1
|
Li J, Fan K, Jin Y, Yang Y, Zheng C, Gao Y, Yang L, Liu X, Wu X. Evolution of VO x on TiO 2-ZSM-5 Composite Supports upon K Poisoning and Its Effects on Ultralow Temperature NH 3-SCR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6774-6788. [PMID: 40038903 DOI: 10.1021/acs.langmuir.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Compared with V2O5/TiO2, vanadia catalysts supported on TiO2-ZSM-5 composite support possess excellent resistance to potassium poisoning in the selective catalytic reduction of NO by NH3 (NH3-SCR). Appropriate addition of ZSM-5 (10 wt %) enhances the low-temperature activity of NH3-SCR with more than 80% NOx conversion at 175-450 °C, as the combination of TiO2 and ZSM-5 is conducive to the formation of more low-valent (polymeric) VOx preferentially deposited on TiO2. Compared with V2O5/TiO2, the composite support catalysts effectively shield V2O5 as the main active species from K poisoning by preferential ion-exchange of K+ with Brønsted acid sites (Si-O(H)-Al) of ZSM-5. According to physicochemical characterizations, the mechanism of catalyst deactivation is mainly attributed to excessive aggregation of VOx to form inactive crystalline V2O5 in addition to KVO3. In situ diffuse reflectance infrared Fourier transform spectroscopy indicates that the presence of K leads to the formation of inactive bidentate nitrates instead of active bridged nitrates. A novel vanadium-based catalyst with high alkali poisoning resistance for ultralow temperature (<200 °C) denitration was developed.
Collapse
Affiliation(s)
- Jiaying Li
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Kaihao Fan
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Yingying Jin
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Yaping Yang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Changlong Zheng
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yang Gao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Letong Yang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xuesong Liu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Xiaodong Wu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
2
|
Zheng Y, Xing Y, Li G, Gao J, Li R, Liu Q, Yue T. A comprehensive review of deactivation and modification of selective catalytic reaction catalysts installed in cement kilns. J Environ Sci (China) 2025; 148:451-467. [PMID: 39095179 DOI: 10.1016/j.jes.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/04/2024]
Abstract
After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.
Collapse
Affiliation(s)
- Yang Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Rui Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Qi Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China.
| |
Collapse
|
3
|
Li G, Li G, Liao M, Liu W, Zhang H, Huang S, Huang T, Zhang S, Li Z, Peng H. Unlocking Mixed-Metal Oxides Active Centers via Acidity Regulation for K&SO 2 Poisoning Resistance: Self-Detoxification Mechanism of Zeolite-Confined deNO x Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10388-10397. [PMID: 38828512 DOI: 10.1021/acs.est.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Guobo Li
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Gang Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Meiyuan Liao
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenming Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hongxiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shan Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, PR China
| | - Honggen Peng
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
4
|
He J, Deng J, Lan T, Liu X, Shen Y, Han L, Wang J, Zhang D. Strong metal oxide-zeolite interactions during selective catalytic reduction of nitrogen oxides. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133164. [PMID: 38103292 DOI: 10.1016/j.jhazmat.2023.133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
In response to the stricter EU VII emission standards and the "150 ℃ challenge", selective catalytic reduction by ammonia (NH3-SCR) catalysts for motor vehicles are required to achieve high NO conversion below 200 °C. Compounding metal oxides with zeolites is an important strategy to design the low-temperature SCR catalysts. Here, we original prepared Cu-SSZ-13 @ MnGdOx (Cu-Z @ MGO), which achieved over 90% NO conversion and 95% N2 selectivity at 150 ℃. It has been demonstrated that a uniform mesoporous loaded layer of MGO grows on Cu-Z, and a recrystallization zone appears at the MGO-Cu-Z interface. We discover that the excellent low-temperature SCR activity derives from the strong metal oxide-zeolite interaction (SMZI) effects. The SMZI effects cause the anchor and high dispersion of MGO on the surface of Cu-Z. Driven by the SMZI effects, the Mn3+/Mn4+ redox cycle ensures the low and medium temperature-SCR activity and the Cu2+/Cu+ redox cycle guarantees the medium and high temperature-SCR activity. The introduction of MGO improves the reaction activity of -NH2 species adsorbed at Mn sites at 150 ℃, achieving a cycle of reduction and oxidation reactions at low temperatures. This strategy of inducing SMZI effects of metal oxides and zeolites paves a way for development of high-performance catalysts.
Collapse
Affiliation(s)
- Jiebing He
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Junan Wang
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China.
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
5
|
Shen Z, Wang P, Hu X, Qu W, Liu X, Zhang D. Ultrahighly Alkali-Tolerant NO x Reduction over Self-Adaptive CePO 4/FePO 4 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14472-14481. [PMID: 37695840 DOI: 10.1021/acs.est.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catalyst deactivation caused by alkali metal poisoning has long been a key bottleneck in the application of selective catalytic reduction of NOx with NH3 (NH3-SCR), limiting the service life of the catalyst and increasing the cost of environmental protection. Despite great efforts, continuous accumulation of alkali metal deposition makes the resistance capacity of 2 wt % K2O difficult to enhance via merely loading acid sites on the surface, resulting in rapid deactivation and frequent replacement of the NH3-SCR catalyst. To further improve the resistance of alkali metals, encapsulating alkali metals into the bulk phase could be a promising strategy. The bottleneck of 2 wt % K2O tolerance has been solved by virtue of ultrahigh potassium storage capacity in the amorphous FePO4 bulk phase. Amorphous FePO4 as a support of the NH3-SCR catalyst exhibited a self-adaptive alkali-tolerance mechanism, where potassium ions spontaneously migrated into the bulk phase of amorphous FePO4 and were anchored by PO43- with the generation of Fe2O3 at the NH3-SCR reaction temperature. This ingenious potassium storage mechanism could boost the K2O resistance capacity to 6 wt % while maintaining approximately 81% NOx conversion. Besides, amorphous FePO4 also exhibited excellent resistance to individual and coexistence of alkali (K2O and Na2O), alkali earth (CaO), and heavy metals (PbO and CdO), providing long durability for CePO4/FePO4 catalysts in flue gas with multipollutants. The cheap and accessible amorphous FePO4 paves the way for the development and implementation of poisoning-resistant NOx abatement.
Collapse
Affiliation(s)
- Zhi Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Zhang P, Chen A, Lan T, Qu W, Hu X, Zhang K, Zhang D. Revealing the Dynamic Behavior of Active Sites on Acid-Functionalized CeO 2 Catalysts for NO x Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314863 DOI: 10.1021/acs.langmuir.3c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the dynamics of the active sites upon CeO2-based catalysts in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR) is challenging. In this work, we prepared tungsten-acidified and sulfated CeO2 catalysts and used operando spectroscopy to reveal the dynamics of acid sites and redox sites on catalysts during NH3-SCR reaction. We found that both Lewis and Brønsted acid sites are needed to participate in the catalytic reaction. Notably, Brønsted acid sites are the main active sites after a tungsten-acidified or sulfated treatment, and the change of Brønsted acid sites significantly affects the NOx removal. Moreover, acid functionalization promotes the cerium species cycle between Ce4+ and Ce3+ for the NOx reduction. This work is critical to deeply understanding the natural properties of active sites, and it also provides new insights into the mechanism for NH3-SCR over CeO2-based catalysts.
Collapse
Affiliation(s)
- Pan Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Che Y, Liu X, Shen Z, Zhang K, Hu X, Chen A, Zhang D. Improved N 2 Selectivity of MnO x Catalysts for NO x Reduction by Engineering Bridged Mn 3+ Sites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7434-7443. [PMID: 37200447 DOI: 10.1021/acs.langmuir.3c00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mn-based catalysts are promising for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures due to their excellent redox capacity. However, the N2 selectivity of Mn-based catalysts is an urgent problem for practical application owing to excessive oxidizability. To solve this issue, we report a Mn-based catalyst using amorphous ZrTiOx as the support (Mn/ZrTi-A) with both excellent low-temperature NOx conversion and N2 selectivity. It is found that the amorphous structure of ZrTiOx modulates the metal-support interaction for anchoring the highly dispersed active MnOx species and constructs a uniquely bridged Mn3+ bonded with the support through oxygen linked to Ti4+ and Zr4+, respectively, which regulates the optimal oxidizability of the MnOx species. As a result, Mn/ZrTi-A is not conducive to the formation of ammonium nitrate that readily decomposes to N2O, thus further increasing N2 selectivity. This work investigates the role of an amorphous support in promoting the N2 selectivity of a manganese-based catalyst and sheds light on the design of efficient low-temperature deNOx catalysts.
Collapse
Affiliation(s)
- Yue Che
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhi Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Qu W, Fang X, Ren Z, Chen J, Liu X, Ma Z, Tang X. NO Selective Catalytic Reduction over Atom-Pair Active Sites Accelerated via In Situ NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7858-7866. [PMID: 37161886 DOI: 10.1021/acs.est.3c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective catalytic reduction (SCR) of NOx with NH3 is the most efficient technology for NOx emissions control, but the activity of catalysts decreases exponentially with the decrease in reaction temperature, hindering the application of the technology in low-temperature SCR to treat industrial stack gases. Here, we present an industrially practicable technology to significantly enhance the SCR activity at low temperatures (<250 °C). By introducing an appropriate amount of O3 into the simulated stack gas, we find that O3 can stoichiometrically oxidize NO to generate NO2, which enables NO reduction to follow the fast SCR mechanism so as to accelerate SCR at low temperatures, and, in particular, an increase in SCR rate by more than four times is observed over atom-pair V1-W1 active sites supported on TiO2(001) at 200 °C. Using operando SCR tests and in situ diffuse reflectance infrared Fourier transform spectra, we reveal that the introduction of O3 allows SCR to proceed along a NH4NO3-mediated Langmuir-Hinshelwood model, in which the adsorbed nitrate species speed up the re-oxidation of the catalytic sites that is the rate-limiting step of SCR, thus leading to the enhancement of activity at low temperatures. This technology could be applicable in the real stack gas conditions because O3 exclusively oxidizes NO even in the co-presence of SO2 and H2O, which provides a general strategy to improve low-temperature SCR efficacy from another perspective beyond designing catalysts.
Collapse
Affiliation(s)
- Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xue Fang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Chen J, Li Y, Liang G, Ma N, Dai W. Boosted capture of trace Cd(II) with a magnetic dual metal-organic-framework adsorbent. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Chen S, Xie R, Liu Z, Ma L, Yan N. Efficient NO x Reduction against Alkali Poisoning over a Self-Protection Armor by Fabricating Surface Ce 2(SO 4) 3 Species: Comparison to Commercial Vanadia Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2949-2957. [PMID: 36751011 DOI: 10.1021/acs.est.2c08570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Resolving severe deactivation by alkali metals for selective catalytic reduction of NOx with NH3 (NH3-SCR) is challenging. Herein, surface Ce2(SO4)3 species as a self-protection armor originally exhibited antipoisoning of potassium over ceria-based catalysts. The self-protection armor was also effective for other alkali (Na), alkali-earth (Ca), and heavy (Pb) metals, considerably resolving the deactivation of ceria-based SCR catalysts in practical applications. The catalytic activity tests indicated that the presence of ∼0.8 wt % potassium did not deactivate sulfated CeO2 catalysts, yet commercial V2O5-WO3/TiO2 catalysts almost lost the NOx conversions. Potassium preferably bonded with surface sulfates to form K2SO4 accompanied with the majority of surface Ce2(SO4)3 over sulfated CeO2 catalysts, but preferably coupled with active vanadia to generate inactive KVO3 species over V2O5-WO3/TiO2 catalysts. Such an active Ce2(SO4)3 species facilitated the adsorption and reactivity of NH3 and NOx, enabling ceria catalysts to maintain high catalytic efficiency in the presence of potassium. Conversely, the introduction of potassium into V2O5-WO3/TiO2 catalysts caused a considerable loss of surface acidity, hindering catalyst reactivity during the SCR reaction. The self-protection armor of Ce2(SO4)3 species may open a promising pathway to develop efficient ceria-based SCR catalysts with strong antipoisoning ability.
Collapse
Affiliation(s)
- Sijia Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Renyi Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Jiang S, Li X, Yin Y, Luo B, Isah AG, Zhang Z, Zhu T. Extraordinary deactivation offset effect of zinc and arsenic on V 2O 5 -WO 3/TiO 2 catalysts: Like cures like. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129894. [PMID: 36087534 DOI: 10.1016/j.jhazmat.2022.129894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The commercial V2O5 -WO3/TiO2 (VWTi) catalysts often suffer from a serious joint deactivation by multiple heavy metals in the flue gas for NOx removal by NH3-SCR. Herein, we report an extraordinary deactivation offset effect between Zn and As on VWTi with alleviation of the toxic effects of the heavy metals by "like cures like". With the As&Zn content of 4 wt%, VWTi-As&Zn exhibited over 97% NO conversion under a GHSV of 100,000 h-1 and good SO2/H2O tolerance (> 93% NO conversion). It's presented 85% of fresh VWTi, exceeding those of VWTi-Zn (15%) by 5.6-fold and VWTi-As (70%) by 1.2-fold. Structure analysis showed that, unlike VWTi-As and VWTi-Zn, the VO vibration and dispersion state of VOx sites over VWTi-As&Zn were hardly affected. Moreover, VWTi-As&Zn possessed both the Lewis and Brønsted acid sites while VWTi-Zn and VWTi-As had only one type of them. The operando infrared/Raman/UV-vis spectroscopy and DFT calculations verified that the less affected VOx sites mainly reflected in three aspects: 1) the electron interaction between As and Zn; 2) the active VO Lewis acid sites; 3) lower energy barrier for N - H bond breaking. The "like cures like" phenomenon may open up an innovative pathway for the control of hazardous heavy metals.
Collapse
Affiliation(s)
- Si Jiang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Yong Yin
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Bingcheng Luo
- College of Science, China Agricultural University, Beijing 100083, PR China
| | | | - Zili Zhang
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
12
|
Elucidating the Sensitivity of Vanadyl Species to Water over V2O5/TiO2 Catalysts for NOx Abatement via Operando Raman Spectroscopy. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Du Y, Lu D, Liu J, Li X, Wu C, Wu X, An X. Insight into the potential application of CuO x/CeO 2 catalysts for NO removal by CO: a perspective from the morphology and crystal-plane of CeO 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of CuOx/CeO2-X were fabricated and employed as the NO + CO reaction catalysts.
Collapse
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, P. R. China
| | - Dong Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jiangning Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaodong Li
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, P. R. China
| | - Chaohui Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xia An
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|