1
|
Wang R, Zhao Y, Dang X, Sun Y, Kong D, Wang X, Bai S, Arotiba OA, Ma J. Unveiling the environmental sustainability of Ti 4O 7 electrified membrane for perfluorooctanoic acid removal. WATER RESEARCH 2025; 277:123310. [PMID: 39987582 DOI: 10.1016/j.watres.2025.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Emerging electrified membrane (EM) technology offers an efficient approach for decentralized water purification. However, EM currently faces the challenge of unknown environmental sustainability, which presents a critical knowledge gap impeding its scale-up implementation. In this work, we aim to explore the environmental impacts of EM technology via a "cradle-to-grave" life cycle assessment, benchmarked against sequential ultrafiltration-nanofiltration. Our study found that the current EM technology shows higher greenhouse gas (GHG) emissions (19.70 kgCO2e g-1) than ultrafiltration-nanofiltration (8.60 kgCO2e g-1) for micropollutants removal. Electro-filtration operation dominates the total environmental impacts of EM process, driven primarily by the supporting electrolyte and electricity consumption. Notably, transitioning to greener electrolytes at lower concentrations can reduce GHG emissions by up to 66%, while switching to low-carbon-grid electricity through renewable energy sources will achieve a 33% reduction. Overall, this work enhances understanding of the environmental impacts of EM technology, emphasizing electrolyte optimization and carbon-intensity-reduction of electricity as critical factors for its sustainable development.
Collapse
Affiliation(s)
- Runzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Xuhui Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ye Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dezhen Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa; Centre for Nanomaterials and Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
2
|
Xiao J, Wu Y, Bu L, Xie S, Zeng Z, Zhou S. Precise and selective detection of perchlorate at trace level using side-chain engineered perylene sensor: From probe to platform. WATER RESEARCH 2025; 282:123658. [PMID: 40250313 DOI: 10.1016/j.watres.2025.123658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The importance of onsite perchlorate detection in real water matrices at trace level (ng/L) has been recognized to ensure drinking water safety, which however faces certain issues (i.e., sensitivity, accuracy, selectivity, etc.). In this study, we meticulously designed an aggregation-induced emission (AIE) luminescent sensor by covalently coupling twisted perylene and alkyl pyridine, demonstrating a high affinity for perchlorate with binding energy of -79.09 kcal/mol. Importantly, the incorporated alkyl pyridine acts as a crucial recognition site, enhancing fluorescence emission through multivalent-driven weak interactions and restricting the skeleton distortion of the AIE probe for precise perchlorate detection. As a result, the optimized perchlorate-specific probe (Per-4C6) characterized a record-breaking selectivity (Kij∼219), a rapid response (<2 min), high sensitivity (2026.9 a.u./mM), an impressive limit of detection (6.37 nM), and robust anti-interference capabilities. Its practical application has been validated by integrating the Per-4C6 probe into a smartphone-based platform. Overall, this study highlights the potential of our AIE probe for reliable and efficient onsite detection of perchlorate at trace level, contributing to the broader goal of sustainable water management.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yangtao Wu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 PR China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 PR China.
| |
Collapse
|
3
|
Guo L, Williams DE, Bromberg L, Padhye LP. Bromate removal in water through electrochemical reduction using Magnéli phase titanium oxide electrode. RSC Adv 2025; 15:10501-10510. [PMID: 40190645 PMCID: PMC11969440 DOI: 10.1039/d5ra01013f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025] Open
Abstract
This study demonstrates the effective electrochemical degradation of bromate, achieving over 95% removal, using both sheet electrodes and reactive membranes fabricated from Magnéli phase titanium oxide (Ti n O2n-1, n = 4-10). Increasing the applied voltage and electrolyte concentration, as well as decreasing the pH, significantly enhanced bromate reduction efficiency. Experimental results suggest that both direct and indirect pathways contribute to the overall degradation process. The impact of coexisting ions was also evaluated. At 1 mM, their inhibitory effect was negligible, whereas, at 10 mM, the inhibition became pronounced in the order SO4 2- > CO3 2- > Cl- ≈ NO3 - ≈ NO2 - > ClO4 -. When applied to secondary effluent wastewater, this electrochemical approach achieved 70% degradation of bromate within six hours. Moreover, the Magnéli phase titanium oxide electrodes exhibited excellent stability and reusability, highlighting their potential for real-world water and wastewater treatment applications.
Collapse
Affiliation(s)
- Lun Guo
- Department of Civil & Environmental Engineering, The University of Auckland Auckland 1142 New Zealand
| | - David E Williams
- School of Chemical Sciences, University of Auckland Bldg. 302, 23 Symonds St Auckland 1010 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington 6140 New Zealand
| | - Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Lokesh P Padhye
- Department of Civil & Environmental Engineering, The University of Auckland Auckland 1142 New Zealand
- Center for Clean Water Technology, Stony Brook University Stony Brook NY 11794 USA
- School of Marine and Atmospheric Sciences, Stony Brook University Stony Brook NY 11794 USA
- Department of Civil Engineering, Stony Brook University Stony Brook NY 11794 USA
| |
Collapse
|
4
|
Hu Z, Jia Y, Wu Y, Zhang Y. Occurrence and removal technologies of perchlorate in water: A systematic review and bibliometric analysis. CHEMOSPHERE 2024; 364:143119. [PMID: 39154764 DOI: 10.1016/j.chemosphere.2024.143119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The pollution resulting from the emergence of the contaminant perchlorate is anticipated to have a substantial effect on the water environment in the foreseeable future. Considerable research efforts have been devoted to investigating treatment technologies for addressing perchlorate contamination, garnering widespread international interest in recent decades. A systematic review was conducted utilizing the Web of Science, Scopus, and Science Direct databases to identify pertinent articles published from 2000 to 2024. A total of 551 articles were chosen for in-depth examination utilizing VOS viewer. Bibliometric analysis indicated that countries such as China, the United States, Chile, India, Japan, and Korea have been prominent contributors to the research on this topic. The order of ClO4- occurrence was as follows: surface water > groundwater > drinking water. Various remediation methods for perchlorate contamination, such as adsorption, ion-exchange, membrane filtration, chemical reduction, and biological reduction, have been suggested. Furthermore, the research critically evaluated the strengths and weaknesses of each approach and offered recommendations for addressing their limitations. Advanced technologies have shown the potential to achieve notably enhanced removal of perchlorate and co-contaminants from water sources. However, the low concentration of perchlorate in natural water sources and the high energy consumption related to these technologies need to be solved in order to effectively remove perchlorate from water.
Collapse
Affiliation(s)
- Zhihui Hu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yan Jia
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yuan Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| |
Collapse
|
5
|
Shao C, Ren S, Zhang Y, Wen Z, Zhang Z, Wang A. Insights into antibiotic cefaclor mineralization by electro-Fenton and photoelectro-Fenton processes using a Ti/Ti 4O 7 anode: Performance, mechanism, and toxic chlorate/perchlorate formation. ENVIRONMENTAL RESEARCH 2023; 238:117185. [PMID: 37742753 DOI: 10.1016/j.envres.2023.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
A comparative degradation of antibiotic cefaclor (CEC) between Ti/Ti4O7 and Ti/RuO2 anodes, in terms of degradation kinetics, mineralization efficiency, and formation of toxic chlorate (ClO3-) and perchlorate (ClO4-), was performed with electrochemical-oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) processes. Besides, CEC degradation by EF with boron-doped diamond (BDD) anode was also tested. Results showed CEC decays always followed pseudo-first-order kinetics, with increasing apparent rate constants in the sequence of EO < EF < PEF. The mineralization efficiency of the processes with Ti/Ti4O7 anode was higher than that of Ti/RuO2 anode, but slightly lower than that of BDD anode. Under the optimal conditions, 94.8% mineralization was obtained in Ti/Ti4O7-PEF, which was much higher than 64.4% in Ti/RuO2-PEF. The use of Ti/RuO2 gave no generation of ClO3- or ClO4-, while the use of Ti/Ti4O7 yielded a small amount of ClO3- and trace amounts of ClO4-. Conversely, the use of BDD led to the highest generation of ClO3- and ClO4-. The reaction mechanism was studied systematically by detecting the generated H2O2 and •OH. The initial N of CEC was released as NH4+ and, in smaller proportion, as NO3-. Four short-chain carboxylic acids and nine aromatic intermediates were also detected, a possible reaction sequence for CEC mineralization was finally proposed.
Collapse
Affiliation(s)
- Chaoran Shao
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Songyu Ren
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Yanyu Zhang
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Zhenjun Wen
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| | - Aimin Wang
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China.
| |
Collapse
|
6
|
Electrochemical oxidation of phenol in chloride containing electrolyte using a carbon-coated Ti4O7 anode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Kumar KS, Kavitha S, Parameswari K, Sakunthala A, Sathishkumar P. Environmental occurrence, toxicity and remediation of perchlorate - A review. CHEMOSPHERE 2023; 311:137017. [PMID: 36377118 DOI: 10.1016/j.chemosphere.2022.137017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate (ClO4-) comes under the class of contaminants called the emerging contaminants that will impact environment in the near future. A strong oxidizer by nature, perchlorate has received significant observation due to its occurrence, reactive nature, and persistence in varied environments such as surface water, groundwater, soil, and food. Perchlorate finds its use in number of industrial products ranging from missile fuel, fertilizers, and fireworks. Perchlorate exposure occurs when naturally occurring or manmade perchlorate in water or food is ingested. Perchlorate ingestion affects iodide absorption into the thyroid, thereby causing a decrease in the synthesis of thyroid hormone, a very crucial component needed for metabolism, neural development, and a number of other physiological functions in the body. Perchlorate remediation from ground water and drinking water is carried out through a series of physical-chemical techniques like ion (particle) transfer and reverse osmosis. However, the generation of waste through these processes are difficult to manage, so the need for alternative treatment methods occur. This review talks about the hybrid technologies that are currently researched and gaining momentum in the treatment of emerging contaminants, namely perchlorate.
Collapse
Affiliation(s)
- Krishnan Suresh Kumar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Subbiah Kavitha
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India.
| | - Kalivel Parameswari
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Ayyasamy Sakunthala
- Solid State Ionics Lab, Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| |
Collapse
|
8
|
Kumar A, Barbhuiya NH, Singh SP. Magnéli phase titanium sub-oxides synthesis, fabrication and its application for environmental remediation: Current status and prospect. CHEMOSPHERE 2022; 307:135878. [PMID: 35932919 DOI: 10.1016/j.chemosphere.2022.135878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Sub-stoichiometric titanium oxide, also called titanium suboxides (TSO), had been a focus of research for many decades with a chemical composition of TinO2n-1 (n ≥ 1). It has a unique oxygen-deficient crystal structure which provides it an outstanding electrical conductivity and high corrosion resistance similar to ceramic materials. High electrical conductivity and ability to sustain in adverse media make these phases a point of attention for researchers in energy storage and environmental remediation applications. The Magnéli phase-based reactive electroconductive membranes (REM) and electrodes have demonstrated the electrochemical oxidation of pollutants in the water in flow-through and flow by configuration. Additionally, it has also shown its potential for visible light photochemical degradation as well. This review attempts to summarize state of the art in various Magnéli phases materials synthesis routes and their electrochemical and photochemical ability for environmental application. The manuscript introduces the Magnéli phase, its crystal structure, and catalytic properties, followed by the recent development in synthesis methods from diverse titanium sources, notably TiO2 through thermal reduction. The various fabrication methods for Magnéli phase-base REMs and electrodes have also been summarized. Furthermore, the article discussed the environmental remediations via electrochemical and photochemical advanced oxidation processes. Additionally, the hybrid technology with REMs and electrodes is used to counter membrane biofouling and develop electrochemical sensing devices for the pollutants. The Magnéli phase materials have a bright future for both electrochemical and photochemical advanced oxidation of emerging contaminants in water and wastewater treatment.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
9
|
Perchlorate reduction catalyzed by dioxidomolybdenum(VI) complexes: Effect of ligand substituents. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Feng W, Lin H, Armutlulu A, Chen J, Liu R, Xie R, Lai B. Anodic activation of persulfate by V-mediated Ti4O7: Improved stability and ROS generation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Li W, Xiao R, Xu J, Lin H, Yang K, Li W, He K, Tang L, Chen J, Wu Y, Lv S. Interface engineering strategy of a Ti 4O 7 ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane. WATER RESEARCH 2022; 216:118287. [PMID: 35334338 DOI: 10.1016/j.watres.2022.118287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Although Ti4O7 ceramic membrane has been recognized as one of the most promising anode materials for electrochemical advanced oxidation process (EAOP), it suffers from relatively low hydroxyl radical (•OH) production rate and high charge-transfer resistance that restricted its oxidation performance of organic pollutants. Herein, we reported an effective interface engineering strategy to develop a Ti4O7 reactive electrochemical membrane (REM) doped by graphene oxide nanoparticles (GONs), GONs@Ti4O7 REM, via strong GONs-O-Ti bonds. Results showed that 1% (wt%) GON doping on Ti4O7 REM significantly reduced the charge-transfer resistance from 73.87 to 8.42 Ω compared with the pristine Ti4O7 REM, and yielded •OH at 2.5-2.8 times higher rate. The 1,4-dioxane (1,4-D) oxidation rate in batch experiments by 1%GONs@Ti4O7 REM was 1.49×10-2 min-1, 2 times higher than that of the pristine Ti4O7 REM (7.51×10-3 min-1) and similar to that of BDD (1.79×10-2 min-1). The 1%GONs@Ti4O7 REM exhibited high stability after a polarization test of 90 h at 80 mA/cm2, and within 15 consecutive cycles, its oxidation performance was stable (95.1-99.2%) with about 1% of GONs lost on the REM. In addition, REM process can efficiently degrade refractory organic matters in the groundwater and landfill leachate, the total organic carbon was removed by 54.5% with a single-pass REM. A normalized electric energy consumption per log removal of 1,4-D (EE/O) was observed at only 0.2-0.6 kWh/m3. Our results suggested that chemical-bonded interface engineering strategy using GONs can facilitate the EAOP performance of Ti4O7 ceramic membrane with outstanding reactivity and stability.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Runlin Xiao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kuanchang He
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiping Wu
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|