1
|
Tang Y, Cui W, Wang S, Li Y, Wang J. Nickel atoms of nickel foam simultaneously mediated charge redistribution and firm immobilization of zinc oxide for safe and efficient photocatalytic nitrogen oxide removal. J Colloid Interface Sci 2025; 693:137576. [PMID: 40245831 DOI: 10.1016/j.jcis.2025.137576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Photocatalytic technology has emerged as a promising solution for air purification of ppb-level nitrogen oxides (NOx), but potential risk of secondary pollution should not be overlooked, which could be triggered by the production of toxic intermediate and the potential release of airborne catalyst particles during reaction processes. Herein, nickel foam (NF) has been introduced as not only carrier material but also performance promoter for zinc oxide (ZnO). The NF supported ZnO sample (Ni-ZnO/NF) demonstrates multifunctional superiority: 66.4 % nitric oxide (NO) removal efficiency, <1.7 % nitrogen dioxide (NO2) byproduct generation, and ultralow photocatalyst loss (<1.2 % mass). Mechanistic investigations combining experimental characterization and theoretical simulations reveal atomic substitution processes where NF-derived Ni atoms replace Zn sites in the ZnO lattice, forming stable Ni-O interfacial bonds, which contributes to enhance interaction between ZnO and NF for firm immobilization and form electron localization zones around Ni-O bond for reactants activation and reactive oxygen species formation. The optimized reaction pathway (NO + e- → NO-, NO- + 1O2 → NO3-) ensures complete oxidation while suppressing hazardous intermediates. This work blueprints next-generation supported photocatalysts through atomic-level interface engineering, advancing practical application of photocatalytic technology for sustainable air purification.
Collapse
Affiliation(s)
- Yin Tang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Wen Cui
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Songxia Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Yan Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Jiaqi Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Tan P, Wang Z, Mao Z, Hu R, Yu J, Li Y. Highly selective conversion of NO to NO 3-through radical modulation over UiO-66-67-NH 2 S-scheme heterojunction. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138356. [PMID: 40286661 DOI: 10.1016/j.jhazmat.2025.138356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Semiconductor photocatalysis presents significant potential for reducing low concentrations of NO, yet achieving efficient and selective conversion of NO to NO3-while suppressing toxic NO2 release remains challenging. Here, a UiO-66-67-NH2 S-scheme heterojunction, synthesized by integrating UiO-66-NH2 and UiO-67-NH2, generate ·O2- as the sole active species for efficient NO to NO3-conversion under visible light. The photocatalytic performance evaluation indicates that the optimized UiO-66-67-NH2 efficiently and selectively converts NO to NO3-. The photocatalytic NO removal efficiency reaches 78 %, which is 2.2 times and 3.4 times higher than that of the individual UiO-66-NH2 and UiO-67-NH2, respectively. Experimental results and DFT calculations reveal that charge redistributions within the heterojunction creates an internal electric field, facilitating effective charge separation. The selective adsorption of O2 and NO at the Zr sites facilitates of ·O2- generation and NO enrichment, while the -NH2 sites suppress the formation of ·OH and 1O2, inhibiting NO2 release. The rate-determining step, reaction between *NO2 and *O is energetically favored in the heterojunction, accelerating NO3- formation. This study provides valuable insights into designing photocatalysts for environmental remediation by controlling reactive oxygen species and NO removal.
Collapse
Affiliation(s)
- Ping Tan
- Chongqing Key Laboratory of Catalysis and Environment materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhuo Wang
- Chongqing Key Laboratory of Catalysis and Environment materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhen Mao
- Chongqing Key Laboratory of Catalysis and Environment materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiayuan Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Yuhan Li
- Chongqing Key Laboratory of Catalysis and Environment materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
3
|
He X, Marken F, Vertova A, Minguzzi A. Roles of oxygen vacancies in layered double hydroxides-based catalysts for wastewater remediation: fundamentals and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125583. [PMID: 40334417 DOI: 10.1016/j.jenvman.2025.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
Wastewater globally is a significant concern for environmental health and for the sustainable management of water resources. Catalysed based advanced oxidation processes (AOP), as a relatively low operation cost and high removal efficiency of pollutants method, has a promising potential to treat the wastewater. Among the numerous catalysts, Layered Double Hydroxides (LDHs) stands out for lamellar structure, high charge density, and tuneable properties. Meanwhile, oxygen vacancies engineering could modulate the electronic properties of materials and create active centres to regulate the poor charge transfer capability of LDHs. In this regard, this review is focused on how to create and confirm the oxygen vacancies, as well as the applications of the wastewater treatment from different AOPs. It starts with the synthesized of oxygen vacancies via chemical reduction method, plasma etching method, hydrothermal treatment method, ion doping strategy. Followed by the description of characterization methods, including EPR, XPS, XAS, Raman. Finally, the role of oxygen vacancies in LDHs for contaminant removal across various systems, including photocatalysis, electrocatalysis, Fenton reactions, and sulfate radical-based processes, was thoroughly examined and analyzed.
Collapse
Affiliation(s)
- Xiufang He
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AYUK
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy; Istituto Nazionale di Scienza e Tecnologia dei Materiali, via Giusti 9, Firenze, Italy.
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy; Istituto Nazionale di Scienza e Tecnologia dei Materiali, via Giusti 9, Firenze, Italy; Dipartimento di Energia, Politecnico di Milano, Via Lambruschini, 4a, 20156, Milano, Italy
| |
Collapse
|
4
|
Qian Z, Yuan B, Sheng S, Lai F, Chen J, Mi J, Ma Z, Hao R, Li J, Wang L. Achieving Nearly 100% Targeted Conversion of NO to NO 2 through Cooperative Activation of Lattice Oxygen and Molecular Oxygen on Dual-Defect LaMnO 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40392752 DOI: 10.1021/acs.est.5c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Inhibiting the deposition of N species on the catalyst surface for the targeted oxidation of NO to NO2 is still a great challenge. Herein, a La and O dual-defective LaMnO3 (2U-L0.8MO) perovskite was fabricated using a urea-nonstoichiometric comodulation strategy, which achieved 97.6% NO oxidation efficiency at 210 °C and 300,000 h-1, and was also capable of nearly 100% targeted oxidation of NO to NO2, as well as exhibited excellent stability and recyclability. Characterizations and theoretical calculations unveiled that the urea-nonstoichiometric modulation method optimized the specific surface area and geometrical structure of perovskite, promoted the formation of La defects and oxygen vacancies (OVs), enhanced lattice oxygen activation and migration, and also facilitated the coadsorption of NO and O2 and increased the d-band center of the perovskite. The synergistic activation of lattice oxygen and molecular oxygen along with the low-temperature oxidation mechanisms of NO was finally revealed: the comodulation strategy caused stretching and distortion of the 2U-L0.8MO lattice, making its lattice oxygen susceptible to activation, thereby oxidizing adsorbed NO to NO2 and simultaneously generating OVs. Afterward, O2 would be captured by the abundant OVs on the 2U-L0.8MO surface and converted to superoxide O2-, which could not only directly oxidize NO but also transform into single 1O2 on the adjacent Mn4+ site for the targeted oxidation of NO. This work realizes the coactivation of O2 and lattice oxygen and also extends the understanding of the low-temperature-targeted oxidation of NO.
Collapse
Affiliation(s)
- Zhen Qian
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bo Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shiwei Sheng
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Fei Lai
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhao Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Runlong Hao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
5
|
Pan Y, Hu H, Tang H, Huang C, Ma H, Xu W, Fang R, Xiao W, Dong F. Deep photocatalytic NO oxidation on ZnTi-LDH: Pivotal role of surface hydroxyls dynamic evolution. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137363. [PMID: 39874768 DOI: 10.1016/j.jhazmat.2025.137363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O2- and •OH. The optimized structure has demonstrated NO removal efficiency values as high as 70.0 %, while concurrently suppressing the emission of NO2 - a dangerous byproduct. Furthermore, ZnTi-LDH exhibits remarkable adaptability to varying environmental conditions and satisfactory durability over extended periods of reaction. This research offers valuable insights into the key role of surface hydroxyl in sustainable NOx removal technologies, and the findings contribute significantly to the advancement of environmental remediations.
Collapse
Affiliation(s)
- Yue Pan
- National Research Base of Intelligent Manufacturing Service, College of Environment and Resources, Chongqing Technology and Business sUniversity, Chongqing 400067, China
| | - Haonan Hu
- National Research Base of Intelligent Manufacturing Service, College of Environment and Resources, Chongqing Technology and Business sUniversity, Chongqing 400067, China
| | - Hongyi Tang
- Wens Foodstuff Group Co. Ltd., Yunfu 527499, China
| | - Chunyan Huang
- National Research Base of Intelligent Manufacturing Service, College of Environment and Resources, Chongqing Technology and Business sUniversity, Chongqing 400067, China
| | - Hao Ma
- National Research Base of Intelligent Manufacturing Service, College of Environment and Resources, Chongqing Technology and Business sUniversity, Chongqing 400067, China.
| | - Wei Xu
- National Research Base of Intelligent Manufacturing Service, College of Environment and Resources, Chongqing Technology and Business sUniversity, Chongqing 400067, China
| | - Ruimei Fang
- National Research Base of Intelligent Manufacturing Service, College of Environment and Resources, Chongqing Technology and Business sUniversity, Chongqing 400067, China
| | - Wenyan Xiao
- Chongqing Water Resources and Electric Engineering College, Chongqing 402160, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
6
|
Liu X, Shi Y, Yu L, Zhou B, Chen Z, Guo F, Li H, Liu X, Zhang L, Ai Z. Dynamic Mn-V O Associates Boosted Molecular Oxygen Activation for Benzene Combustion on Mn-Doped Mesocrystalline CeO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6331-6340. [PMID: 40123176 DOI: 10.1021/acs.est.4c14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Highly efficient molecular oxygen activation over transition metal oxides toward catalytic abatement of aromatic volatile organic compounds (AVOCs) is possible yet challenging due to the easily deactivated surface oxygen vacancy (VO). Herein, dynamic Mn-VO associates were crafted onto the Mn-incorporated CeO2 mesocrystal (Mn/meso-CeO2) surface with Mn substituting a Ce atom through an easy-to-handle precipitation strategy. Experiments and theoretical calculation demonstrated that the asymmetric surface Mn-O-Ce configuration induced electron delivery from the low-valent Mn to adjacent Ce, destabilizing the circumambient O atoms and facilitating the formation of dynamic Mn-VO associates. Compared to pristine meso-CeO2, the Mn/meso-CeO2 with dynamic Mn-VO associates could efficiently activate O2 into a superoxide radical and a peroxanion (O2•- and O22-) at higher reaction temperature (over 200 °C). Meanwhile, the O atom adjacent to Mn featuring substantially elevated Lewis acidity promoted the adsorption and activation of benzene. Consequently, the Mn/meso-CeO2 catalyst exhibited a superior catalytic oxidation reactivity (T90 = 215 °C) toward C6H6 combustion via a Langmuir-Hinshelwood mechanism. This work underlines the importance of rational design and regulation of catalytic sites over metal oxide surfaces for robust O2 activation and durable refractory AVOC combustion.
Collapse
Affiliation(s)
- Xupeng Liu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Linghao Yu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Biao Zhou
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Ziyue Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Furong Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Liu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
7
|
Chen R, Wang J, Zhang C, Sun Y, Li J, Dong F. Purification and Value-Added Conversion of NO x under Ambient Conditions with Photo-/Electrocatalysis Technology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1013-1033. [PMID: 39760487 DOI: 10.1021/acs.est.4c08326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NOx) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NOx removal, green purification and value-added conversion of NOx under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NOx purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities. In this review, recent advances in photo-/electrocatalysis technology for the purification and value-added conversion of NOx are critically summarized. The target products and reaction mechanisms for NOx conversion systems, together with the responsible active sites, are discussed, respectively. Then, the realistic environmental practicability is proposed, including strict performance evaluation criteria and application in realistic conditions for NOx purification and upcycling by the application of photo-/electrocatalysis. Finally, the current challenges and future opportunities are proposed in terms of catalyst design, NOx conversion enhancement, reaction mechanism understanding, practical application conditions, and product separation techniques.
Collapse
Affiliation(s)
- Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunling Zhang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
8
|
Ma H, Huang C, Tan T, Li W, Xu W, Shen Y, Li Y, Fang R, Dong F. S-Scheme heterojunction of Cs 2SnBr 6/C 3N 4 with interfacial electron exchange toward efficient photocatalytic NO abatement. J Colloid Interface Sci 2024; 671:486-495. [PMID: 38815384 DOI: 10.1016/j.jcis.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Photocatalytic technology is of great significance in environmental purification due to its eco-friendly and cost-effective operations. However, low charge-transfer efficiency restricts the photocatalytic activity of the catalyst. Herein, we report Cs2SnBr6/C3N4 composite catalysts that exhibit a robust interfacial electron exchange thereby enhancing photocatalytic nitric oxide (NO) oxidation. A comprehensive study has demonstrated the S-scheme electron transfer mechanism. Benefiting from the interfacial internal electric field, the C-Br bond serves as a direct electron transfer channel, resulting in enhanced charge separation. Furthermore, the S-scheme heterojunction effectively traps high redox potential electrons and holes, leading to the production of abundant reactive oxygen radicals that enhance photocatalytic NO abatement. The NO removal rate of the Cs2SnBr6/C3N4 heterogeneous system can reach 86.8 %, which is approximately 3-fold and 18-fold that of pristine C3N4 and Cs2SnBr6, respectively. The comprehensive understanding of the electron transfer between heterojunction atomic interfaces will provide a novel perspective on efficient environmental photocatalysis.
Collapse
Affiliation(s)
- Hao Ma
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chunyan Huang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tianqi Tan
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wenting Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Xu
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuhan Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Ruimei Fang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Yang Z, Xiao H, Mao Y, Zhang H, Lu Y, Hu Z. Amplifying chlorinated phenol decomposition via Dual-Pathway O 2 Activation: The impact of zirconium loading on BiOCl. J Colloid Interface Sci 2024; 668:171-180. [PMID: 38677206 DOI: 10.1016/j.jcis.2024.04.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The effectiveness of photocatalytic molecular oxygen (O2) activation in pollutant removal relies on the targeted production of reactive oxygen species (ROS). Herein, we demonstrate the dual-pathway activation of O2 on BiOCl through zirconium (Zr) loading. The incorporation of Zr onto the surface of BiOCl not only leads to an increased generation of oxygen vacancies (OV) but also fosters a coupling between the d electrons of Zr and OV, forming dual-active sites known as Zr-oxygen vacancies (Zr-OV). Generally, OV adsorbs O2 and transfers one electron directly to form superoxide radicals (•O2-). Contrary to the conventional single-electron direct activation of O2 to form •O2-, Zr-OV exhibits more flexible coordination and superior electron-donating capabilities. It facilitates O2 conversion to peroxide radicals (O22-) and enables the subsequent generation of •O2- from O22-, significantly promotes the dechlorination and mineralization efficiency of chlorophenol under visible light. This study presents a straightforward strategy to precisely regulate ROS production by expanding pathways, shedding light on the critical role of managing ROS generation for effective pollutant purification.
Collapse
Affiliation(s)
- Zhiping Yang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Hongmei Xiao
- Key State Laboratory of Industrial Vent Gas Reuse, The Southwest Research & Design Institute of the Chemical Industry, Chengdu 610225, China
| | - Yudie Mao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Hai Zhang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Yixin Lu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China.
| | - Zhao Hu
- Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
10
|
Oliva MDLÁ, Chen C, de Miguel G, O'Hare D, Pavlovic I, Sánchez L, Pastor A. Europium insertion into MgAl hydrotalcite-like compound to promote the photocatalytic oxidation of nitrogen oxides. CHEMOSPHERE 2024; 361:142555. [PMID: 38851500 DOI: 10.1016/j.chemosphere.2024.142555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Easy synthesis of efficient, non-toxic photocatalysts is a target to expand their potential applications. In this research, the role of Eu3+ doping in the non-toxic, affordable, and easily prepared MgAl hydrotalcite-like compounds (HTlcs) was explored in order to prepare visible light semiconductors. Eu doped MgAl-HTlcs (MA-xEu) samples were prepared using a simple coprecipitation method (water, room temperature and atmospheric pressure) and europium was successfully incorporated into MgAl HTlc frameworks at various concentrations, with x (Eu3+/M3+ percentage) ranging from 2 to 15. Due to the higher ionic radius and lower polarizability of Eu3+ cation, its presence in the metal hydroxide layer induces slight structural distortions, which eventually affect the growth of the particles. The specific surface area also increases with the Eu content. Moreover, the presence of Eu3+ 4f energy levels in the electronic structure enables the absorption of visible light in the doped MA-xEu samples and contributes to efficient electron-hole separation. The microstructural and electronic changes induced by the insertion of Eu enable the preparation of visible light MgAl-based HTlcs photocatalysts for air purification purposes. Specifically, the optimal HTlc photocatalyst showed improved NOx removal efficiency, ∼ 51% (UV-Vis) and 39% (visible light irradiation, 420 nm), with excellent selectivity (> 96 %), stability (> 7 h), and enhanced release of •O2- radicals. Such results demonstrate a simple way to design photocatalytic HTlcs suitable for air purification technologies.
Collapse
Affiliation(s)
- María de Los Ángeles Oliva
- Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Gustavo de Miguel
- Departamento de Química Física y Termodinámica Aplicada, Instituto de Química para la Energía y Medioambiente, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Ivana Pavlovic
- Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Luis Sánchez
- Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain.
| | - Adrián Pastor
- Departamento de Química Inorgánica, Instituto de Química para la Energía y Medioambiente, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
11
|
Wang H, Hu Z, Liu S, Zhang X, Sun Y, Dong F. Dissecting the Photochemical Reactivity of Metal Ions during Atmospheric Nitrate Transformations on Photoactive Mineral Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12554-12562. [PMID: 38959497 DOI: 10.1021/acs.est.3c10192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Dissecting the photochemical reactivity of metal ions is a significant contribution to understanding secondary pollutant formation, as they have a role to be reckoned with atmospheric chemistry. However, their photochemical reactivity has received limited attention within the active nitrogen cycle, particularly at the gas-solid interface. In this study, we delve into the contribution of magnesium ion (Mg2+) and ferric ion (Fe3+) to nitrate decomposition on the surface of photoactive mineral dust. Under simulated sunlight irradiation, the observed NOX production rate differs by an order of magnitude in the presence of Mg2+ (6.02 × 10-10 mol s-1) and Fe3+ (2.07 × 10-11 mol s-1). The markedly decreased fluorescence lifetime induced by Mg2+ and the change in the valence of Fe3+ revealed that Mg2+ and Fe3+ significantly affect the concentration of nitrate decomposition products by distinct photochemical reactivity with photogenerated electrons. Mg2+ promotes NOX production by accelerating charge transfer, while Fe3+ hinders nitrate decomposition by engaging in a redox cyclic reaction with Fe2+ to consume photogenerated carriers continuously. Furthermore, when Fe3+ coexists with other metal ions (e.g., Mg2+, Ca2+, Na+, and K+) and surpasses a proportion of approximately 12%, the photochemical reactivity of Fe3+ tends to be dominant in depleting photogenerated electrons and suppressing nitrate decomposition. Conversely, below this threshold, the released NOX concentration increases sharply as the proportion of Fe3+ decreases. This research offers valuable insights into the role of metal ions in nitrate transformation and the generation of reactive nitrogen species, contributing to a deep understanding of atmospheric photochemical reactions.
Collapse
Affiliation(s)
- Hong Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zehui Hu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shujun Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin Zhang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
12
|
Xue T, Li J, Chen L, Li K, Hua Y, Yang Y, Dong F. Photocatalytic NO x removal and recovery: progress, challenges and future perspectives. Chem Sci 2024; 15:9026-9046. [PMID: 38903227 PMCID: PMC11186336 DOI: 10.1039/d4sc01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024] Open
Abstract
The excessive production of nitrogen oxides (NO x ) from energy production, agricultural activities, transportation, and other human activities remains a pressing issue in atmospheric environment management. NO x serves both as a significant pollutant and a potential feedstock for energy carriers. Photocatalytic technology for NO x removal and recovery has received widespread attention and has experienced rapid development in recent years owing to its environmental friendliness, mild reaction conditions, and high efficiency. This review systematically summarizes the recent advances in photocatalytic removal, encompassing NO x oxidation removal (including single and synergistic removal and NO3 - decomposition), NO x reduction to N2, and the emergent NO x upcycling into green ammonia. Special focus is given to the molecular understanding of the interfacial nitrogen-associated reaction mechanisms and their regulation pathways. Finally, the status and the challenges of photocatalytic NO x removal and recovery are critically discussed and future outlooks are proposed for their potential practical application.
Collapse
Affiliation(s)
- Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Jing Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Lvcun Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Kanglu Li
- School of Environmental Science and Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Ying Hua
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
- Synergy Innovation Institute of GDUT Shantou 515041 Guangdong China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| |
Collapse
|
13
|
Chen L, Li K, Xue T, Yang Y, Gong Z, Dong F. Efficient and Durable Oxidation Removal of Formaldehyde over Layered Double Hydroxide Catalysts at Room Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10378-10387. [PMID: 38805367 DOI: 10.1021/acs.est.4c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Room temperature catalytic oxidation (RTCO) using non-noble metals has emerged as a highly promising technique for removal of formaldehyde (HCHO) under ambient conditions; however, non-noble catalysts still face the challenges related to poor water resistance and low stability under harsh conditions. In this study, we synthesized a series of layered double hydroxides (LDHs) incorporating various dual metals (MgAl, ZnAl, NiAl, NiFe, and NiTi) for formaldehyde oxidation at ambient temperature. Among the synthesized catalysts, the NiTi-LDH catalyst showed an HCHO removal efficiency and CO2 yield close to 100.0%, and exceptional water resistance and chemical stability on running 1300 min. The abundant hydroxyl groups in LDHs directly bonded with HCHO, leading to the production of CO2 and H2O, thus inhibiting the formation of CO, even in the absence of O2 and H2O. The coexistence of O2 effectively reduced the reaction barrier for H2O molecule dissociation, facilitating the formation of hydroxyl groups and their subsequent backfill on the catalyst surface. The mechanisms underlying the involvement and regeneration of hydroxyl groups in room temperature oxidation of formaldehyde were elucidated with the combined in situ DRIFTS, HCHO-TPD-MS, and DFT calculations. This work not only demonstrates the potential of LDH catalysts in environmental applications but also advances the understanding of the fundamental processes involved in room temperature oxidation of formaldehyde.
Collapse
Affiliation(s)
- Lvcun Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Kanglu Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou, Guangdong 515041, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
14
|
Liu Y, Zhou Q, Yu H, Yang Q, Wang M, Huang C, Xiang L, Li C, Heine T, Hu G, Wang S, Feng X, Mai Y. Increasing the Accessibility of Internal Catalytic Sites in Covalent Organic Frameworks by Introducing a Bicontinuous Mesostructure. Angew Chem Int Ed Engl 2024; 63:e202400985. [PMID: 38353140 DOI: 10.1002/anie.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/05/2024]
Abstract
Introducing continuous mesochannels into covalent organic frameworks (COFs) to increase the accessibility of their inner active sites has remained a major challenge. Here, we report the synthesis of COFs with an ordered bicontinuous mesostructure, via a block copolymer self-assembly-guided nanocasting strategy. Three different mesostructured COFs are synthesized, including two covalent triazine frameworks and one vinylene-linked COF. The new materials are endowed with a hierarchical meso/microporous architecture, in which the mesochannels exhibit an ordered shifted double diamond (SDD) topology. The hierarchically porous structure can enable efficient hole-electron separation and smooth mass transport to the deep internal of the COFs and consequently high accessibility of their active catalytic sites. Benefiting from this hierarchical structure, these COFs exhibit excellent performance in visible-light-driven catalytic NO removal with a high conversion percentage of up to 51.4 %, placing them one of the top reported NO-elimination photocatalysts. This study represents the first case of introducing a bicontinuous structure into COFs, which opens a new avenue for the synthesis of hierarchically porous COFs and for increasing the utilization degree of their internal active sites.
Collapse
Affiliation(s)
- Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Qin Zhou
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Hongde Yu
- Department of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069, Dresden, Germany
| | - Qiqi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Thomas Heine
- Department of Theoretical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66c, 01069, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, Forschungsstelle Leipzig, 04318, Leipzig, Germany
- Department of Chemistry, Yonsei University and ibs center for nanomedicine, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Shengyao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- College of Science, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
15
|
Tang Y, Cui W, Wang S, Dong F. Efficient photocatalytic NO removal with inhibited NO 2 formation and catalyst loss over sponge-supported and functionalized g-C 3N 4. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133323. [PMID: 38141292 DOI: 10.1016/j.jhazmat.2023.133323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Though photocatalytic purification of NO has been widely studied, how to avoid secondary pollution during gas-solid reaction is still a challenge, especially in inhibiting the formation of toxic intermediates (NO2) and avoiding the blow away of powdery photocatalyst. Herein, we proposed a one-step solvothermal method to prepare melamine sponge (MS) supported and functionalized g-C3N4 (CN), which simultaneously realizes the inhibition of NO2 formation and catalyst loss. Sodium hydroxide, which plays a dual role, has been introduced during the preparation of supported photocatalyst. Specifically, sodium atom, as the modifier of performance, could facilitate the randomly distributed charge of pristine CN to be converged, which accelerates the adsorption/activation of reactants for efficient and deep NO oxidation. Hydroxyl group, as the binder between CN and MS, induces the interaction by forming hydrogen bonds, which contributes to the firm immobilization of powdery photocatalyst. The supported sample exhibits outstanding NO removal rate (58.90%) and extremely low NO2 generation rate (1.41%), and the mass loss rate of photocatalyst before and after reaction is less than 1%. The promotion mechanism of performance also has been elaborated. This work takes environmental risks as a prerequisite to propose a feasible strategy for perfecting the practical application of photocatalytic technology.
Collapse
Affiliation(s)
- Yin Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wen Cui
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Songxia Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
16
|
Liu B, Zhang B, Liu B, Hu Z, Dai W, Zhang J, Feng F, Lan B, Zhang T, Huang H. Surface Hydroxyl and Oxygen Vacancies Engineering in ZnSnAl LDH: Synergistic Promotion of Photocatalytic Oxidation of Aromatic VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4404-4414. [PMID: 38310571 DOI: 10.1021/acs.est.3c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Photocatalytic oxidation has gained great interest in environmental remediation, but it is still limited by its low efficiency and catalytic deactivation in the degradation of aromatic VOCs. In this study, we concurrently regulated the surface hydroxyl and oxygen vacancies by introducing Al into ZnSn layered double hydroxide (LDH). The presence of distorted Al species induced local charge redistribution, leading to the remarkable formation of oxygen vacancies. These oxygen vacancies subsequently increased the amount of surface hydroxyl and elongated its bond length. The synergistic effects of surface hydroxyl and oxygen vacancies greatly enhanced reactant adsorption-activation and facilitated charge transfer to generate •OH, •O2-, and 1O2, resulting in highly efficient oxidation and ring-opening of various aromatic VOCs. Compared with commercial TiO2, the optimized ZnSnAl-50 catalyst exhibited about 2-fold activity for the toluene and styrene degradation and 10-fold activity for the chlorobenzene degradation. Moreover, ZnSnAl-50 demonstrated exceptional stability in the photocatalytic oxidation of toluene under a wide humidity range of 0-75%. This work marvelously improves the photocatalytic efficiency, stability, and adaptability through a novel strategy of surface hydroxyl and oxygen vacancies engineering.
Collapse
Affiliation(s)
- Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Biying Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jiarui Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fada Feng
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Bang Lan
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
Chen R, Shen S, Wang K, Wang J, Yang W, Li X, Li J, Dong F. Promoting the efficiency and selectivity of NO 3--to-NH 3 reduction on Cu-O-Ti active sites via preferential glycol oxidation with holes. Proc Natl Acad Sci U S A 2023; 120:e2312550120. [PMID: 38079556 PMCID: PMC10742378 DOI: 10.1073/pnas.2312550120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023] Open
Abstract
The combined reductive and oxidative reaction is the essence of a solar-driven photoredox system. Unfortunately, most of these efforts focus on the specific half-reactions, and the key roles of complete photoredox reactions have been overlooked. Taking the nitrate reduction reaction (NO3-RR) as a typical multiple-electrons involved process, the selective reduction of the NO3- into ammonia (NH3) synthesis with high efficiency is still a grand challenge. Herein, a rational oxidative half-reaction is tailored to achieve the selective conversion of NO3- to NH3 on Cu-O-Ti active sites. Through the coupled NO3-RR with glycol oxidation reaction system, a superior NH3 photosynthesis rate of 16.04 ± 0.40 mmol gcat-1 h-1 with NO3- conversion ratio of 100% and almost 100% of NH3 selectivity is reached on Cu-O-Ti bimetallic oxide cluster-anchored TiO2 nanosheets (CuOx@TNS) catalyst. A combination of comprehensive in situ characterizations and theoretical calculations reveals the molecular mechanism of the synergistic interaction between NO3-RR and glycol oxidation pair on CuOx@TNS. The introduction of glycol accelerates the h+ consumption for the formation of alkoxy (•R) radicals to avoid the production of •OH radicals. The construction of Cu-O-Ti sites facilitates the preferential oxidation of glycol with h+ and enhances the production of e- to participate in NO3-RR. The efficiency and selectivity of NO3--to-NH3 synthesis are thus highly promoted on Cu-O-Ti active sites with the accelerated glycol oxidative half-reaction. This work upgrades the conventional half photocatalysis into a complete photoredox system, demonstrating the tremendous potential for the precise regulation of reaction pathway and product selectivity.
Collapse
Affiliation(s)
- Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Kaiwen Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Weiping Yang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Xin Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| |
Collapse
|
18
|
Shang H, Jia H, Zhang W, Li S, Wang Q, Yang Q, Zhang C, Shi Y, Wang Y, Li P, He Y, Xiao S, Wang D, Zhang D. Surface Hydrogen Bond-Induced Oxygen Vacancies of TiO 2 for Two-Electron Molecular Oxygen Activation and Efficient NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20400-20409. [PMID: 37987747 DOI: 10.1021/acs.est.3c06593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Defect engineering can provide a feasible approach to achieving ambient molecular oxygen activation. However, conventional surface defects (e.g., oxygen vacancies, OVs), featured with the coordinatively unsaturated metal sites, often favor the reduction of O2 to •O2- rather than O22- via two-electron transfer, hindering the efficient pollutant removal with high electron utilization. Herein, we demonstrate that this bottleneck can be well discharged by modulating the electronic structure of OVs via phosphorization. As a proof of concept, TiO2 nanoparticles are adopted as a model material for NaH2PO2 (HP) modification, in which HP induces the formation of OVs via weakening the Ti-O bonds through the hydrogen bond interactions. Additionally, the formed Ti-O-P covalent bond refines the electronic structure of OVs, which enables rapid electron transfer for two-electron molecular oxygen activation. As exemplified by NO oxidation, HP-modified TiO2 with abundant OVs achieved complete NO removal with high selectivity for benign nitrate, superior to that of pristine TiO2. This study highlights a promising approach to regulate the O2 activation via an electronic structure modulation and provides fresh insights into the rational design of a photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Huan Shang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Hongbao Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wenbin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qing Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qingyu Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Chi Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yuxin Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yongjie Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Pengpeng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yucheng He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
19
|
Zhang B, Qiu S, Xing Y, Zhao G, Liao W, Mu L, Zhao N. Introduction of Cationic Vacancies into NiFe LDH by In Situ Etching To Improve Overall Water Splitting Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38019648 DOI: 10.1021/acs.langmuir.3c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nickel-iron layered double hydroxide (NiFe LDH) is still one of the hot catalysts for electrochemical water decomposition applications, despite its drawbacks, such as intrinsic activity and poor stability. In this work, the NiFe LDH-D1 electrocatalyst with cationic vacancies is successfully prepared by alkaline etching of Zn ion-doped NiFe LDH. The tightly arranged flocculated nanosheet structure on its surface provided a large active area. The cationic vacancies formed by strong alkaline etching not only promote the conversion of active phases such as NiOOH but also strengthen the stability of the electrode and the binding ability with oxygen so that the material has excellent catalytic properties along with alkaline long-term stability. At a current density of 10 and 100 mA cm-2, NiFe LDH-D1 shows a small voltage of 1.56 and 1.94 V, and at a current density of 200 mA cm-2, it performs well in a 72 h electrochemical water decomposition stability test. The present work demonstrates a simple etching strategy for cation vacancy engineering and provides an example of the construction of efficient bifunctional electrocatalysts with long-term stability.
Collapse
Affiliation(s)
- Baojie Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Shipeng Qiu
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Yupeng Xing
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Gang Zhao
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410017, PR China
| | - Wenbo Liao
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Lan Mu
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Ning Zhao
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
20
|
Guo F, Mao C, Liang C, Xing P, Yu L, Shi Y, Cao S, Wang F, Liu X, Ai Z, Zhang L. Triangle Cl-Ag 1 -Cl Sites for Superior Photocatalytic Molecular Oxygen Activation and NO Oxidation of BiOCl. Angew Chem Int Ed Engl 2023:e202314243. [PMID: 37874325 DOI: 10.1002/anie.202314243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
BiOCl photocatalysis shows great promise for molecular oxygen activation and NO oxidation, but its selective transformation of NO to immobilized nitrate without toxic NO2 emission is still a great challenge, because of uncontrollable reaction intermediates and pathways. In this study, we demonstrate that the introduction of triangle Cl-Ag1 -Cl sites on a Cl-terminated, (001) facet-exposed BiOCl can selectively promote one-electron activation of reactant molecular oxygen to intermediate superoxide radicals (⋅O2 - ), and also shift the adsorption configuration of product NO3 - from the weak monodentate binding mode to a strong bidentate mode to avoid unfavorable photolysis. By simultaneously tuning intermediates and products, the Cl-Ag1 -Cl-landen BiOCl achieved >90 % NO conversion to favorable NO3 - of high selectivity (>97 %) in 10 min under visible light, with the undesired NO2 concentration below 20 ppb. Both the activity and the selectivity of Cl-Ag1 -Cl sites surpass those of BiOCl surface sites (38 % NO conversion, 67 % NO3 - selectivity) or control O-Ag1 -O sites on a benchmark photocatalyst P25 (67 % NO conversion and 87 % NO3 - selectivity). This study develops new single-atom sites for the performance enhancement of semiconductor photocatalysts, and also provides a facile pathway to manipulate the reactive oxygen species production for efficient pollutant removal.
Collapse
Affiliation(s)
- Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chengliang Mao
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Pan Xing
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yanbiao Shi
- Department School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fanyu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Department School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Wang S, Cui W, Lei B, Dong X, Tang Y, Dong F. Targeted NO Oxidation and Synchronous NO 2 Inhibition via Oriented 1O 2 Formation Based on Lewis Acid Site Adjustment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12890-12900. [PMID: 37590166 DOI: 10.1021/acs.est.3c03396] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
An appealing strategy for ensuring environmental benefits of the photocatalytic NO oxidation reaction is to convert NO into NO3- instead of NO2, yet the selectivity of products remains challenging. Here, such a scenario could be realized by tailoring the exposure of Lewis acid sites on the surface of ZrO2, aiming to precisely regulate the ROS evolution process for the selective oxidation of NO into NO3-. As evidenced by highly combined experimental characterizations and density functional theory (DFT) simulations, Lewis acid sites serving as electron acceptors could induce itinerant electron redistribution, charge-carrier transfer, and further oxidation of •O2-, which promotes the oriented formation of 1O2. As a result, monoclinic ZrO2 with more Lewis acid sites exhibited an outstanding NO conversion efficiency (56.33%) and extremely low NO2 selectivity (5.04%). The ROS-based reaction process and promotion mechanism of photocatalytic performance have been revealed on the basis of ESR analysis, ROS-quenching experiments, and in situ ROS-quenching DRIFTS. This work could provide a critical view toward oriented ROS formation and advance a unique mechanism of selective NO oxidation into NO3-.
Collapse
Affiliation(s)
- Songxia Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wen Cui
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ben Lei
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xing'an Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yin Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
22
|
Wang X, Liu X, Tong Y, Liu C, Ding Y, Gao J, Fang G, Zha X, Wang Y, Zhou D. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO 3-x for pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131798. [PMID: 37336112 DOI: 10.1016/j.jhazmat.2023.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Interface oxygen vacancies (OVs) are commonly used to improve the catalytic performance of activators in persulfate-based advanced oxidation processes, but the underlying mechanism was not fully explored. This work reports a facile heat treatment method to regulate OVs in MoO3-x to elucidate the mechanism of peroxymonosulfate (PMS) activated by OVs to degrade 2,4,4-Trichlorobiphenyl (PCB28). Electron spin resonance, free radical quenching, X-ray photoelectron spectroscopy, and Raman spectroscopy confirmed that both reducing Mo species and OVs of MoO3-x surface were responsible for PMS activation. Further experiments and Density Function Theory (DFT) calculation suggest that OVs in MoO3-x induced the formation of superoxide radical (O2•-), and then O2•- was transformed into singlet oxygen (1O2) or mediated PMS activation to generate radicals, which contritbued to 70.2% of PCB28 degradation. The steady-state concentrations of free radical calculated with the kinetics model show that OVs were more favorable to mediate PMS to generate hydroxyl radicals (•OH) under oxic conditions, while reducing Mo species would like to induce PMS to produce sulfate radicals (SO4•-). Overall, this study is dedicated to a new insight into the in-depth mechanism of PMS activation by OVs-rich catalysts and provides a novel strategy for reactive species regulation in PMS based oxidation process.
Collapse
Affiliation(s)
- Xiaolei Wang
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yunping Tong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yingzhi Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Xianghao Zha
- College of Chemistry and Environmental Science, Kashi University, Kashi 844000, PR China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
23
|
Hailili R, Reyimu X, Li Z, Lu X, Bahnemann DW. Tuning the Microstructures of ZnO To Enhance Photocatalytic NO Removal Performances. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23185-23198. [PMID: 37129564 DOI: 10.1021/acsami.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effective removal of kinetically inert dilute nitrogen oxide (NO, ppb) without NO2 emission is still a challenging topic in environmental pollution control. One effective approach to reducing the harm of NO is the construction of photocatalysts with diversified microstructures and atomic arrangements that could promote adsorption, activation, and complete removal of NO without yielding secondary pollution. Herein, microstructure regulations of ZnO photocatalysts were attempted by altering the reaction temperature and alkalinity in a unique ionic liquid-based solid-state synthesis and further investigated for the removal of dilute NO upon light irradiation. Microstructure observations indicated that as-tuned photocatalysts displayed unique nucleation, diverse morphologies (spherical nanoparticles, short and long nanorods), defect-related optical characteristics, and enhanced carrier separations. Such defect-related surface-interface aspects, especially Vo″-related defects of ZnO devoted them to the 4.16-fold enhanced NO removal and 2.76 magnitude order decreased NO2 yields, respectively. Improved NO removal and toxic product inhabitation in as-tuned ZnO was disclosed by mechanistic exploitations. It was revealed that regulated microstructures, defect-related charge carrier separation, and strengthened surface interactions were beneficial to active species production and molecular oxygen activation in ZnO, subsequently contributing to the improved NO removal and simultaneous avoidance of NO2 formation. This investigation shed light on the facile regulation of microstructures and the roles of surface chemistry in the oxidation of low concentration NO in the ppb level upon light illumination.
Collapse
Affiliation(s)
- Reshalaiti Hailili
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, P. R. China
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 3, 30167 Hannover, Germany
| | - Xiaokaiti Reyimu
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, P. R. China
| | - Zelong Li
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xu Lu
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, P. R. China
| | - Detlef W Bahnemann
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstr. 3, 30167 Hannover, Germany
- Laboratory "Photoactive Nanocomposite Materials", Saint Petersburg State University, Saint-Petersburg 198504, Russia
| |
Collapse
|
24
|
Cardinale AM, Alberti S, Reverberi AP, Catauro M, Ghibaudo N, Fortunato M. Antibacterial and Photocatalytic Activities of LDH-Based Sorbents of Different Compositions. Microorganisms 2023; 11:microorganisms11041045. [PMID: 37110468 PMCID: PMC10144488 DOI: 10.3390/microorganisms11041045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.
Collapse
Affiliation(s)
- Anna Maria Cardinale
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Andrea Pietro Reverberi
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Nicolò Ghibaudo
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Marco Fortunato
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
25
|
Li J, Wang J, Shen S, Chen R, Liu M, Dong F. Beyond Purification: Highly Efficient and Selective Conversion of NO into Ammonia by Coupling Continuous Absorption and Photoreduction under Ambient Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5445-5452. [PMID: 36942694 DOI: 10.1021/acs.est.2c09669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although the selective catalytic reduction technology has been confirmed to be effective for nitrogen oxide (NOx) removal, green and sustainable NOx re-utilization under ambient conditions is still a great challenge. Herein, we develop an on-site system by coupling the continuous chemical absorption and photocatalytic reduction of NO in simulated flue gas (CNO = 500 ppm, GHSV = 18,000 h-1), which accomplishes an exceptional NO conversion into value-added ammonia with competitive conversion efficiency (89.05 ± 0.71%), ammonia production selectivity (95.58 ± 0.95%), and ammonia recovery efficiency (>90%) under ambient conditions. The anti-poisoning capacities, including the resistance against factors of H2O, SO2, and alkali/alkaline/heavy metals, are also achieved, which presents strong environmental practicability for treating NOx in flue gas. In addition, the critical roles of corresponding chemical absorption and catalytic reduction components are also revealed by in situ characterizations. The emerging strategy herein not only achieves a milestone efficiency for sustainable NO purification but also opens a new route for contaminant resourcing in the near future of carbon neutrality.
Collapse
Affiliation(s)
- Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, Changsha 410083, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
26
|
Zhao W, Wang H, Wang H, Zhang D, Wang Q, Zhong Q, Shang D. Construction of a TiO 2/BiOCl heterojunction for enhanced solar photocatalytic oxidation of nitric oxide. Dalton Trans 2023; 52:4862-4872. [PMID: 36942463 DOI: 10.1039/d3dt00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
TiO2/BiOCl heterojunction photocatalysts with different molar ratios (Ti : Bi) were synthesized by a simple solvothermal method. Various spectroscopic techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) were used to characterize the prepared photocatalysts. The photocatalytic activity of the catalysts was investigated by removing low concentrations of nitrogen oxides. The characterization results show that the TiO2/BiOCl composite photocatalyst exhibits superior visible light response performance than pure BiOCl and TiO2. The optimized TiO2/BiOCl heterojunction with a Ti : Bi molar ratio of 4 : 1 has the best photocatalytic performance. The removal rate of nitrogen oxides of the composite photocatalyst can reach 75%, which is 2.34 times higher than that of pure BiOCl. The observed photocatalytic degradation activity of nitrogen oxides outperforms current state-of-the-art functional photocatalysts. The TiO2/BiOCl composite photocatalyst has a larger specific surface area, stronger visible light absorption and higher charge separation efficiency compared to other control samples, which contribute to the enhanced photocatalytic activity. The experimental results indicate that the combination of TiO2 with BiOCl is a promising technique to design visible light-responsive photocatalysts.
Collapse
Affiliation(s)
- Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Huixian Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Haiwen Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Dingwen Zhang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Qian Wang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Qin Zhong
- Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Danhong Shang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212013, PR China
| |
Collapse
|
27
|
Zhang J, Zhang G, Lan H, Liu H, Qu J. Selective Oxygen Activation to Reactive Oxygen Species on a Carbon Layer-Encapsulated Cu xO Electrocatalyst for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1134-1143. [PMID: 36602374 DOI: 10.1021/acs.est.2c08172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In situ synthesis of reactive oxygen species (ROS) on demand via oxygen activation (OA) is significant in biological, chemical, and environmental fields. Thus, the design of OA catalysts with adequate reactivity, durability, and selectivity is critical but challenging. Here, we report a CuxO@C core@shell photoelectrode prepared by encapsulating Cu/Cu2O/CuO into a carbon layer through anodic electropolymerization (electrophoresis-coupled self-assembly of carbon quantum dots). Theoretical prediction and experiments indicate that the carbon layer can effectively facilitate optical trapping and charge transfer, thus promoting photoelectric conversion and anti-photocorrosion performance of CuxO@C. The inner CuxO core acts as an electron reservoir and continuously injects electrons into the outer carbon layer shell, and the carbon atoms adjacent to oxygen-enriched functional groups (C-O-C and -COOH) in the electron-rich carbon layer work as the reactive sites to adsorb O2 and donate electrons to the antibonding orbital [lowest unoccupied molecular orbital (π*)] of dioxygen. Optimized adsorption and hydrogenation of the critical intermediates (*O2, *OOH, and *H2O2) and thermodynamically tunable O-O bond cleavage enable O2 being selectively reduced to the superoxide anion and hydroxyl radical via the mixed multielectron processes consisting of one- and three-electron pathways. Sulfamethoxazole, an emerging refractory organic contaminant widely present in the environment, can be effectively degraded (∼100% removal) in such an electrochemical platform, benefiting from the abundant ROS generated in situ. Our findings demonstrate an innovative strategy to develop highly efficient and selective OA catalysts for practical water purification.
Collapse
Affiliation(s)
- Jun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
28
|
Ma X, Tang X, Hu Z, Zhen M, Shen B, Guo SQ, Dong F. Oxygen vacancies assist a facet effect to modulate the microstructure of TiO 2 for efficient photocatalytic O 2 activation. NANOSCALE 2023; 15:768-778. [PMID: 36533437 DOI: 10.1039/d2nr05849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Defect engineering is recognized as an effective route to obtaining highly active photocatalytic materials. However, the current understanding of the role of defects in photocatalysts mainly comes from their independent functional analysis, ignoring the synergy between defects and the chemical environment, especially with crystal facets. Herein, oxygen vacancy (VO)-rich TiO2 nanostructures with different dominant exposed facets were prepared, and the microstructural changes induced by the synergy between the VO and facet effect and the performance difference of photocatalytic O2 activation were explored. The results showed that the combination of high concentration VO and the {101} facet is more conducive to improving the photocatalytic performance of TiO2, which is significantly superior to the combination of low concentration VO and the {101} facet as well as the combination of high concentration VO and the {001} facet. The experimental and theoretical results clarified the dependence of each stage of photocatalysis on two factors. Specifically, VO plays a more significant role in energy band regulation, improving the dynamic behavior of photogenerated charges and enhancing the adsorption and activation of O2, while the facet effect made more contributions to reducing the thermodynamic energy barrier of ROS formation and conversion. The excellent ability of O2 activation enables T101-VO to show potential application characteristics in the removal of RhB and bacterial disinfection. This work established a link between defect and facet effects, providing new insights into understanding defect function in photocatalysts.
Collapse
Affiliation(s)
- Xiaojia Ma
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Xuejing Tang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mengmeng Zhen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Sheng-Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Fan Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
29
|
Chang F, Shi Z, Lei Y, Zhao Z, Qi Y, Yin P, Chen S. The Strengthened Photocatalytic NO x Removal of Composites Bi 4O 5Br 2/BiPO 4: The Efficient Regulation of Interface Carriers by Integrating a Wide-Bandgap Ornament. Molecules 2022; 27:molecules27238474. [PMID: 36500559 PMCID: PMC9740558 DOI: 10.3390/molecules27238474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
A series of binary composites Bi4O5Br2/BiPO4 (PBX) was fabricated through a simple mechanical ball milling protocol. Relevant microstructural, morphological, and optical properties were thoroughly analyzed via various techniques. The integration of both components was confirmed to produce heterojunction domains at the phase boundaries. Upon exposure to visible light irradiation, the as-achieved PBX series possessed the reinforced photocatalytic NOx removal efficiencies and the weakened generation of toxic intermediate NO2 in comparison to both bare components, chiefly attributed to the efficient transport and separation of carriers and boosted production of superoxide radicals (·O2-) through the combination of a wide-bandgap ornament BiPO4 as an electron acceptor. In particular, the composite PB5 with the optimal phase composition exhibited the highest NOx removal of 40% with the lowest NO2 formation of 40 ppb among all tested candidates. According to the band structures' estimation and reactive species' detection, a reasonable mechanism was ultimately proposed to describe the migration of charge carriers and the enhancement of photocatalytic performance.
Collapse
Affiliation(s)
- Fei Chang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Zhuoli Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yibo Lei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhongyuan Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yingfei Qi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Penghong Yin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shengwen Chen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 200240, China
| |
Collapse
|
30
|
Shi Y, Yang Z, Shi L, Li H, Liu X, Zhang X, Cheng J, Liang C, Cao S, Guo F, Liu X, Ai Z, Zhang L. Surface Boronizing Can Weaken the Excitonic Effects of BiOBr Nanosheets for Efficient O 2 Activation and Selective NO Oxidation under Visible Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14478-14486. [PMID: 36173086 DOI: 10.1021/acs.est.2c03769] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The photocatalytic O2 activation for pollutant removal highly depends on the controlled generation of desired reactive oxygen species (ROS). Herein, we demonstrate that the robust excitonic effect of BiOBr nanosheets, which is prototypical for singlet oxygen (1O2) production to partially oxidize NO into a more toxic intermediate NO2, can be weakened by surface boronizing via inducing a staggered band alignment from the surface to the bulk and simultaneously generating more surface oxygen vacancy (VO). The staggered band alignment destabilizes excitons and facilitates their dissociation into charge carriers, while surface VO traps electrons and efficiently activates O2 into a superoxide radical (•O2-) via a one-electron-transfer pathway. Different from 1O2, •O2- enables the complete oxidation of NO into nitrate with high selectivity that is more desirable for safe indoor NO remediation under visible light irradiation. This study provides a facile excitonic effect manipulating method for layered two-dimensional photocatalysts and sheds light on the importance of managing ROS production for efficient pollutant removal.
Collapse
Affiliation(s)
- Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhiping Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lujia Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jundi Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
31
|
Qu W, Wen H, Qu X, Guo Y, Hu L, Liu W, Tian S, He C, Shu D. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived Co xFe 3-xO 4 membrane: Oxygen vacancy-mediated mechanism. CHEMOSPHERE 2022; 303:135301. [PMID: 35691400 DOI: 10.1016/j.chemosphere.2022.135301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional batch configuration is not sustainable due to catalyst leaching and ineffective recovery. Herein, a novel membrane-based catalyst with oxygen vacancies is developed, which assembled metal-organic-framework cobalt ferrite nanocrystals (MOF-d CoxFe3-xO4) on polyvinylidene fluoride membrane to activate peroxymonosulfate (PMS) for catalytic degradation of emerging pollutants. MOF-d CoxFe3-xO4 are synthesized by one-step pyrolysis using Co/Fe bimetallic organic frameworks (CoxFe3-x bi-MOF) with tunable cobalt content as a template (x/3-x represented the molar ratio of Co and Fe in MOF). Intriguingly, MOF-d Co1.75Fe1.25O4 membrane exhibits excellent PMS activation efficiency as indicated by 95.12% removal of the probe chemical (bisphenol A) at 0.5 mM PMS (∼100 L m-2 h-1 at the loading of 10 mg), which is significantly higher than the traditional Co1.75Fe1.25O4 suspension system (34.16%). Experimental results show that the membrane has excellent anti-interference ability to anions and dissolved organic matter, and can effectively degrade a variety of emerging pollutants, and its performance is not inhibited by the change of solution pH (3-9) or the long-term (20 h) continuous flow operation. EPR and quenching experiments show that catalytic degradation is the result of the synergistic effect of radicals and non-radicals. The oxygen vacancy-mediated mechanism can explain the formation of active substances, and the formation of 1O2 plays an important role in the degradation of bisphenol A. This study provides a membrane-based strategy for effective and sustainable removal of emerging pollutants.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yifan Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|