1
|
Cheng Y, Zhang M, Zheng H, Yu Q, Wei H, Xue R, Wang S, Hang B, Ikeda A, Guo Y, Xia Y. Ambient formaldehyde combined with high temperature exposure and respiratory disease admissions among children: a time-series study across multiple cities. Thorax 2025:thorax-2024-222709. [PMID: 40169181 DOI: 10.1136/thorax-2024-222709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/09/2025] [Indexed: 04/03/2025]
Abstract
INTRODUCTION Ambient formaldehyde (HCHO) is globally distributed, posing significant exposure to vast populations, particularly vulnerable demographics such as children. Investigations into the correlation between ambient HCHO exposure and children's respiratory ailments are deficient. METHODS Ambient HCHO exposure was retrieved from the TROPOspheric Monitoring Instrument. A two-stage time-series analysis was conducted to examine the relationship between HCHO exposure and hospital admission of respiratory diseases among 198 704 children in Jiangsu Province, China, from 2019 to 2021. Additionally, 12 exposure patterns were defined to further discern potential synergistic effects of HCHO and high temperature combined exposure. RESULTS After controlling for relevant covariates, our findings revealed HCHO exposure was associated with respiratory-related hospital admissions. Specifically, we identified a pronounced effect at lag 3 day, demonstrating a 1.14% increase (95% CI: 0.60%, 1.69%). Subgroup analyses further identified that warm season, 3-7 years old group and disadvantaged economic areas showed higher admission risk. Moreover, we found HCHO combined with high temperature exposure would trigger the elevated risk of hospital admission. Notably, in specific exposure scenarios, the cumulative relative risk reached up to 1.051 (95% CI: 1.025, 1.078), highlighting the synergistic effect of combined exposure on the respiratory health of children. CONCLUSIONS Ambient HCHO exposure increased hospital admission risks for respiratory diseases in children, and high temperature could trigger the elevated risk. To have an in-depth understanding of ambient HCHO health impact is critical for intervention strategies aimed at mitigating ambient HCHO pollution and regarding adverse impacts on children under a changing climate.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Qiurun Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruibin Xue
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Jiang Z, Wang S, Yan Y, Zhang S, Xue R, Gu C, Zhu J, Liu J, Zhou B. Constructing the 3D Spatial Distribution of the HCHO/NO 2 Ratio via Satellite Observation and Machine Learning Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4047-4058. [PMID: 39977671 DOI: 10.1021/acs.est.4c12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The satellite-based tropospheric column ratio of HCHO to NO2 (FNR) is widely used to diagnose ozone formation sensitivity; however, its representation of surface conditions remains controversial. In this study, an approach to construct the 3D spatial distribution of the FNR in the lower troposphere was proposed. Based on satellite and multiaxes-differential Optical Absorption Spectroscopy (MAX-DOAS) data, the horizontal and vertical distributions of the FNR have been respectively obtained. To further enhance the generalizability of this approach, we also reproduced the vertical profiles of the FNR using a machine learning model (Bagged trees) and feature variables. Here, using the three-dimensional distribution of the FNR during the summer of 2019 as an example, a fourth-order polynomial relationship was found between the reconstruction factors (fcol_i) and altitudes, demonstrating a correlation coefficient of 0.98. Utilizing this established relationship, a significant difference was found between the reconstructed surface FNR and the satellite column FNR, with the former decreasing by 56.9%. Moreover, the reconstructed 3D spatial distribution of the FNR for the summers from 2018 to 2022 revealed a trend over the five years in Shanghai of the ozone formation control regimes gradually shifting toward the transition and NOx-limited regimes. Through this newly established approach, not only can the accuracy of identifying surface ozone sensitivity be enhanced from the spaced observation, but also it helps in gaining a comprehensive understanding of the ozone photochemical formation mechanisms in the vertical direction.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Yuhao Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Sanbao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ruibin Xue
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chuanqi Gu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jian Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
- Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Yin L, Bai B, Zhang B, Zhu Q, Di Q, Requia WJ, Schwartz JD, Shi L, Liu P. Regional-specific trends of PM 2.5 and O 3 temperature sensitivity in the United States. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2025; 8:12. [PMID: 39803003 PMCID: PMC11717706 DOI: 10.1038/s41612-024-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM2.5) and ozone (O3) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM2.5 and O3 to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM2.5 in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.
Collapse
Affiliation(s)
- Lifei Yin
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Bin Bai
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Bingqing Zhang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Qiao Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Weeberb J. Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Distrito Federal, Brazil
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
4
|
Ren J, Hao Y, Zheng X, Li X, Xie S. Ozone response to precursors changes in the Chengdu-Chongqing economic circle, China, from satellite and ground-based observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176037. [PMID: 39236828 DOI: 10.1016/j.scitotenv.2024.176037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Ozone (O3) pollution has become a noticeable problem in the Chengdu-Chongqing Economic Circle in China. The April-September MDA8 O3 level increases significantly by 2.26 μg m-3 year-1 from 2015 to 2023, with meteorological factors occupying merely 18 % in line with multivariate linear regression. To reveal the impact of anthropogenic emissions on O3 increase, O3 production sensitivity is accurately diagnosed by deriving localized thresholds for satellite formaldehyde (HCHO) to NO2 ratio and validated by in-situ measurements and observation-based model. Tracking volatile organic compounds (VOCs) and NOx through satellite HCHO and NO2, the O3 responses to precursor changes are assessed for long-term and special cases, and appropriate precursor reduction ratios are inferred. The results present that the transition range of satellite HCHO/NO2 from VOC-limited to NOx-limited in the region ranges from 2.7 to 4.3. The VOC-limited regime is concentrated in the urban areas of Chongqing and Chengdu as well as the central of the neighboring cities such as Deyang, Mianyang, and Meishan. The relative incremental reactivity from in-situ observations and box model at three sites in August 2019 demonstrates that O3 is most sensitive to anthropogenic VOC at urban and suburban sites, consistent with satellite results. Satellite and surface NO2 decrease at an annual rate of -2.1 % and - 2.9 % between 2015 and 2023, with larger decreases in Chengdu and Chongqing. In contrast, the trend of satellite HCHO is insignificant, indicating effective reduction in NOx but no significant reduction in VOC. This inappropriate reduction results in an increase in urban O3. The three short-term cases further validate the need for synergistic NOx and VOC reductions. Based on the relationship between O3 and satellite NO2 and HCHO, the minimum and optimal reduction ratios of VOC to NOx are 0.4:1 and 2.4:1 for the entire region, with higher ratios in Chengdu and Chongqing.
Collapse
Affiliation(s)
- Jie Ren
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, China
| | - Yufang Hao
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, -PSI, Switzerland
| | - Xudong Zheng
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, China
| | - Xin Li
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, China
| | - Shaodong Xie
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, China; Tianfu Yongxing Laboratory, Chengdu 610213, Sichuan, China.
| |
Collapse
|
5
|
Karambelas A, Miller PJ, Underhill J, Pleim J, Zalewsky E, Jakuta J. Ozone sensitivity to high energy demand day electricity and onroad emissions during LISTOS. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:804-819. [PMID: 39186664 DOI: 10.1080/10962247.2024.2396400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Using a high-resolution, 1.33 km by 1.33 km coupled Weather Research and Forecasting-Community Multi-scale Air Quality Model (WRF-CMAQ), we quantify the impact of emissions of nitrogen oxides (NOx) from high energy demand day (HEDD) electricity generating units (EGU) and onroad vehicles on ambient ozone air quality in the Long Island Sound Tropospheric Ozone Study (LISTOS) region covering New York City (NYC); Long Island, NY; coastal Connecticut; and neighboring areas. We test sensitivity scenarios to quantify HEDD EGU NOx contributions to ozone: (1) zero out HEDD EGU emissions, (2) dispatch HEDD EGUs starting with the lowest NOx emitting units first, (3) reduce onroad emissions by 90%, (4) combine zero out HEDD EGU emissions and reducing onroad emissions by 90%, and (5) dispatch HEDD EGUs starting with the lowest emitting units coupled with a reduction in onroad emissions by 90%. Results determine that HEDD EGUs lead to highly localized impacts on ambient concentrations of ozone while onroad emission reductions lead to large-scale regional concentration impacts. Further, reducing onroad emissions by 90% leads to spatially smaller VOC-limited regions and spatially larger transitional and NOX-limited regions around NYC. Despite the limited scale at which the EGU emission reductions occur, modifying HEDD EGU NOX emissions still provides substantial benefits in reducing ozone concentrations in the region, particularly at elevated ozone concentrations above 70 ppb.Implications: High-resolution coupled meteorology-chemistry modeling was used to quantify the impacts of high energy demand day (HEDD) electricity generating units (EGUs) and onroad transportation emissions changes on ozone air quality in the LISTOS region. Despite being highly localized and variable, HEDD EGUs NOX emissions sensitivity tests led to quantifiable changes in ozone. Further, reducing onroad emissions by 90% produced large decreases in ozone concentrations and led to a more NOX-sensitive ozone photochemical regime. With a transition to greater NOX-sensitivity, urban NOX-titration weakens and ozone is more likely to decline with the removal of additional NOX from sources like HEDD EGUs.
Collapse
Affiliation(s)
| | - Paul J Miller
- Northeast States for Coordinated Air Use Management, Boston, MA, USA
| | - Jeffrey Underhill
- Air Resources Division, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Eric Zalewsky
- Bureau of Air Quality Analysis and Research, New York State Department of Environmental Conservation, Albany, NY, USA
| | - Joseph Jakuta
- Air Quality Division, District of Columbia Department of Energy and Environment, Washington, DC, USA
| |
Collapse
|
6
|
Chen N, Yang Y, Wang D, You J, Gao Y, Zhang L, Zeng Z, Hu B. Changing ozone sensitivity in Fujian Province, China, during 2012-2021: Importance of controlling VOC emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124757. [PMID: 39153537 DOI: 10.1016/j.envpol.2024.124757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
In the troposphere, ozone (O3) formation can be limited by NOx, VOCs, or both, complicating efforts to reduce O3 by controlling its precursors. This study used formaldehyde (HCHO) data and nitrogen dioxide (NO2) data from the Ozone Monitoring Instrument (OMI) to analyze O3 formation sensitivity in Fujian from 2012 to 2021. Over the past decade, an 8.7% reduction in NO2 VCDs and a 9.91% increase in HCHO VCDs were observed. Due to differences in the primary driving factors, HCHO VCDs exhibit a characteristic seasonal pattern with higher in summer and lower in winter, whereas NO2 VCDs show the opposite trend. O3 formation chemistry was accurately diagnosed by combining satellite-based data and ground-based O3 data. A new threshold value (3.3-4.6) was derived to determine the transition from VOC-limited to NOx-limited O3 formation regimes. Results showed that O3 sensitivity exhibited pronounced seasonal variations. The VOC-limited regime predominates throughout the entire Fujian region in winter, whereas it occupies only 5% of the area in summer. A VOC-limited region was found widely across Fujian on an annual average, but it decreased by 24% over 10 years. Transitional areas experienced a 19% increase. In two natural emission reduction cases (reductions during the Chinese Lunar New Year holiday and reductions in weekend traffic emissions compared to weekdays), ground-level O3 effectively captured the impacts of sensitivity changes. The impact suggests that when Fujian is in the VOC control region, a significant reduction in NOx, without effective VOC control, might lead to an O3 increase. The importance of controlling VOC emissions is highlighted in Fujian. This study enhances the understanding of O3 formation regimes in southeastern China, which is crucial for developing O3 prevention and control strategies.
Collapse
Affiliation(s)
- Naihua Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Pingtan Environmental Monitoring Center of Fujian, Pingtan, 350400, China
| | - Yuxiang Yang
- Pingtan Environmental Monitoring Center of Fujian, Pingtan, 350400, China
| | - Dongdong Wang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Jianyong You
- Pingtan Environmental Monitoring Center of Fujian, Pingtan, 350400, China
| | - Yue Gao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Limei Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Zhiwei Zeng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China
| | - Baoye Hu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Fujian Province University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou, 363000, China.
| |
Collapse
|
7
|
Wei D, Cao C, Karambelas A, Mak J, Reinmann A, Commane R. High-Resolution Modeling of Summertime Biogenic Isoprene Emissions in New York City. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13783-13794. [PMID: 39042817 PMCID: PMC11308517 DOI: 10.1021/acs.est.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
As cities strive for ambitious increases in tree canopy cover and reductions in anthropogenic volatile organic compound (AVOC) emissions, accurate assessments of the impacts of biogenic VOCs (BVOCs) on air quality become more important. In this study, we aim to quantify the impact of future urban greening on ozone production. BVOC emissions in dense urban areas are often coarsely represented in regional models. We set up a high-resolution (30 m) MEGAN (The Model of Emissions of Gases and Aerosols from Nature version 3.2) to estimate summertime biogenic isoprene emissions in the New York City metro area (NYC-MEGAN). Coupling an observation-constrained box model with NYC-MEGAN isoprene emissions successfully reproduced the observed isoprene concentrations in the city core. We then estimated future isoprene emissions from likely urban greening scenarios and evaluated the potential impact on future ozone production. NYC-MEGAN predicts up to twice as much isoprene emissions in NYC as the coarse-resolution (1.33 km) Biogenic Emission Inventory System version 3.61 (BEIS) on hot summer days. We find that BVOCs drive ozone production on hot summer days, even in the city core, despite large AVOC emissions. If high isoprene emitting species (e.g., oak trees) are planted, future isoprene emissions could increase by 1.4-2.2 times in the city core, which would result in 8-19 ppbv increases in peak ozone on ozone exceedance days with current NOx concentrations. We recommend planting non- or low-isoprene emitting trees in cities with high NOx concentrations to avoid an increase in the frequency and severity of future ozone exceedance events.
Collapse
Affiliation(s)
- Dandan Wei
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York 10027-6902, United
States
- Environmental
Sciences Initiative, City University of
New York, Advanced Science Research Center, New York, New York 10031-1246, United
States
- School
of Marine and Atmospheric Science, Stony
Brook University, Stony
Brook, New York 11794-0701, United States
| | - Cong Cao
- School
of Marine and Atmospheric Science, Stony
Brook University, Stony
Brook, New York 11794-0701, United States
| | - Alexandra Karambelas
- Northeast
States for Coordinated Air Use Management, Boston, Massachusetts 02114-2014, United States
| | - John Mak
- School
of Marine and Atmospheric Science, Stony
Brook University, Stony
Brook, New York 11794-0701, United States
| | - Andrew Reinmann
- Environmental
Sciences Initiative, City University of
New York, Advanced Science Research Center, New York, New York 10031-1246, United
States
- Graduate
Programs in Earth and Environmental Sciences and Biology, City University of New York Graduate Center, New York, New York 10016, United States
- Department
of Geography and Environmental Science, Hunter College, New York, New York 10065, United States
| | - Róisín Commane
- Lamont-Doherty
Earth Observatory, Columbia University, Palisades, New York 10027-6902, United
States
- Department
of Earth & Environmental Sciences, Columbia
University, New York, New York 10027, United States
| |
Collapse
|
8
|
Kusumaningtyas SDA, Tonokura K, Muharsyah R, Gunawan D, Sopaheluwakan A, Iriana W, Lestari P, Permadi DA, Rahmawati R, Samputra NAR. Comprehensive analysis of long-term trends, meteorological influences, and ozone formation sensitivity in the Jakarta Greater Area. Sci Rep 2024; 14:9605. [PMID: 38671080 PMCID: PMC11053138 DOI: 10.1038/s41598-024-60374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Jakarta Greater Area (JGA) has encountered recurrent challenges of air pollution, notably, high ozone levels. We investigate the trends of surface ozone (O3) changes from the air quality monitoring stations and resolve the contribution of meteorological drivers in urban Jakarta (2010-2019) and rural Bogor sites (2017-2019) using stepwise Multi Linear Regression. During 10 years of measurement, 41% of 1-h O3 concentrations exceeded Indonesia' s national threshold in Jakarta. In Bogor, 0.1% surpassed the threshold during 3 years of available data records. The monthly average of maximum daily 8-h average (MDA8) O3 anomalies exhibited a downward trend at Jakarta sites while increasing at the rural site of Bogor. Meteorological and anthropogenic drivers contribute 30% and 70%, respectively, to the interannual O3 anomalies in Jakarta. Ozone formation sensitivity with satellite demonstrates that a slight decrease in NO2 and an increase in HCHO contributed to declining O3 in Jakarta with 10 years average of HCHO to NO2 ratio (FNR) of 3.7. Conversely, O3 increases in rural areas with a higher FNR of 4.4, likely due to the contribution from the natural emission of O3 precursors and the influence of meteorological factors that magnify the concentration.
Collapse
Affiliation(s)
- Sheila Dewi Ayu Kusumaningtyas
- Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG), Jl. Angkasa I, No.2, Kemayoran, Jakarta, 10720, Indonesia.
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Kenichi Tonokura
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Robi Muharsyah
- Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG), Jl. Angkasa I, No.2, Kemayoran, Jakarta, 10720, Indonesia
| | - Dodo Gunawan
- School of Meteorology, Climatology, and Geophysics (STMKG), Agency for Meteorology, Climatology, and Geophysics of Republic of Indonesia (BMKG), Pondok Betung, Tangerang Selatan, Indonesia
| | - Ardhasena Sopaheluwakan
- Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG), Jl. Angkasa I, No.2, Kemayoran, Jakarta, 10720, Indonesia
| | - Windy Iriana
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology (ITB), Jl. Ganesa No. 10, Bandung, 40132, Indonesia
- Center for Environmental Studies, Bandung Institute of Technology (ITB), Jl. Sangkuriang No.42 A, Bandung, 40135, Indonesia
| | - Puji Lestari
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology (ITB), Jl. Ganesa No. 10, Bandung, 40132, Indonesia
| | - Didin Agustian Permadi
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, National Institute of Technology (ITENAS), Jl. PKH. Mustopha No.23, Bandung, 40124, Indonesia
| | - R Rahmawati
- Jakarta Provincial Environmental Agency, Jl. Mandala V No.67, RT.1/RW.2, Cililitan, Jakarta, 13640, Indonesia
| | - Nofi Azzah Rawaani Samputra
- Jakarta Provincial Environmental Agency, Jl. Mandala V No.67, RT.1/RW.2, Cililitan, Jakarta, 13640, Indonesia
| |
Collapse
|
9
|
Hu W, Zhao Y, Lu N, Wang X, Zheng B, Henze DK, Zhang L, Fu TM, Zhai S. Changing Responses of PM 2.5 and Ozone to Source Emissions in the Yangtze River Delta Using the Adjoint Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:628-638. [PMID: 38153406 DOI: 10.1021/acs.est.3c05049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
China's industrial restructuring and pollution controls have altered the contributions of individual sources to varying air quality over the past decade. We used the GEOS-Chem adjoint model and investigated the changing sensitivities of PM2.5 and ozone (O3) to multiple species and sources from 2010 to 2020 in the central Yangtze River Delta (YRDC), the largest economic region in China. Controlling primary particles and SO2 from industrial and residential sectors dominated PM2.5 decline, and reducing CO from multiple sources and ≥C3 alkenes from vehicles restrained O3. The chemical regime of O3 formation became less VOC-limited, attributable to continuous NOX abatement for specific sources, including power plants, industrial combustion, cement production, and off-road traffic. Regional transport was found to be increasingly influential on PM2.5. To further improve air quality, management of agricultural activities to reduce NH3 is essential for alleviating PM2.5 pollution, while controlling aromatics, alkenes, and alkanes from industry and gasoline vehicles is effective for O3. Reducing the level of NOX from nearby industrial combustion and transportation is helpful for both species. Our findings reveal the complexity of coordinating control of PM2.5 and O3 pollution in a fast-developing region and support science-based policymaking for other regions with similar air pollution problems.
Collapse
Affiliation(s)
- Weiyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Jiangsu 210044, China
| | - Ni Lu
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Xiaolin Wang
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Bo Zheng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Tzung-May Fu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shixian Zhai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Division of Environment and Sustainability, HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Zhao K, Wu Y, Huang J, Gronoff G, Berkoff TA, Arend M, Moshary F. Identification of the roles of urban plume and local chemical production in ozone episodes observed in Long Island Sound during LISTOS 2018: Implications for ozone control strategies. ENVIRONMENT INTERNATIONAL 2023; 174:107887. [PMID: 37001216 DOI: 10.1016/j.envint.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Long Island Sound (LIS) frequently experiences ozone (O3) exceedance events that surpass national ambient air quality standards (NAAQS) due to complex driving factors. The underlying mechanisms governing summertime O3 pollution are investigated through collaborative observations from lidar remote sensing and ground samplers during the 2018 LIS Tropospheric O3 Study (LISTOS). Regional transport and local chemical reactions are identified as the two key driving factors behind the observed O3 episodes in LIS. An enhanced laminar structure is observed in the O3 vertical structure in the atmospheric boundary layer (i.e., 0-2 km layer) for the case dominated by regional transport. An O3 formation regime shift is found in ozone-precursor sensitivity (OPS) for the O3 exceedance event dominated by regional transport with NOx-enriched air mass transport from the New York City (NYC) urban area to LIS. Furthermore, the Integrated Process Rate (IPR) analysis demonstrates that transport from the NYC urban area contributed 40% and 27.1% of surface O3 enhancement to the cases dominated by regional transport and local production, respectively. This study provides scientific evidence to uncovers two key processes that govern summertime O3 pollution over LIS and can help to improve emission control strategies to meet the attainment standards for ambient O3 levels over LIS and other similar coastal areas.
Collapse
Affiliation(s)
- Kaihui Zhao
- Yunnan Key Laboratory of Meteorological Disasters and Climate Resources in the Greater Mekong Subregion, Yunnan University, Kunming 650091, China
| | - Yonghua Wu
- Optical Remote Sensing Lab, the City College of New York (CCNY), New York, NY 10031, USA
| | - Jianping Huang
- NOAA-NCEP Environmental Modeling Center and Lynker, College Park, MD 720740, USA.
| | - Guillaume Gronoff
- NASA Langley Research Center, Hampton, VA 23681, USA; Science Systems Applications, Inc. (SSAI), Hampton, VA 23681, USA
| | | | - Mark Arend
- Optical Remote Sensing Lab, the City College of New York (CCNY), New York, NY 10031, USA
| | - Fred Moshary
- Optical Remote Sensing Lab, the City College of New York (CCNY), New York, NY 10031, USA
| |
Collapse
|