1
|
Li J, Fan K, Jin Y, Yang Y, Zheng C, Gao Y, Yang L, Liu X, Wu X. Evolution of VO x on TiO 2-ZSM-5 Composite Supports upon K Poisoning and Its Effects on Ultralow Temperature NH 3-SCR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6774-6788. [PMID: 40038903 DOI: 10.1021/acs.langmuir.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Compared with V2O5/TiO2, vanadia catalysts supported on TiO2-ZSM-5 composite support possess excellent resistance to potassium poisoning in the selective catalytic reduction of NO by NH3 (NH3-SCR). Appropriate addition of ZSM-5 (10 wt %) enhances the low-temperature activity of NH3-SCR with more than 80% NOx conversion at 175-450 °C, as the combination of TiO2 and ZSM-5 is conducive to the formation of more low-valent (polymeric) VOx preferentially deposited on TiO2. Compared with V2O5/TiO2, the composite support catalysts effectively shield V2O5 as the main active species from K poisoning by preferential ion-exchange of K+ with Brønsted acid sites (Si-O(H)-Al) of ZSM-5. According to physicochemical characterizations, the mechanism of catalyst deactivation is mainly attributed to excessive aggregation of VOx to form inactive crystalline V2O5 in addition to KVO3. In situ diffuse reflectance infrared Fourier transform spectroscopy indicates that the presence of K leads to the formation of inactive bidentate nitrates instead of active bridged nitrates. A novel vanadium-based catalyst with high alkali poisoning resistance for ultralow temperature (<200 °C) denitration was developed.
Collapse
Affiliation(s)
- Jiaying Li
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Kaihao Fan
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Yingying Jin
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Yaping Yang
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Changlong Zheng
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yang Gao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Letong Yang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xuesong Liu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang 312000, PR China
| | - Xiaodong Wu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
2
|
Zheng Y, Xing Y, Li G, Gao J, Li R, Liu Q, Yue T. A comprehensive review of deactivation and modification of selective catalytic reaction catalysts installed in cement kilns. J Environ Sci (China) 2025; 148:451-467. [PMID: 39095179 DOI: 10.1016/j.jes.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/04/2024]
Abstract
After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.
Collapse
Affiliation(s)
- Yang Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, China
| | - Guoliang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Rui Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Qi Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing China.
| |
Collapse
|
3
|
Chen Y, Liu X, Wang P, Mansoor M, Zhang J, Peng D, Han L, Zhang D. Challenges and Perspectives of Environmental Catalysis for NO x Reduction. JACS AU 2024; 4:2767-2791. [PMID: 39211630 PMCID: PMC11350593 DOI: 10.1021/jacsau.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Environmental catalysis has attracted great interest in air and water purification. Selective catalytic reduction with ammonia (NH3-SCR) as a representative technology of environmental catalysis is of significance to the elimination of nitrogen oxides (NO x ) emitting from stationary and mobile sources. However, the evolving energy landscape in the nonelectric sector and the changing nature of fuel in motor vehicles present new challenges for NO x catalytic purification over the traditional NH3-SCR catalysts. These challenges primarily revolve around the application limitations of conventional industrial NH3-SCR catalysts, such as V2O5-WO3(MoO3)/TiO2 and chabazite (CHA) structured zeolites, in meeting both the severe requirements of high activity at ultralow temperatures and robust resistance to the wide array of poisons (SO2, HCl, phosphorus, alkali metals, and heavy metals, etc.) existing in more complex operating conditions of new application scenarios. Additionally, volatile organic compounds (VOCs) coexisting with NO x in exhaust gas has emerged as a critical factor further impeding the highly efficient reduction of NO x . Therefore, confronting the challenges inherent in current NH3-SCR technology and drawing from the established NH3-SCR reaction mechanisms, we discern that the strategic manipulation of the properties of surface acidity and redox over NH3-SCR catalysts constitutes an important pathway for increasing the catalytic efficiency at low temperatures. Concurrently, the establishment of protective sites and confined structures combined with the strategies for triggering antagonistic effects emerge as imperative items for strengthening the antipoisoning potentials of NH3-SCR catalysts. Finally, we contemplate the essential status of selective synergistic catalytic elimination technology for abating NO x and VOCs. By virtue of these discussions, we aim to offer a series of innovative guiding perspectives for the further advancement of environmental catalysis technology for the highly efficient NO x catalytic purification from nonelectric industries and motor vehicles.
Collapse
Affiliation(s)
- Yanqi Chen
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Xiangyu Liu
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Penglu Wang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Maryam Mansoor
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Jin Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengchao Peng
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Lupeng Han
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengsong Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| |
Collapse
|
4
|
Li G, Li G, Liao M, Liu W, Zhang H, Huang S, Huang T, Zhang S, Li Z, Peng H. Unlocking Mixed-Metal Oxides Active Centers via Acidity Regulation for K&SO 2 Poisoning Resistance: Self-Detoxification Mechanism of Zeolite-Confined deNO x Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10388-10397. [PMID: 38828512 DOI: 10.1021/acs.est.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Guobo Li
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Gang Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Meiyuan Liao
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenming Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hongxiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shan Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, PR China
| | - Honggen Peng
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
5
|
Shen Z, Wang P, Hu X, Qu W, Liu X, Zhang D. Ultrahighly Alkali-Tolerant NO x Reduction over Self-Adaptive CePO 4/FePO 4 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14472-14481. [PMID: 37695840 DOI: 10.1021/acs.est.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catalyst deactivation caused by alkali metal poisoning has long been a key bottleneck in the application of selective catalytic reduction of NOx with NH3 (NH3-SCR), limiting the service life of the catalyst and increasing the cost of environmental protection. Despite great efforts, continuous accumulation of alkali metal deposition makes the resistance capacity of 2 wt % K2O difficult to enhance via merely loading acid sites on the surface, resulting in rapid deactivation and frequent replacement of the NH3-SCR catalyst. To further improve the resistance of alkali metals, encapsulating alkali metals into the bulk phase could be a promising strategy. The bottleneck of 2 wt % K2O tolerance has been solved by virtue of ultrahigh potassium storage capacity in the amorphous FePO4 bulk phase. Amorphous FePO4 as a support of the NH3-SCR catalyst exhibited a self-adaptive alkali-tolerance mechanism, where potassium ions spontaneously migrated into the bulk phase of amorphous FePO4 and were anchored by PO43- with the generation of Fe2O3 at the NH3-SCR reaction temperature. This ingenious potassium storage mechanism could boost the K2O resistance capacity to 6 wt % while maintaining approximately 81% NOx conversion. Besides, amorphous FePO4 also exhibited excellent resistance to individual and coexistence of alkali (K2O and Na2O), alkali earth (CaO), and heavy metals (PbO and CdO), providing long durability for CePO4/FePO4 catalysts in flue gas with multipollutants. The cheap and accessible amorphous FePO4 paves the way for the development and implementation of poisoning-resistant NOx abatement.
Collapse
Affiliation(s)
- Zhi Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Chen S, Xie R, Liu Z, Ma L, Yan N. Efficient NO x Reduction against Alkali Poisoning over a Self-Protection Armor by Fabricating Surface Ce 2(SO 4) 3 Species: Comparison to Commercial Vanadia Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2949-2957. [PMID: 36751011 DOI: 10.1021/acs.est.2c08570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Resolving severe deactivation by alkali metals for selective catalytic reduction of NOx with NH3 (NH3-SCR) is challenging. Herein, surface Ce2(SO4)3 species as a self-protection armor originally exhibited antipoisoning of potassium over ceria-based catalysts. The self-protection armor was also effective for other alkali (Na), alkali-earth (Ca), and heavy (Pb) metals, considerably resolving the deactivation of ceria-based SCR catalysts in practical applications. The catalytic activity tests indicated that the presence of ∼0.8 wt % potassium did not deactivate sulfated CeO2 catalysts, yet commercial V2O5-WO3/TiO2 catalysts almost lost the NOx conversions. Potassium preferably bonded with surface sulfates to form K2SO4 accompanied with the majority of surface Ce2(SO4)3 over sulfated CeO2 catalysts, but preferably coupled with active vanadia to generate inactive KVO3 species over V2O5-WO3/TiO2 catalysts. Such an active Ce2(SO4)3 species facilitated the adsorption and reactivity of NH3 and NOx, enabling ceria catalysts to maintain high catalytic efficiency in the presence of potassium. Conversely, the introduction of potassium into V2O5-WO3/TiO2 catalysts caused a considerable loss of surface acidity, hindering catalyst reactivity during the SCR reaction. The self-protection armor of Ce2(SO4)3 species may open a promising pathway to develop efficient ceria-based SCR catalysts with strong antipoisoning ability.
Collapse
Affiliation(s)
- Sijia Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Renyi Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Recent advances in Pb resistance over SCR catalysts: reaction mechanisms and anti-inactivation measures. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
8
|
Xu S, Yin L, Wang H, Gao L, Tian X, Chen J, Zhang Q, Ning P. Improved Alkali-Tolerance of FeOx-WO3 Catalyst for NO Removal via in situ Reserving FeOx Active Species. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|