1
|
Wu Q, Cheng S, Zhang W, Zhao J, Zhang L, Lv M, Ma J, Ding J, Wang S, Zheng X, Gao J, Liu R, Yin Y, Shi J, Qu G, Jiang G. Heterogeneous Single-Cell Distribution of Trace-Level Metal Mixtures in Tetrahymena thermophila Using Mass Cytometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7855-7866. [PMID: 40249863 DOI: 10.1021/acs.est.4c12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The uptake of heavy metals by unicellular organisms can lead to the bioaccumulation of these metals in higher organisms, detrimentally affecting organismal health and ultimately impacts the ecosystems. By studying the uptake and accumulation of heavy metals in unicellular organisms, we gain insights into potential risks associated with low-dose heavy metal exposure in aquatic environments. Thus, to investigate the accumulation characteristics of Mo, Ag, Cd, Sn, Sb, Hg, Tl, and Pb mixtures in single Tetrahymena thermophila cells, we developed a label-free approach for the simultaneous absolute quantification of multiple metals in a single cell using mass cytometry. Our results demonstrated the dynamic changes in metal concentrations in T. thermophila, and the competition between metals in uptake and excretory pathways resulted in heterogeneous accumulation and bioconcentration of these metals. Additionally, our findings revealed the limited capacity of T. thermophila to excrete Cd and Hg, suggesting a higher risk for T. thermophila cells when exposed to Cd and Hg over an extended period. Therefore, the current study provides valuable data for a more comprehensive understanding of the impact of low-dose heavy metals on aquatic ecosystems.
Collapse
Affiliation(s)
- Qi Wu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shiyang Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment and Spatial Informatics, China University of Mining Technology, Xuzhou 221116, Jiangsu, China
| | - Wenchao Zhang
- Institute of Environment and Health, School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Liu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Junjie Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuehan Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, China
| | - Guangbo Qu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Wang W, Yang L, Sun H, Peng X, Yuan J, Zhong W, Chen J, He X, Ye L, Zeng Y, Gao Z, Li Y, Qu X. Cellular nucleus image-based smarter microscope system for single cell analysis. Biosens Bioelectron 2024; 250:116052. [PMID: 38266616 DOI: 10.1016/j.bios.2024.116052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Cell imaging technology is undoubtedly a powerful tool for studying single-cell heterogeneity due to its non-invasive and visual advantages. It covers microscope hardware, software, and image analysis techniques, which are hindered by low throughput owing to abundant hands-on time and expertise. Herein, a cellular nucleus image-based smarter microscope system for single-cell analysis is reported to achieve high-throughput analysis and high-content detection of cells. By combining the hardware of an automatic fluorescence microscope and multi-object recognition/acquisition software, we have achieved more advanced process automation with the assistance of Robotic Process Automation (RPA), which realizes a high-throughput collection of single-cell images. Automated acquisition of single-cell images has benefits beyond ease and throughout and can lead to uniform standard and higher quality images. We further constructed a single-cell image database-based convolutional neural network (Efficient Convolutional Neural Network, E-CNN) exceeding 20618 single-cell nucleus images. Computational analysis of large and complex data sets enhances the content and efficiency of single-cell analysis with the assistance of Artificial Intelligence (AI), which breaks through the super-resolution microscope's hardware limitation, such as specialized light sources with specific wavelengths, advanced optical components, and high-performance graphics cards. Our system can identify single-cell nucleus images that cannot be artificially distinguished with an accuracy of 95.3%. Overall, we build an ordinary microscope into a high-throughput analysis and high-content smarter microscope system, making it a candidate tool for Imaging cytology.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Lin Yang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Hang Sun
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Xiaohong Peng
- YueYang Central Hospital, YueYang, Hunan Province, 414000, China
| | - Junjie Yuan
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Wenhao Zhong
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Jinqi Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Xin He
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Lingzhi Ye
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China
| | - Yi Zeng
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhifan Gao
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China.
| | - Yunhui Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong Province, 518017, China.
| |
Collapse
|
3
|
Lan Y, Gao X, Xu H, Li M. 20 years of polybrominated diphenyl ethers on toxicity assessments. WATER RESEARCH 2024; 249:121007. [PMID: 38096726 DOI: 10.1016/j.watres.2023.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.
Collapse
Affiliation(s)
- Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|