pass NF process with brine recirculation can simultaneously achieve an ultrahigh Li/Mg selectivity of over 4500 and a Li recovery of over 95%. This proposed process could potentially facilitate efficient NF-based solute-solute separations of all kinds and contribute to the development of novel membrane-based separation technologies.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Rayan Alghanayem
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
13
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
DuChanois RM, Mazurowski L, Fan H, Verduzco R, Nir O, Elimelech M. Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6331-6341. [PMID: 37023347 DOI: 10.1021/acs.est.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Separation of specific ions from water could enable recovery and reuse of essential metals and nutrients, but established membrane technologies lack the high-precision selectivity needed to facilitate a circular resource economy. In this work, we investigate whether the cation/cation selectivity of a composite cation-exchange membrane (CEM), or a thin polymer selective layer on top of a CEM, may be limited by the mass transfer resistance of the underlying CEM. In our analysis, we utilize a layer-by-layer technique to modify CEMs with a thin polymer selective layer (∼50 nm) that has previously shown high selectivity toward copper over similarly sized metals. While these composite membranes have a CuCl2/MgCl2 selectivity up to 33 times larger than unmodified CEMs in diffusion dialysis, our estimates suggest that eliminating resistance from the underlying CEM could further increase selectivity twofold. In contrast, the CEM base layer has a smaller effect on the selectivity of these composite membranes in electrodialysis, although these effects could become more pronounced for ultrathin or highly conductive selective layers. Our results highlight that base layer resistance prevents selectivity factors from being comparable across diffusion dialysis and electrodialysis, and CEMs with low resistance are necessary for providing highly precise separations with composite CEMs.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Lauren Mazurowski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
16
|
Ruan X, Zhang C, Zhu Y, Cai F, Yang Y, Feng J, Ma X, Zheng Y, Li H, Yuan Y, Zhu G. Constructing Mechanical Shuttles in a Three-dimensional (3D) Porous Architecture for Selective Transport of Lithium Ions. Angew Chem Int Ed Engl 2023; 62:e202216549. [PMID: 36482169 DOI: 10.1002/anie.202216549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Lithium (Li) extraction from brines is a major barrier to the sustainable development of batteries and alloys; however, current separation technology suffers from a trade-off between ion selectivity and permeability. Herein, a crown ether mechanically interlocked 3D porous organic framework (Crown-POF) was prepared as the porous filler of thin-film nanocomposite membranes. Crown-POF with penta-coordinated (four Ocrown atoms and one Ntert-amine atom) adsorption sites enables a special recognition for Li+ ion. Moreover, the four Ntert-amine atoms on each POF branch facilitate the flipping motion of Li+ ion along the skeletal thread, while retaining the specified binding pattern. Accordingly, the crown ether interlocked POF network displays an ultrafast ion transfer rate, over 10 times that of the conventional porous materials. Notably, the nanocomposite membrane gives high speed and selectivity for Li+ ion transport as compared with other porous solid-based mixed-matrix membranes.
Collapse
Affiliation(s)
- Xianghui Ruan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Cheng Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yuzhang Zhu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fuli Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Jiahui Feng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Xujiao Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yue Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Huanhuan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| |
Collapse
|
17
|
Zhang T, Zhang H, Li P, Ding S, Wang X. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Shefer I, Lopez K, Straub AP, Epsztein R. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7467-7483. [PMID: 35549171 DOI: 10.1021/acs.est.2c00912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane technologies using reverse osmosis (RO) and nanofiltration (NF) have been widely implemented in water purification and desalination processes. Separation between species at the molecular level is achievable in RO and NF membranes due to a complex and poorly understood combination of transport mechanisms that have attracted the attention of researchers within and beyond the membrane community for many years. Minimizing existing knowledge gaps in transport through these membranes can improve the sustainability of current water-treatment processes and expand the use of RO and NF membranes to other applications that require high selectivity between species. Since its establishment in 1949, and with growing popularity in recent years, Eyring's transition-state theory (TST) for transmembrane permeation has been applied in numerous studies to mechanistically explore molecular transport in membranes including RO and NF. In this review, we critically assess TST applied to transmembrane permeation in salt-rejecting membranes, focusing on mechanistic insights into transport under confinement that can be gained from this framework and the key limitations associated with the method. We first demonstrate and discuss the limited ability of the commonly used solution-diffusion model to mechanistically explain transport and selectivity trends observed in RO and NF membranes. Next, we review important milestones in the development of TST, introduce its underlying principles and equations, and establish the connection to transmembrane permeation with a focus on molecular-level enthalpic and entropic barriers that govern water and solute transport under confinement. We then critically review the application of TST to explore transport in RO and NF membranes, analyzing trends in measured enthalpic and entropic barriers and synthesizing new data to highlight important phenomena associated with the temperature-dependent measurement of the activation parameters. We also discuss major limitations of the experimental application of TST and propose specific solutions to minimize the uncertainties surrounding the current approach. We conclude with identifying future research needs to enhance the implementation and maximize the benefit of TST application to transmembrane permeation.
Collapse
Affiliation(s)
- Idit Shefer
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Kian Lopez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Anthony P Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|